Vector Field Oriented Diffusion Model for Crystal Material Generation

Authors

  • Astrid Klipfel Univ. Artois, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France. Univ. Artois, UR 2462, Laboratoire de Mathématiques de Lens (LML), F-62300 Lens, France. Univ. Artois, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens, France.
  • Yaël Fregier Univ. Artois, UR 2462, Laboratoire de Mathématiques de Lens (LML), F-62300 Lens, France.
  • Adlane Sayede Univ. Artois, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens, France.
  • Zied Bouraoui Univ. Artois, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France.

DOI:

https://doi.org/10.1609/aaai.v38i20.30224

Keywords:

General

Abstract

Discovering crystal structures with specific chemical properties has become an increasingly important focus in material science. However, current models are limited in their ability to generate new crystal lattices, as they only consider atomic positions or chemical composition. To address this issue, we propose a probabilistic diffusion model that utilizes a geometrically equivariant GNN to consider atomic positions and crystal lattices jointly. To evaluate the effectiveness of our model, we introduce a new generation metric inspired by Frechet Inception Distance, but based on GNN energy prediction rather than InceptionV3 used in computer vision. In addition to commonly used metrics like validity, which assesses the plausibility of a structure, this new metric offers a more comprehensive evaluation of our model's capabilities. Our experiments on existing benchmarks show the significance of our diffusion model. We also show that our method can effectively learn meaningful representations.

Published

2024-03-24

How to Cite

Klipfel, A., Fregier, Y., Sayede, A., & Bouraoui, Z. (2024). Vector Field Oriented Diffusion Model for Crystal Material Generation. Proceedings of the AAAI Conference on Artificial Intelligence, 38(20), 22193-22201. https://doi.org/10.1609/aaai.v38i20.30224