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Abstract

Federated learning (FL) is a machine learning paradigm in
which distributed local nodes collaboratively train a central
model without sharing individually held private data. Existing
FL methods either iteratively share local model parameters or
deploy co-distillation. However, the former is highly suscep-
tible to private data leakage, and the latter design relies on the
prerequisites of task-relevant real data. Instead, we propose a
data-free FL framework based on local-to-central collabora-
tive distillation with direct input and output space exploita-
tion. Our design eliminates any requirement of recursive local
parameter exchange or auxiliary task-relevant data to trans-
fer knowledge, thereby giving direct privacy control to lo-
cal users. In particular, to cope with the inherent data hetero-
geneity across locals, our technique learns to distill input on
which each local model produces consensual yet unique re-
sults to represent each expertise. Our proposed FL framework
achieves notable privacy-utility trade-offs with extensive ex-
periments on image classification and segmentation tasks un-
der various real-world heterogeneous federated learning set-
tings on both natural and medical images. Code is available
at https://github.com/lsl001006/FedIOD.

Introduction
The recent success of deep learning in various applications
can be attributed to data-driven algorithms typically trained
in a centralized fashion, i.e., computational units and data
samples residing on the same server. Real-world scenarios,
however, tend to disperse this wealth of data throughout sep-
arate locations and governed by diverse entities. Due to pri-
vacy regulations and communication limitations, collecting
all data in one location for centralized training is often im-
practical, especially true for mobile vision and medical ap-
plications.

*These authors contributed equally.
†Corresponding.

Copyright © 2024, Association for the Advancement of Artificial
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Accordingly, federated learning (FL) does not necessarily
need all data samples to be centralized; instead, it relies on
model fusion/distillation techniques to train one centralized
model in a decentralized fashion. Privacy is a critical con-
sideration, and it is vital to prevent private data leakage. An-
other challenge is data heterogeneity among locals, as dis-
tributed data centers tend to collect data in different settings.

Most federated learning methods are based on the recur-
sive exchange of local model parameters during the train-
ing process (McMahan et al. 2017; Li et al. 2018; Karim-
ireddy et al. 2020). Each local node uploads its model pa-
rameters after a particular time of local training. The cen-
tral server aggregates the parameters of the local model with
different schemes (Wang et al. 2020; Li et al. 2020; Hsu,
Qi, and Brown 2020) and then distributes the aggregated pa-
rameters. Each local node receives the latest parameters to
update its local model accordingly and continues with the
next round of local training. However, naively employing
such iterative parameter exchange suffers from known weak-
nesses: (1) All participating models must have exactly ho-
mogeneous architectures. (2) Iteratively sharing the model
parameters opens all internal states of the model to white-
box inference attacks, resulting in significant privacy leak-
age (Chang et al. 2019). Recent works (Zhu, Liu, and Han
2019; Geiping et al. 2020) obtain private training data from
publicly shared model gradients.

Distillation-based methods are proposed to train the cen-
tral model with aggregated locally-computed logits (Li and
Wang 2019; Lin et al. 2020; Gong et al. 2022a), eliminating
the requirement of identical network architectures. However,
to transfer knowledge, additional public data are commonly
assumed to be accessible and sampled from the same under-
lying distribution as the privately held local data. This as-
sumption can be strong in practice and unavoidably exposes
private data to stealthy attacks. Although (Zhu, Hong, and
Zhou 2021; Zhang, Wu, and Yuan 2022; Zhang et al. 2022)
takes a step further to eliminate the requirement of real data
for distillation, iterative model parameter exchange is still
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Figure 1: (a) Parameter-based methods recursively ex-
change model parameters between each local and server-
side (McMahan et al. 2017; Li et al. 2018; Karimireddy
et al. 2020), which is highly vulnerable to a security at-
tack (Zhu, Liu, and Han 2019). (b) Distillation-based meth-
ods utilize auxiliary task-dependent real data to conduct co-
distillation between each local and the central server (Li and
Wang 2019; Gong et al. 2022a). (c) Our FL method conducts
one-way distillation from locals to the server with generated
data, eliminating the prerequisite of additional data required
by typical distillation, and the security weaknesses of white-
box attacks caused by recursive parameter exchange.

essential in these frameworks where knowledge transfer is
only an auxiliary module for fine-tuning. As noted above,
such parameter exchange is limited by identical model ar-
chitecture and, more importantly, highly susceptible to pri-
vacy leakage. These methods require such recursive param-
eter exchange primarily because they mainly focus on the
output distillation, leaving the input space under-explored.

