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Abstract
Sustainability challenges inherently involve the considera-
tion of multiple competing objectives. The Pareto frontier
– the set of all optimal solutions that cannot be improved
with respect to one objective without negatively affecting an-
other – is a crucial decision-making tool for navigating sus-
tainability challenges as it highlights the inherent trade-offs
among conflicting objectives. Our research is motivated by
the strategic planning of hydropower in the Amazon basin,
one of the earth’s largest and most biodiverse river systems,
where the need to increase energy production coincides with
the pressing requirement of minimizing detrimental environ-
mental impacts. We investigate an innovative strategy that
pairs hydropower with Floating Photovoltaic Solar Panels
(FPV). We provide a new extended multi-tree network for-
mulation, which enables the consideration of multiple dam
configurations. To address the computational challenge of
scaling up the Pareto optimization framework to tackle mul-
tiple objectives across the entire Amazon basin, we further
enhance the state-of-the-art algorithm for Pareto frontiers in
tree-structured networks with two improvements. We intro-
duce affine transformations induced by the sub-frontiers to
compute Pareto dominance and provide strategies for merg-
ing sub-trees, significantly increasing the pruning of domi-
nated solutions. Our experiments demonstrate considerable
speedups, in some cases by more than an order of magnitude,
while maintaining optimality guarantees, thus allowing us to
more effectively approximate the Pareto frontiers. Moreover,
our findings suggest significant shifts towards higher energy
values in the Pareto frontier when pairing hybrid hydropower
with FPV solutions, potentially amplifying energy production
while mitigating adverse impacts.

Introduction
Computational Sustainability (Gomes et al. 2019) is a field
within Computer Science that aims to use Artificial Intel-
ligence to work towards a sustainable future. Problems in
Computational Sustainability often require finding a balance
between conflicting concerns, as captured for example, in
the Sustainable Development Goals that aim to ensure eco-
nomic and social equity across all strata of society while
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Figure 1: (a) Existing (red) and proposed (yellow) hy-
dropower dams in the Amazon basin and (b) Hybrid hy-
dropower dam with floating photovoltaic solar panels (FPV)
system (Lee et al. 2020).

maintaining a healthy environment (United Nations General
Assembly 2015). Such trade-offs between conflicting ob-
jectives naturally translate to Multi-Objective Combinatorial
Optimization Problems (MOCOP) (Ehrgott and Gandibleux
2000; Ehrgott, Gandibleux, and Przybylski 2016; Wiecek
et al. 2008). Our goal is to understand these trade-offs and
enable stakeholders to make informed decisions based on
their preferences and constraints.

Our work is motivated by the need to identify portfolios of
hydropower dams that maximize economic, social, and en-
vironmental needs (Almeida et al. 2022b). Curbing climate
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change requires an extraordinary increase in energy genera-
tion from renewable sources in the coming decades. While
wind and solar power are growing rapidly, hydropower re-
mains the largest source of renewable electricity globally,
and construction of new dams is expected to continue. Most
new hydropower projects are projected for the Global South,
where latent hydropower potential is large. Hotspot areas
for future hydropower development include pristine, biolog-
ically diverse regions such as the Amazon basin (Flecker
et al. 2022). As of 2014, there were over 3,700 large dams
(>1MW installed capacity) proposed, planned, or under
construction across the world (Zarfl et al. 2014), and over
350 in the Amazon basin alone. In addition to energy gener-
ation, dams may negatively impact surrounding ecosystems,
blocking sediment and river connectivity, and harming bio-
diversity. Thus, to minimize these adverse effects, it is im-
portant to carefully select which dams to build, considering
trade-offs among competing objectives (Almeida et al. 2019;
Winemiller et al. 2016; Ziv et al. 2012).

Floating Photovoltaic Solar Panels (FPV) have emerged
as an attractive application of solar PV that allows for sys-
tems to be floated on water bodies. When integrated into hy-
brid systems with hydropower, FPV can enhance the over-
all efficiency and value of hydropower systems (Lee et al.
2020). See Figure 1. Placing solar arrays on reservoirs of-
fers several advantages. These floating panels, which can
be simply anchored through mooring lines, stay cool near
the water, making them about 5% more efficient than land-
based panels. Additionally, they shield the water surface,
potentially reducing evaporation and preserving water for
hydropower, drinking, and irrigation. Moreover, integrat-
ing these panels with the pre-existing grid infrastructure
of hydropower reservoirs can decrease transmission costs.
This ”Floatovoltaics” approach can also lower the carbon
intensity of some hydropower, particularly in cases where
methane emissions from submerged plant matter make them
as carbon-intensive as fossil-fuel power plants. Neverthe-
less, additional environmental and social impacts must be
assessed (Almeida et al. 2022a).

Traditionally, the benefits and impacts of dams have been
addressed on a site-by-site basis. However, there is grow-
ing recognition in research (Opperman et al. 2023), pol-
icy (Castaño et al. 2019), and practice domains to move
towards decision processes that assess the complex cumu-
lative interactions of projects at river-basin scales to iden-
tify optimal development portfolios, with the objective of
minimizing the consequences on the integrity of ecologi-
cal processes of river systems. We have partnered with gov-
ernmental agencies, academics, non-governmental organiza-
tions, and the private sector in Amazonian countries, for data
acquisition, ground-truthing of data, and the translation of
results to policy- and decision-makers. Given the interdisci-
plinary nature of this project, our team involves researchers
across multiple disciplines (e.g., ecology, hydrology, policy)
in addition to computer science. As part of these efforts, we
have organized numerous working group meetings to collec-
tively make the developed AI tools and methodologies more
accessible to partners in addressing sustainability solutions,
and to ensure the developed models are grounded in reality,

with tools provided to partners for analysis (see the web-
site https://www.cs.cornell.edu/gomes/udiscoverit/amazon-
ecovistas/).

Previous work framed the problem of selecting which
dams to build in the Amazon basin as a tree-structured MO-
COP arising from converting the underlying river network to
a rooted, directed tree network (Gomes-Selman et al. 2018;
Wu et al. 2018). The goal is to find the Pareto frontier: the
set of all solutions such that no solution is dominated by any
other feasible solution. In other words, for a given solution,
there is no way to simultaneously improve upon some objec-
tive without compromising another. Due to the tree structure,
Dynamic Programming (DP) may be used to compute the
exact Pareto frontier (Wu et al. 2018). In addition, a round-
ing technique applied to the exact DP algorithm provides a
fully polynomial-time approximation scheme (FPTAS) (Wu
et al. 2018; Wu, Sheldon, and Zilberstein 2014a). The FP-
TAS finds a solution set of polynomial size, which approx-
imates the Pareto frontier within an arbitrary small ϵ factor
and runs in time that is polynomial in the size of the in-
stance and 1/ϵ. The DP approach finds the Pareto frontier
of a node by combining the frontiers of each child to form
the new frontier. This greatly reduces the search space of the
problem as we need only consider the Cartesian product of
optimal solutions and decisions from each child. However,
even with the FPTAS, the number of solutions that need to
be considered may be too large to process, especially given
the additional challenge of considering two configurations
for the dams, with and without FPV. Therefore it is critical
to scale up Pareto optimization for tree structures.