In this paper, we propose a new federated learning frame-
work (FedIOD) that conducts a collaborative knowledge dis-
tillation in both the input and output space (as Figure 1). It
is purely based on data-free distillation without any prereq-
uisite of auxiliary real data or locally trained model param-
eters. Besides, we adopt differential privacy protection on
the gradients used to train the generator (Torkzadehmahani,
Kairouz, and Paten 2019; Chen, Orekondy, and Fritz 2020).
This, by design, gives explicit privacy control to each lo-
cal node. Unlike the previous data-free federated distillation
counterparts (Zhu, Hong, and Zhou 2021; Zhang, Wu, and
Yuan 2022; Zhang et al. 2022), which employ both bidirec-
tional distillation and iterative model parameter exchange,
our framework makes another difference by conducting one-
way distillation from thoroughly trained local models to the
central model. These fully trained teacher models immedi-
ately enable us to explore the input space and learn the most
efficient samples for knowledge distillation. Our critical in-
sight is that each local’s unique expertise under the hetero-
geneous FL setting can be further exploited. Therefore, we
implement the input distillation according to the correspond-

ing local products (c.f ., Figure 2). This involves learning the
transferred input to enable local nodes to reach a consen-
sus on its semantic clarity while simultaneously generating
diverse predictions with each task model. The former en-
sures the fundamental viability of the input data for transfer-
ring knowledge. At the same time, the latter allows the input
data to leverage the unique aspects of each local node under
heterogeneous federated learning scenarios. Such feedback
from local nodes enables us to deploy per-input importance
weight for output ensemble distillation. We demonstrate the
effectiveness of our proposed method on natural and medical
images through comprehensive experiments on image clas-
sification and segmentation tasks under various real-world
federated learning scenarios, including the most challenging
cross-domain cross-site settings. Our key contributions can
be summarized as follows.

• We propose a federated learning framework with collab-
orative distillation in both the input and output space.
It eliminates any requirement on model parameter ex-
change, model structure identity, prior knowledge of the
local task, or auxiliary real data.

• To cope with the inherent heterogeneity of decentralized
clients in federated learning, we introduce an ensemble
distillation scheme that learns transferred input with ex-
plicit exploitation of each local’s consensual and unique
expertise.

• We conduct extensive experiments with natural and med-
ical images on classification and segmentation tasks,
demonstrating state-of-the-art privacy-utility trade-offs
compared to the prior art.

Related Work
Knowledge Distillation
Hinton et al. (Hinton, Vinyals, and Dean 2015) first pro-
posed the concept of knowledge distillation i.e., using a
cumbersome network as a teacher to generate soft labels
to supervise the training of a compact student network. Al-
though most of the following works transfer knowledge with
one teacher, some techniques focus on multiple teachers and
propose a variety of aggregation schemes, e.g., gate learning
in the supervised setting (Asif, Tang, and Harrer 2019; Xi-
ang, Ding, and Han 2020), and relative sample similarity for
unsupervised scenarios (Wu et al. 2019). Recent progress in
data-free knowledge transfer (Fang et al. 2019; Chen et al.
2019) focuses on an adversarial training scheme to generate
hard-to-learn and hard-to-mimic samples. Similarly, Deep-
Inversion (Yin et al. 2020) utilizes backpropagated gradients
to generate transfer samples that cause disagreements be-
tween the teacher and the student. (Nayak et al. 2019) crafts
a transfer set by modeling and fitting data distributions in
output similarities.