Our contributions. In this paper, we investigate the inno-
vative strategy of pairing hydropower with Floating Photo-
voltaic Solar Panels (FPV). To address the scalability chal-
lenge, we propose three enhancements to the state-of-the-
art algorithm for Pareto frontiers in tree-structured networks
(Gomes-Selman et al. 2018) while maintaining the same op-
timality guarantees of the exact Pareto frontier algorithm
and the FPTAS. We then validate our approaches with two
use cases in the Amazon River basin. More specifically: (1)
We provide a new extended multi-tree network formulation,
which enables the consideration of multiple dam configu-
rations. (2) We formulate the problem of joining the sub-
frontiers of a node as an affine transformation that pre-
serves Pareto optimality, allowing for efficient dominance
checks. (3) We dynamically select the children to join pair-
wise based on a ranking heuristic, unlike the previous ap-
proach following a static order. (4) We validate our approach
using real data from the Amazon, the world’s largest and
most biodiverse river basin, considering six energy and en-
vironmental objectives. Our experiments demonstrate a re-
markable reduction in the number of solutions considered
by over an order of magnitude or more in most cases, with-
out losing any guarantees on finding non-dominated solu-
tions, as well as better approximate Pareto frontiers in prac-
tice, especially for extremely large problem instances. (5)
Our findings also show positive shifts towards higher en-
ergy values in the Pareto frontier when pairing hybrid hy-
dropower with FPV solutions, amplifying energy produc-
tion while mitigating adverse impacts.
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Related Work
For unstructured general multi-objective optimization prob-
lems, genetic algorithms have been used for approximating
the Pareto frontiers, with Non-dominated Sorting Genetic
Algorithm(s) (NSGA (Srinivas and Deb 1994), NSGA-II
(Deb et al. 2002), and NSGA-III (Deb and Jain 2013)) and
Multi-objective Evolutionary Algorithm Based on Decom-
position (MOEA/D) (Zhang and Li 2007) being among the
most popular methods. However, because these algorithms
do not consider the underlying structure of the problem, they
are unable to provide the same theoretical guarantees.

Other methods for identifying the Pareto frontier use ray-
based techniques (Lin et al. 2019; Ma, Du, and Matusik
2020; Mahapatra and Rajan 2021; Nowak and Küfer 2020)
to identify Pareto optimal solutions by finding solutions that
match a given preference vector or that move along the
Pareto surface in the direction of rays to identify other so-
lutions. These methods are gradient-based, requiring a de-
fined gradient, but our problem domain has a discrete input
domain and lacks any well-defined gradients, making ray-
based techniques a poor fit for this problem.

Our methods are closely related to Binary Decision Dia-
grams (BDDs) (Bergman and Cire 2016) which use a com-
pact decision diagram representation of the problem and
identify shortest paths through the BDD as non-dominated
solutions, which are closely related to DP problems(Hooker
2013). However, these methods assume linear separability
in the objective functions with respect to the parameters
(Bergman et al. 2016), whereas, for our problem domain,
the objective functions are non-separable and are dependent
upon all decisions made along paths from the root to a node.

Other approaches, such as the Compression and Expan-
sion (CE) technique (Bai et al. 2023), involve the paral-
lel generation of partial Pareto frontiers, optimized with re-
spect to fewer criteria, employing an existing Pareto solver.
These partial Pareto frontiers, evaluated on all the criteria
are then merged, with dominated solutions removed. In our
experimental section, we use our approach as the underlying
Pareto solver for the CE method, which synergistically leads
to improved results.

Finally, to the best of our knowledge, this is the first quan-
titative work computing the Pareto frontier with hybrid float-
ing solar-hydropower systems.

Preliminaries
In the hydropower dam portfolio selection problem, our goal
is to determine the subset of the proposed dams to build to
jointly optimize a set of criteria. Note, we cannot optimize
each criterion independently, as maximizing one criterion
may require sacrificing other criteria. Given our goal, we set
forth some definitions for the underlying optimization prob-
lem.

Pareto Dominance. For a given solution π, z(π) =
(z1(π), . . . , zd(π)) is the values of the d objectives. A so-
lution π dominates solution π′ - written as z(π) ≻ z(π′) -
if and only if the following two properties hold: (1) for all
1 ≤ i ≤ d, zi(π) ≥ zi(π′); and (2) there exists at least one
strict inequality, 1 ≤ j ≤ d such that zj(π) > zj(π′).

Figure 2: Converting a river network (a) into a directed
multi-tree (b). Dam sites, represented by numbers, become
directed edges, with one edge per decision. Dams that are
already built may have a single edge (dam 2), whereas pro-
posed dams may contain two edges (build/not build) (dam
1), but can be extended to more decisions (dam 3) where
the options include building hydro only, hydro + FPV, or
not building. Each edge has associated river ecosystem ser-
vices rewards (s) and passage probabilities (p) depending on
the decision. The contiguous river segments, undisturbed by
dam sites, represented by letters, become nodes with asso-
ciated river ecosystem services values (r). The river section
starting from the mouth of the river, u, is the root of the tree.

Pareto Frontier. Given multiple competing objectives, we
aim to find the Pareto frontier or Pareto set. Let P be the
set of all feasible solutions, we define the Pareto set as
{π ∈ P|z(π) ̸≺ z(π′), ∀π′ ∈ P}. For example, consider
three solutions (π1, π2, π3), with objective values z(π1) =
(10, 4, 3), z(π2) = (9, 4, 2), and z(π3) = (8, 5, 3). Solution
π1 dominates π2 as it has strictly greater values for its first
and third objectives and equal values for the second. How-
ever, π1 does not dominate π3, and vice versa, as π1 has a
greater value in its first objective than π3, but π3 has a greater
value in its second objective. Additionally, π2 and π3 do not
dominate each other. Since π1 and π3 are not dominated by
any other solution, the Pareto set is {π1, π3}.

ϵ-approximate Pareto Frontier. Given a Pareto frontier
P , an approximate Pareto frontier P ′ is said to ϵ approximate
P if and only if for every π ∈ P , there exists a solution
π′ ∈ P ′ such that zi(π′) ≥ (1− ϵ)zi(π) for all criteria i.

Problem Formulation
Here we introduce our new problem formulation that ex-
tends the original problem’s tree-structured network layout.
In the original problem formulation(Wu et al. 2018), the un-
derlying river network is converted into a rooted, directed
tree, motivated by the work in (Wu, Sheldon, and Zilber-
stein 2014a,b). Here, a node in the tree is a contiguous por-
tion of the river network undisturbed by potential dams,
which typically consists of multiple river segments, with
the dam locations becoming edges in the tree. In this origi-
nal formulation, each node u has associated ecosystem ser-
vice values ru = (r1u, . . . , r

d
u), and each edge (u, v) had

associated with it a decision variable πuv that represents
the status of that dam, associated ecosystem service values
suv = (s1uv, . . . , s

d
uv), and passage probabilities puv and quv

which represent the percentage of a given service that passes
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through a dam location when built or not built respectively.
In this formulation, the associated ecosystem service values
and passage probabilities associated with the dam differ de-
pending on the status of the decision variable, which both
restricts the formulation to two decisions and requires multi-
ple variables representing similar constructs. We, therefore,
propose a new formulation that takes into account many pos-
sible decisions and results in a cleaner representation even
for just two decisions.

Instead of formulating the problem as a simple tree with
an edge representing multiple potential decisions simulta-
neously, we now convert the underlying river network to a
rooted, directed multi-tree. Here we define a directed multi-
tree as a directed acyclic multigraph where each connected
pair of nodes u and v may contain multiple parallel edges,
in other words, any path between two nodes u and v must
always pass through the same nodes, but potentially along
different distinct parallel edges, which is how it differs from
a standard tree. Each edge, which we will now refer to as
(u, v)j where j is an index that differentiates the edges, now
represents a different choice, and a solution π in the net-
work, defined as a decision made for every dam in the river,
is a spanning tree of the graph. In addition, each edge (u, v)j
now has a single suvj vector for the ecosystem service val-
ues associated with a dam and the representative decision
and a singular puvj that represents the passage probability
for the given decision. This new formulation is shown in Fig-
ure 2, where already-built dams only have a single edge, but
unbuilt dams have two or three if FPV is an option.

Input: We are given a directed connected multi-tree T =
(V,E), where each node u ∈ V has a set of rewards
{r1u, . . . , rdu}, and each edge (u, v)j ∈ E is associated with
a set of objective values {s(1)uvj , . . . , s

(d)
uvj} and passage prob-

abilities {p(1)uvj , . . . , p
(d)
uvj}. Each edge (u, v)j ∈ E is also as-

sociated with a decision on the dam. A solution π is a span-
ning tree of the multi-tree, where exactly one edge from each
set of parallel edges is selected. For a given solution π, and
tree Tu, a tree rooted at node u, we can compute the value
of d objectives z(π, Tu) = (z1(π, Tu), . . . , z

d(π, Tu)). Let
P(u, v) ⊂ π be the set of selected edges in the path from
node u to any node v in the tree Tu.

zi(π, Tu) = riu +
∑

(v,w,k)∈(π∩Eu)

riw
∏

(x,y,j)∈P(u,w)

pxyi

+ sivwk

∏
(x,y,j)∈P(u,v)

pxyi (1)

Output: The Pareto frontier with respect to the d objec-
tives within the set of all feasible solutions P .