Distillation-based Federated Learning
Beyond the parameter based FL (McMahan et al. 2017; Hsu,
Qi, and Brown 2019; Li et al. 2018), early FL works like
(Jeong et al. 2018) employ parameter and model output ex-
changes. Although the following works (Li and Wang 2019;
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Figure 2: The overall pipeline of the proposed FedIOD. We conduct distillation in input and output spaces to transfer knowledge
from the locally trained task model Tk and the auxiliary discriminator Dk to the central task model S. Input distillation opti-
mizes central generator G to generate transferred input on which local models (1) achieve consensus on its semantic clarity, (2)
and simultaneously produce diverse predictions. The latter is to exploit each local’s unique expertise under the heterogeneous
FL setting. Output distillation leverages per-input importance for output ensemble knowledge transfer.

Chang et al. 2019; Li, He, and Song 2021) are purely based
on the output of the local model for knowledge transfer, the
selection of transfer data is highly dependent on prior knowl-
edge of private data (i.e., they are under similar data distri-
butions). Some recently proposed methods (Lin et al. 2020;
Gong et al. 2022a) provide some relaxation on transfer data.
However, it is still necessary to carefully select the transfer
data according to prior knowledge of the local task and pri-
vate data. While (Zhu, Hong, and Zhou 2021; Zhang, Wu,
and Yuan 2022; Zhang et al. 2022) transfer knowledge with-
out any requirement of real data, all of them need high com-
munication bandwidth due to the iterative exchange of mod-
els over hundreds of rounds, leading to high susceptibility to
stealth attacks and, hence, privacy concerns.

Approach
Problem Statement
Without loss of generality, we describe our method for the
classification task in detail. Suppose that there are K local
nodes in a federated learning scenario, each privately hold-
ing a labeled dataset {X ′

k,Y ′
k}, consisting of the input image

spaceX ′ ∈ RH×W×3, and the label space Y ′ ∈ {1, . . . , C},
where C is the total number of classes.

The proposed FedIOD includes two stages. First, with
each private data {X ′

k,Y ′
k} we train the local model Tk to

complete. Note that the proposed FedIOD is agnostic to
any neural network architecture. Hence, each local node
can have its specialized architecture suited to the particu-
lar distribution of its local data. In the second stage, each
locally trained model, Tk, will be frozen and only used as
a teacher model in a one-way distillation paradigm. In con-
trast to (Gong et al. 2022b; Li, He, and Song 2021) using

carefully deliberated real data to transfer knowledge, we ex-
ploit ensemble knowledge in the input space X with a gen-
erator G mapping from random noiseW to the input space
X . Taking such generated samples x ∼ X as input, local
models Tk and the central task model S on the server consti-
tute a student-teacher knowledge transfer problem, with the
teacher here being a group of local teachers. Let ẑ = S(x)
and zk = Tk(x) be the output logits of the central model and
the k-th respectively (ẑ, zk ∈ RC), the corresponding prob-
ability can be acquired with the following activation func-
tion:

pτ (z) =

[
ez

1/τ∑
c e

zc/τ
, . . . ,

ez
C/τ∑

c e
zc/τ

]
, (1)

where τ is a temperature parameter set to 1 by default. We
abbreviate pτ (zk) and pτ (ẑ) as qk = Tk(x; τ) and q̂ =
S(x; τ), respectively.

Input Ensemble Distillation
To efficiently exploit the knowledge from local expertise,
exploring the input space for the best fit of the global dis-
tribution is vital. We expect the optimal input to achieve (1)
realism as a consensus achieved by all local nodes and (2)
diversity to represent each local’s unique knowledge under
the heterogeneous federated learning scenarios.