Main Algorithm
We can take advantage of the tree structure of the river net-
work and compute the Pareto frontier at each node recur-
sively since the criteria we care about share the characteris-
tic that an optimal solution on T is also optimal on a subtree
Tu rooted at node u ∈ V , i.e. the subtree induced on the set
of all nodes above u including u.

From the problem formulation, we recursively define the
zi(π, Tu) values for tree T rooted at node u and solution π:

zi(π, Tu) = riu +
∑

(u,v,j)∈π

siuvj + puvjz
i(π, Tv) (2)

In (Gomes-Selman et al. 2018; Wu et al. 2018), the au-
thors propose a DP algorithm that takes, as input, a directed
tree, and outputs the set of non-dominated solutions at the
root of the tree. The algorithm, which is shown in more de-
tail in the supplementary materials (SI), recursively gener-
ates the Pareto frontier of all the children of a node and joins
the sub-frontiers of each child together to produce the Pareto
frontier of the parent by finding the set of non-dominated
solutions from the combination of solutions and decisions at
each child. In practice, the size of the frontier grows expo-
nentially in the number of objectives, making it infeasible to
calculate the exact Pareto frontier for any substantial num-
ber of objectives. To alleviate this issue, (Wu et al. 2018)
proposes a rounding scheme that ϵ-approximates the Pareto
frontier in polynomial time. The steps performed on a node
u can be broken into four cases: leaf nodes, single child
nodes, two child nodes, and greater than two child nodes,
with each case given a more detailed inspection in SI.

Sub-frontier Transformations
When joining two children together, any combination of left
child solution and decisions made on the left and right dams
defines an affine transformation that is applied to the entirety
of the right child solution set. More concretely, for a given
node u, children v and w, let πv and πw be some specific
solutions1 from the Pareto frontiers associated with the trees
Tv and Tw respectively. Let πu be a new solution containing
the solutions πv and πw and let (u, v, j) and (u,w, k) be the
edges selected from all parallel edges of (u, v) and (u,w)
respectively. Consider Equation 2, expanding out the sum:

zi(πu, Tu) =riu + siuwk + piuwkz
i(πw, Tw)

+ siuvj + piuvjz
i(πv, Tv)

(3)

By fixing πw, (u, v, j) and (u,w, k), we see that riu +
siuwk + piuwkz

i(πw, Tw) + siuvj forms a constant term, and
piuvjz

i(πv, Tv) is a scalar multiplied by the value zi(πv, Tv)
for all solutions πv associated with Tv . Thus we obtain an
affine transformation aizi(πv) + bi for each j, where

bi((u,w, k), (u, v, j), πw) = riu + siuwk + siuvj

+ piuwkz
i(πw, Tw) (4)

ai((u,w, j)) = piuvj (5)

1We are slightly overloading the usage of π. When used with
a single subscript, such as πu it refers to a specific node solution
which is a vector of decision variables, one for each edge in the tree
rooted at node u. When used with two subscripts πuv , it refers to
the specific decision variable associated with edge (u, v).
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Figure 3: Example of transform dominance. For the blue cir-
cles, we have the initial points of a sub-frontier along with a
series of affine transformations Ax + b for different values
of b. The transformation b1 ≻ b2. All points in Ax + b2 are
dominated by at least one point in Ax+b1, but neither points
in Ax+ b1 nor Ax+ b3 dominate each other.

Because the scalar ai is dependent only on the edge
(u, v, j), for a fixed (u, v, j), for all possible deci-
sions (u,w, k) and solutions πw associated with tree
Tw, the objective values from zi(πv, Tv) are scaled
by the same amount, and the difference in the result-
ing position of the transformed solution is dependent
only on the shift caused by bi. Therefore, for a given
(u,w, k), if a shift b((u,w, k), (u, v, j), πw) induced by
edge (u,w, k) and solution πw is dominated by another shift
b′((u,w, k′), (u, v, j), π′

w) induced by decision (u,w, k′)
and solution π′

w, then every point shifted by b must be dom-
inated by at least one point shifted by b′.

Lemma 1. Let A ∈ Rd×d be a diagonal matrix, B be a set
of vectors in Rd, and X be a set of non-dominated points in
Rd. If a vector b ∈ B ≻ b′ ∈ B, that is b dominates b′, then
every point in {Ax+b′|x ∈ X} is dominated by at least one
point in {Ax+ b|x ∈ X}.

The proof is provided in the SI. This result allows us to check
for dominance in the set of transformations first, and remove
any transformations that are dominated. If we have two chil-
dren w and v with m and n solutions respectively, and the
decisions to build or not build each dam, without consider-
ing transform domination we must consider 4mn solutions.
If we instead first consider the set of transformations that are
non-dominated, of which there are m′ ≤ 4m, we first must
consider 4m transformations and m′n solutions. As long
as the resulting number of transformations m′ ≤ 4mn−1

n ,
where n may be quite large, then we will consider fewer
solutions and transformations combined. Figure 3 shows an
example of how a dominated transform results in the entire
frontier being dominated.

Child Ranking
Another contribution concerns the ordering in which chil-
dren are joined when there are more than two children to
choose from. In the original algorithm (Gomes-Selman et al.
2018), children were joined using the input order. Our work

Figure 4: Example ranking strategies. The tree has root node
A with three children B, C, and D. The algorithm selects
two of the children to join first and produces an intermediate
node to be joined with the last child. Assume we join the left
two nodes first. Each of the nodes B, C, and D have a sub-
tree containing some number of nodes, as well as the size
of their Pareto frontier. In (a) we see the baseline ordering
which sorts by listed order. In (b) we see the ordering that
ranks by the size of the sub-trees. Finally, in (c) we see the
ordering that ranks by the size of the Pareto frontier.

looks at two different child orderings: one sorting by the sub-
tree size of the nodes and the other sorting by the size of the
Pareto frontier of the nodes. See Figure 4. For the basins we
examined, we find it best to rank the children in descending
order, choosing to join the children with either the largest
sub-trees or the largest frontiers first. Consider an example
with a node with three children: u, v, and w, with 4, 8, and
10 solutions respectively. First, consider the case where we
keep all solutions on each step. If we join the smallest two
first, u and v, we produce and keep all 4 · 8 = 32 solutions.
Next, we join these 32 solutions with the 10 solutions in w,
producing 10 · 32 = 320. In all, we have to search through
320+32 = 352 solutions. Instead, if we join the two largest
first, v and w, we must search through 400 solutions. How-
ever, if we were to keep a different percentage of values from
each of the joins, it is possible that joining the largest first is
better. For example, if joining u and v keeps 50%, but join-
ing v and w only keeps 10%, then if we join the smallest
first, we generate 4 · 8 = 32 solutions as before but keep
16. Next, we join 16 · 10 solutions to produce 160 solutions,
thus needing to consider 32 + 160 = 192 solutions. If we
instead join the largest two first, we only consider 112 solu-
tions. Thus, under similar circumstances, this may result in
fewer solutions considered by joining the largest nodes first,
which is what we see in general for our datasets.