Consensual realism learning. Given the locally trained
model Tk as teachers and the central model S as a stu-
dent, we learn a generative model G from randomly sampled
noise w to pseudo-data x, which will be the input for knowl-
edge transfer. To guarantee the realism and practicality of x,
we employ an additional discriminator Dk residing at each
local node to boost the generative model G training. G is
trained to approximate the global data distribution by fool-
ing each local Dk. Following the typical training paradigm
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of GAN (Goodfellow et al. 2020; Radford, Metz, and Chin-
tala 2015), we train G and Dk in a classical adversarial man-
ner:

max
G

min
Dk

Lk
gan(G,Dk)

=max
G

min
Dk

E
x′
k∈X ′

k

[πkDk(x
′
k)] + E

w∈W
[1−Dk(G(w))],

(2)
where πk =

|X ′
k|∑K

k′=1
|X ′

k′ |
is individual local weight and |X ′

k|
indicates data size. In addition to this high-level realism, we
expect x to be realistic semantically, i.e., with semantic clar-
ity according to the output of each locally trained model.
Here, we assume that the input that confuses local models to
produce ambiguous results will be less efficient in transfer-
ring knowledge. Hence, we expect each local model to pro-
duce confident predictions that the input x tends to belong
to one particular category. To force such semantic clarity,
we maximize the confidence that x belongs to one class. For
each local node k, taking qk as its corresponding probability,
we minimize the Shannon entropy H(q) = −

∑
c q

clogqc,
which can be reformulated as:

min
G

Lconf(G) = min
G

E
x∈X

[
∑
k

πkH(Tk(x; τ))]

= min
G

E
w∈W

[
∑
k

πkH(Tk(G(w); τ))].
(3)

Per-local unique representation. The supervisions above
ensure the realism of x, which are agreed upon by all local
nodes. However, it can hardly transfer heterogeneous knowl-
edge across local nodes. Our insight is that each local’s ex-
pertise must be inconsistent, given the data heterogeneity in
a federated learning scenario. Hence, the input must be di-
verse to generalize and transfer each local’s unique knowl-
edge. To this point, we aim to generate x, which will tolerate
local diversity, w.r.t., input data on which local models pro-
duce divergent results. Specifically, we use Jensen-Shannon
divergence to measure the dissimilarity of local probability
outputs:

JSD(q1, . . . , qK) = H(q̄)−
K∑

k=1

πkH(qk), (4)

where q̄ =
∑K

k=1 πkqk is the weighted ensemble of all lo-
cals. We maximize such dissimilarity to encourage the level
of local diversity, w.r.t., unique local knowledge which has
been exploited:

min
G

Lunique(G)

=min
G

E
w∈W

[−JSD(T1(G(w); τ), . . . , TK(G(w); τ))].
(5)

Output Ensemble Distillation
Model distillation techniques typically optimize the student
model by minimizing the KL divergence between the stu-
dent model output q̂ and the teacher model output q̄ to
bridge their performance gap:

KL(q̄||q̂) = H(q̄, q̂)−H(q̂), (6)

where H(q̄, q̂) = −
∑

c q̄
c log q̂c. Hinton et al. (Hinton,

Vinyals, and Dean 2015) has shown that minimizing Eq. 6
with a high τ (Eq. 1) is equivalent to minimizing the ℓ2 er-
ror between the logits of teacher and student, thereby relat-
ing cross-entropy minimization to fitting logits. For multiple
teachers, the conventional ensemble takes an average of all
teachers’ output probability as q̄.

However, under the FL scenario, it is not optimal to de-
ploy such a local ensemble under the heterogeneous data dis-
tribution. This is mainly due to its inability to cope with the
general setting when locally held data are not independent
and identically distributed, e.g., they do not share precisely
the same set of target classes. Let PX ′

k,Y
′
k

be the data dis-
tribution of the image and label over the k-th local data, and
PX ′,Y′ be the global data distribution. Thus, we approximate
the importance ratio of local prediction based on its training
data distribution:

PX ′
k,Y

′
k
(y|x)

PX ′,Y′(y|x)
=

PY′
k
(y)PX ′

k,Y
′
k
(x|y)PX ′(x)

PY′(y)PX ′,Y′(x|y)PX ′
k
(x)

≈
PY′

k
(y)

PY′(y)
· PX ′(x)

PX ′
k
(x)

≈
PY′

k
(y)

PY′(y)
· PX (x)

PX ′
k
(x)

,

(7)

where we assume PX ′
k,Y

′
k
(x|y) ≈ PX ′,Y′(x|y) as the local

heterogeneity of this term is minor and ignorable compared
to the heterogeneity in the image distribution PX ′(x) and the
label distribution PY′

k
(y). And the global image distribution

X ′ is approximated with the generated input domain X ≈
X ′.