Experiments
Our goal is to scale up the exact or approximate Pareto fron-
tier. In the following experiments, we consider real data
based on the Amazon and Marañón river basins (Flecker
et al. 2022). Each experiment always includes energy as an
objective, as it is the only objective that is optimized by
building, thus any run without energy will have a single triv-
ial solution of building no dams. Other criteria considered
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Basin Criteria ϵ Baseline Order Node Size Order Frontier Size Order
No Transforms Transforms No Transforms Transforms No Transforms Transforms

A ECB 0.01 >86400 >86400 3317 2599 4002 2813
ECD 0.01 >86400 >86400 6157 4490 7000 4871
ECG 0.025 25567 12199 449 369 561 421
ECS 0.01 18787 9708 992 762 926 653
EBD 0.1 >86400 >86400 18689 14807 21605 18213
EBG 0.05 >86400 >86400 14362 12406 15558 13663
EBS 0.1 21510 17246 7374 6288 6207 5826
EDG 0.05 >86400 >86400 5323 4782 8350 7497
EDS 0.05 27229 22834 3181 2775 2615 2260
EGS 0.05 37276 33858 3729 3173 7265 6348

M EBCDG 0.025 36556 29270 5059 4766 4410 4123
EBCDS 0.025 >86400 >86400 8942 8609 9887 8959
EBCGS 0.025 36046 26730 3344 3130 3569 3321
EBDGS 0.025 >86400 >86400 7903 7738 8168 7464
ECDGS 0.025 13841 11714 2254 2015 2253 2076
All 0.05 >86400 >86400 53372 50387 46016 43236

Table 1: Running time in seconds for different combinations of criteria and epsilon values, considering different child orderings
and the inclusion of the affine transforms. Three criteria were used against the full Amazon River basin (A) and five or six
criteria were used against the Marañón (M), a sub-basin of the Amazon. Each run was given 86,400 seconds (or 24 hours) to
complete, jobs that did not complete within that time are listed as taking over 86,400 seconds. The criteria are Energy (E),
Connectivity (C), Sediment (S), Degree of Regulation (D), Biodiversity (B), and Greenhouse Gases (G). The fastest running
time for each set of parameters is written in bold. The baseline consists of no ordering and no transforms.

are greenhouse gas emissions, river connectivity, biodiver-
sity loss, degree of regulation of the water flow in the dams,
and sediment transport. The data are from the SI in (Flecker
et al. 2022). All experiments are run using 12 threads on
Intel® Xeon® 3.47 GHz CPUs with 100 GB of memory.

To determine the impact of our methods, we ran multiple
experiments on the Amazon River basin and Marañón River
basin (a sub-basin of the Amazon) with and without different
combinations of using the affine transformation dominance
and child ranking methods, the results of which are in Ta-
ble 1. We ran each combination with ϵ values between 0.01
and 0.1 and a maximum running time of 24 hours. Here, we
see that considering the dominance in the affine transforma-
tion always outperforms not doing so. In the case of child
ranking, both node size and frontier size ordering resulted in
much faster run times than without considering the order in
which the nodes are joined. Typically the frontier size and
node size ordering have similar performance, but in some
cases the node size ordering performed twice as fast, thus
we would recommend using the node size ordering. In many
cases, the algorithm did not complete within a 24-hour allot-
ted period when running with no order, and the inclusion of
the different order heuristics results in an order of magnitude
increase in performance in most cases. Finally, we see that
combining both affine transformation dominance and child
ordering heuristics results in further improvements over us-
ing any of the methods individually.

Next, we look at how the introduction of floating pho-
tovoltaics may impact the energy system and needs of the
Amazon through an analysis of the Pareto frontiers with and
without floating photovoltaics as an option for increased en-

ergy production. First, we consider the current system as-is
with hydropower dam planning at each site. Second, we con-
sider a system where each hydropower dam reservoir can be
fitted with floating photovoltaic energy production, allow-
ing for each dam site to potentially produce more energy for
a similar ecosystem service investment. For floating photo-
voltaics, we assume up to 5% of the reservoir or 30 km2 of
solar panels may be built at each dam site, whichever value
is smaller, using data from (Almeida et al. 2022a). To get a
good candidate set of solutions without requiring large ϵ val-
ues for the approximation across all six available objectives,
we use the Compress and Expansion methods introduced in
(Bai et al. 2023) using our enhancements as the underlying
method used by Expansion and Compression. We follow the
recommendations in the original paper and use the combi-
nation of Compression-3,4,5 and Expansion-3,4, with each
compression method using equal weights. We next discuss
the results of these analyses and comparisons.