To consider this aspect, we introduce the weight of im-
portance per class per input πc

k for each local node k to re-
flect the data distribution with which its model was initially
trained. Taking x as input, we have the following.

π̂c
k(x) =

Ey′
k∈Y′

k
|y′k = c|

Ek∈{1,··· ,K},y′
k∈Y′

k
|y′k = c|

· Dk(x)

Ex′
k∈X ′

k
Dk(x′

k)
,

(8)

where the first term corresponds to
PY′

k
(y)

PY′ (y)
and can be ac-

quired by statistics of local labels, i.e., the number of sam-
ples from class c used to train the model at the local node k.
The second term corresponds to PX (x)

PX′
k
(x) which can be ap-

proximated by the local discriminator’s output on pseudo
image x and locally held image x′

k. We then normalize
the importance weight between locals for each c: πc

k(x) =

π̂c
k(x)/

∑K
k′=1 π̂

c
k′(x).

Following the ℓ2 observation above of Hinton et al. (Hin-
ton, Vinyals, and Dean 2015), we consider the case of τ →
∞ when deploying KL-divergence. Hence, it can be writ-
ten as the ℓ2 error between central model logits ẑ and local
aggregated z̄. Let πk(x) = [π1

k(x), · · · , πC
k (x)] ∈ [0, 1]C

be the per-sample weight, and ⊙ is Hadamard product, the
local ensemble expertise is indicated as follows:

A(z1, · · · , zK , x) =
K∑

k=1

πk(x)⊙ zk, (9)
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Algorithm 1: FedIOD

Input: Total number of local nodes K, locally held data
{X ′

k,Y ′
k}, local models {Tk}, central task model S, cen-

tral generator G, auxiliary local discriminator {Dk}.
for each local node k = 1, · · · ,K do

Train Tk with (X ′
k,Y ′

k) to complete
end for
for each distillation step do
□ Input distillation
w← randomly sampled fromW
x← G(w)
for k = 1, ...,K do
zk, qk ← Tk(x)
x′
k ← randomly sampled from X ′

k

Lk
gan(G,Dk)← Dk(x

′
k), Dk(x) ▷ Eq. 2

Update Dk by descending its stochastic gradient
∇Dk

Lgan
end for
Lconf(G), Lunique(G)← {qk} ▷ Eq. 3,5
□ Output distillation
ẑ, q̂← S(x)
Lmimic(G,S)← ẑ, {zk} ▷ Eq. 10
□ Update
Update G by descending its stochastic gradient
∇G[Lconf + Lunique − Lmimic −

∑K
k=1 L

k
gan]

Update S by descending its stochastic gradient
∇GLmimic

end for

where the central model S is optimized to mimic the local
ensemble of expertise, while the generator G is a critic to
generate x on which S lags behind local experts. The moti-
vation is that such challenging input will transfer the hard-
to-mimic knowledge from local to central. Therefore, we tai-
lor the input data on which the central model produces a re-
sult diverged from the local output. Using KL-divergence as
a dissimilarity evaluation, we train G and S in an adversarial
manner:
max
G

min
S

Lmimic(G,S) =

max
G

min
S

E
w
|S(G(w))−A(T1(G(w)), · · · , TK(G(w)))|2,

(10)
where A(·) is the aggregation function detailed in Eq. 9. To
sum up, the overall loss function can be written as

max
G

min
Dk

Lk
gan(G,Dk) + min

G
[Lconf(G) + Lunqiue(G)]

+ max
G

min
S

Lmimic(G,S).