Discussion
Floating solar panels allow for the dual use of hydropower
dam reservoirs both for energy production from the dam as
well as the solar panels taking up space that was otherwise
already flooded by the reservoir. As such, by adding solar
arrays to the reservoirs, we expect dams to be able to pro-
duce more energy for a similar ecological impact, allowing
energy planners to be able to reach desired energy targets
more sustainably. Here, we examine the impacts on both the
overall energy system when including floating solar as well
as the impacts on optimal dam portfolios and the individual
dams within those portfolios to determine if and when cer-
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Figure 5: Top: Distribution of energy values among Pareto
frontier solutions for hydro-power energy only versus hydro-
power plus floating photovoltaic energy. There is a shift to-
wards higher energy when including FPV, and the distribu-
tion is wider as well, with more solutions at the higher end.
Middle: visualization of the Pareto frontier, optimized w.r.t.
six criteria, projected onto energy vs greenhouse gas. Other
Pareto frontier plots are provided in SI. Bottom: Shift in the
percentage of solutions that a proposed dam is Pareto op-
timal when introducing FPV. A positive shift means that a
dam location is more appealing (i.e., more often Pareto op-
timal) when FPV is included in the energy system. We ob-
serve FPV increases the frequency of lowland dams in the
east.

tain types of dams may become more attractive when con-
sidering the addition of floating solar.

When considering the energy system as a whole, we look
to see how the Pareto frontier shifts and changes due to the
introduction of FPV. In Figure 5, we see that when includ-
ing FPV, as expected, the energy output by the system as a
whole increases, but perhaps more interestingly the distribu-
tion widens, with many more solutions in the higher ranges
of energy values. In the SI we show a similar widening pat-
tern for different projected 2D Pareto frontiers.

We now shift our attention towards visualizing and an-
alyzing dams within the Amazon River basin. For each of
the two Pareto frontiers we calculate, for each dam, the per-
centage of solutions a given dam appears in and then com-
pare these percentages on a dam-by-dam basis between the
two frontiers. In the map in Figure 5, we map out each dam
that is not already built (since dams already built are triv-
ially in all solutions) and see how the percentage shifts as
FPV is included. As all other objectives remain the same,
any shift in the solution space for a given dam is due to the
relation between including FPV versus not, as some dams
that have poor ecological impacts may gain large improve-
ments to their total energy output when including FPV that
would have otherwise made the dam a less attractive option.
For example, we see a general increase in the percentage of
solutions dams that appear in the optimal solutions in the
lowlands in the eastern part of the Amazon. The eastern re-
gion of the Amazon tends to have larger reservoirs on aver-
age, which often results in negative impacts on many ecosys-
tem services. However, in the case of FPV, larger reservoirs
mean more space for solar arrays to be placed, resulting in
FPV causing these dam locations to become more attractive.

Conclusion
Our work significantly improves the computation of ex-
act and approximate Pareto frontiers for tree-structured
networks. By leveraging underlying affine transformations
and employing an intelligent selection of children, we
have achieved a remarkable reduction in algorithm runtime,
sometimes exceeding an order of magnitude. Consequently,
we are now able to empirically approximate frontiers with
greater accuracy. Our analysis of adding floating photo-
voltaic energy (FPV) to hydropower dams revealed a shift
in the spatial distribution of the dams included in the Pareto
frontier. Notably, dam sites in the eastern lowland regions
of the Amazon become more attractive when incorporating
FPV. This observation underscores the importance of con-
sidering various aspects of the energy system beyond just
ecological impacts. Strategically pairing hydropower dams
with FPV can yield more environmentally amenable out-
comes, with dams producing more energy and lesser addi-
tional ecological impact. By identifying better energy port-
folios in significantly less time, compared to previous algo-
rithms, we provide interested parties with valuable insights
for decision-making. We hope our research will catalyze fur-
ther exploration and studies in this area, encouraging re-
searchers and interested parties to delve deeper into the po-
tential of combining hydropower dams with floating photo-
voltaic energy for sustainable and efficient energy solutions.
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