(11)
And the overall process is explained in Algorithm 1.

Experiments
We provide comprehensive empirical studies with various
heterogeneous FL settings on natural image classification
and more privacy-sensitive medical tasks, including brain tu-
mor segmentation and histopathological nuclei instance seg-
mentation.

CIFAR-10/100 Classification
We use heterogeneous data splits with Dirichlet distribution
following the prior art (Hsu, Qi, and Brown 2019) for dis-
tributed local training sets. The value of α in the Dirichlet
distribution controls the degree of non-IIDness: α → ∞ in-
dicates an identical local data distribution, and a smaller α
indicates a higher non-IIDness. We report average accuracy
over three split seeds on the corresponding test set.

We conduct experiments following the typical FL setting
(Lin et al. 2020) under K=20 and α=1, 0.1 with ResNet-
8. w is randomly sampled with a dimension of 100, and
x = G(w) has a size of 32×32. We use a patch discriminator
as Dk, of which the output is of size 8×8. The comparison in
Table 1 shows that our method achieves superior or compet-
itive results and a much stronger privacy guarantee. With-
out the requirement of auxiliary data or prior knowledge
of the local task, our method outperforms relevant-data-
dependent distillation-based and parameter-based counter-
parts. Moreover, our method demonstrates other benefits, in-
cluding eliminating prerequisites of identical local model ar-
chitecture or task-relevant real data.

Magnetic Resonance Image Segmentation
We use the dataset from the 2018 Multimodal Brain Tumor
Segmentation Challenge (BraTS 2018) (Menze et al. 2014;
Bakas et al. 2018). Each subject was associated with voxel-
level annotations of “whole tumor”, “tumor core,” and “en-
hancing tumor.” Following the experimental protocol of one
prior art, (Chang et al. 2020), we deploy 2D segmentation of
the whole tumor on T2 images of HGG cases, among which
170 were for training and 40 for testing. The local data split
also follows (Chang et al. 2020).

We employ the same network structure of G, Dk, S, and
the same data preprocessing as (Chang et al. 2020) for a fair
comparison. Following its label condition W , we improve
our Lgan with additional perceptual loss (Johnson, Alahi, and
Fei-Fei 2016). The Dice score, sensitivity (Sens.), specificity
(Spec.), and Hausdorff distance (HD95) are used as evalua-
tion metrics, where “HD95” represents 95% quantile of the
distances instead of the maximum.

Table 2 compares our method with the prior art of dis-
tributed learning (Chang et al. 2020) and the classical
parameter-based FedAvg method. Ours performs best seg-
mentation on pixel-level overlap metrics (Dice and Sens.)
and shape similarity metrics (HD95).

Histopathological Image Segmentation
In real-world medical applications, the heterogeneity of data
distributed among medical entities is not limited to the lo-
cal size of the data or various subjects. Local data held by
different clinical sites can be quite a domain variant, e.g.,
targeting different organs or collected with different infras-
tructures, which is relatively underexplored in contemporary
FL methods. To this end, we evaluate our method in a cross-
organ, cross-site setting where locally held data are from
different organs and institutes. We experiment on nuclei in-
stance segmentation task with pathological datasets, includ-
ing TCGA (Kumar et al. 2017), Cell17 (Vu et al. 2019) and
TNBC (Naylor et al. 2018).
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Method Model- Auxiliary CIFAR-10 CIFAR-100
agnostic Prerequisite α = 1 α = 0.1 α = 1 α = 0.1

Standalone (mean ± std) - - 65.25± 5.14 30.92± 11.17 27.60± 1.58 16.99± 2.46

Pa
ra

m
et

er
-

ba
se

d

FedAvg (McMahan et al. 2017) ✗ - 78.57± 0.22 68.37± 0.50 42.54± 0.51 36.72± 1.50
FedProx (Li et al. 2018) ✗ - 76.32± 1.95 68.65± 0.77 42.94± 1.23 35.74± 1.00

FedAvgM (Hsu, Qi, and Brown 2019) ✗ - 77.79± 1.22 68.63± 0.79 42.83± 0.36 36.29± 1.98
FedGEN (Zhu, Hong, and Zhou 2021) ✗ task-relevant data 80.31± 0.97 68.13± 1.37 45.97± 0.23 35.97± 0.31

FedDF (Lin et al. 2020) ✗ task-relevant data 80.69± 0.43 71.36± 1.07 47.43± 0.45 39.33± 0.03

D
is

til
l-

ba
se

d FedMD (Li and Wang 2019) ✓ task-relevant data 80.37± 0.37 69.23± 1.31 45.83± 0.58 38.86± 0.78
FedKD (Gong et al. 2022a) ✓ task-relevant data 80.98± 0.11 65.46± 3.45 45.55± 0.38 40.61± 2.54

FedIOD ✓ None 82.78± 0.18 70.08± 0.37 45.36± 0.32 41.88± 0.16

Table 1: Accuracy (%) comparisons on the CIFAR-10 and CIFAR-100 datasets with ResNet-8 and K=20. “Standalone” in-
dicates the performance of local models trained with individual private data. Several popular FL methods are compared with
parameter-based and distillation-based FL prior arts.

Dice(%)↑ Sens.(%)↑ Spec.(%)↑ HD95↓

Standalone 65.03
±3.31

69.27
±4.72

99.35
±0.15

24.61
±3.62

Centralized 74.85 79.83 99.55 12.85

FedAvg 70.71 67.31 99.85 11.88
AsynDGAN 70.43 72.95 99.57 14.94

FedIOD 75.38 79.47 99.60 11.76

Table 2: Comparisons on the BraTS2018 dataset with K=10
under the same net with FedAvg and AsynDGAN. “Central-
ized”: centralized training with all local data.

Dice(%)↑ Obj-Dice(%)↑ AJI(%)↑ HD95↓

St
an

da
lo

ne breast 77.92 73.47 53.64 12.34
liver 79.16 75.38 55.63 12.47

kidney 74.99 69.67 50.99 14.64
prostate 77.46 73.74 54.40 15.59

FedAvg 78.12 75.05 55.56 12.96
AsynDGAN 79.30 72.73 56.08 14.49

FedIOD 80.48 77.03 58.37 11.22

Table 3: Comparisons on the TCGA dataset with four cross-
organ local nodes. All methods use the same segmentation
net provided by (Chang et al. 2020) for a fair comparison.

We cropped the images into patches of size 256× 256 for
training and inference. For metrics evaluation, the cropped
patches are stitched back into the whole image with the
original size. For G, Dk, and S, we use the same model
structure provided by (Chang et al. 2020) and the addi-
tional perceptual loss (Johnson, Alahi, and Fei-Fei 2016)
for Lgan. We use object-level Dice (Chen et al. 2016) and
Aggregated Jaccard Index (AJI) (Vu et al. 2019) as met-
rics to evaluate the instance overlap or shape similarities
for an individual object. Let yi be the ground truth mask
for the i-th instance of the total n instances, and ŷj be
the predicted mask for the j-th instance of the total n̂ in-
stances. J(yi) = argmaxŷj |yi ∩ ŷj |/|yi ∪ ŷj | is the pre-
dicted instance that maximally overlaps yi, and J(ŷj) =
argmaxyi |yi ∩ ŷj |/|yi ∪ ŷj | denotes the ground-truth in-

stance that maximally overlaps ŷj . For instance, for shape
similarity, we use the Aggregated Jaccard Index (AJI):

AJI(y, ŷ) =
∑n

i=1 |yi ∩ J(yi)|∑n
i=1 |yi ∪ J(yi)|+

∑
j∈J |ŷj |

, (12)

where J(yi) is the predicted instance that has maximum
overlap with yi concerning the Jaccard index (sorted and
nonrepeated). J is the set of predicted instances that have
not been assigned to any ground-truth instance.

AsynDGAN FedAvg Ours Ground-TruthAsynDGAN FedAvg Ours Ground-Truth

Figure 3: Qualitative comparisons on cross-site cross-organ
nuclei segmentation tasks. The three rows visualize instance
contours on test images from Cell17, TCGA, and TNBC.

Cross-organ scenario. We first focus on cross-organ set-
tings where each distributed local node holds only the data
of one organ. Following (Chang et al. 2020), from the TCGA
dataset, we take 16 images of the breast, liver, kidney, and
prostate for training and eight images of the same organs for
testing. Table 3 shows the experimental results of this cross-
organ setting and compares them with the baseline method
(Chang et al. 2020) and the classical FedAvg. We can note
that our method achieves the best results on semantic seg-
mentation (Dice and Hausdorff) and instance segmentation
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Test Dice(%)↑ Obj-Dice(%)↑ AJI(%)↑ HD95↓ Average
Data Dice(%)↑ Obj-Dice(%)↑ AJI(%)↑ HD95↓

FedAvg
Cell17 68.74 65.82 39.37 24.15

63.42 64.00 37.29 54.51TCGA 77.57 72.94 50.03 15.87
TNBC 43.95 53.23 22.48 123.51

AsynDGAN
Cell17 79.82 59.03 34.64 19.27

66.64 61.15 34.21 35.46TCGA 52.29 57.12 26.03 47.47
TNBC 67.80 67.31 41.96 39.63

FedIOD
Cell17 86.23 68.03 44.75 7.01

79.28 71.58 49.52 16.41TCGA 76.59 72.67 53.04 12.69
TNBC 75.01 74.03 50.76 29.54

Table 4: Comparisons of cross-site cross-organ nuclei segmentation tasks with Cell17, TCGA, TNBC as distributed local data.
For a fair comparison, all methods use the same U-Net architecture and the same post-processing method.

(object-level Dice and AJI) metrics.
Cross-site cross-organ scenario. We also conduct exper-

iments on more challenging settings with cross-site cross-
organ datasets, where locally held data are from different or-
gan nuclei datasets. Taking the training set of Cell17, TCGA,
and TNBC as private data distributed over local nodes, we
evaluate on the corresponding test sets. Table 4 compares
our method with two prior arts (Chang et al. 2020; McMa-
han et al. 2017) on various segmentation metrics to evaluate
semantic/instance level overlap and shape. Our proposed Fe-
dIOD outperforms the prior art on all these metrics for over-
lap and shape evaluation, demonstrating our efficacy in cop-
ing with heterogeneous FL scenarios. The qualitative com-
parisons shown in Figure 3 also demonstrate the superiority
of our method over its counterparts.

Privacy budget ε ↓ 3.5 6.0 7.7 10.0

FedKD w/ DP ↑ 45.64 56.08 61.80 70.90
w/o DP ↑ 66.79 79.30 80.28 81.55

FedIOD w/ DP ↑ 44.45 58.96 62.14 73.58
w/o DP ↑ 74.31 80.02 82.03 82.69

Table 5: Compare FedIOD and FedKD in terms of accuracy
(%) on CIFAR10 (K=20, α=1) under same privacy cost.

Privacy Analysis
Comparison with data-dependent distillation-based FL.
The significant difference between ours and typical FL based
on distillation is that FedIOD generates data for knowl-
edge distillation, while others rely on auxiliary real data.
We adopt the differential privacy (DP) analysis in DP-
CGAN (Torkzadehmahani, Kairouz, and Paten 2019) and
GS-WGAN (Chen, Orekondy, and Fritz 2020) to measure
the privacy cost of the gradients used to train the genera-
tor. For a fair comparison, we apply PATE (Papernot et al.
2018) on the local model output and then transfer them to
the server to satisfy DP for both FedIOD and our counter-
part FedKD (Gong et al. 2022a). Table 5 compares FedIOD
with FedKD in terms of accuracy under a series of rigid dif-
ferential privacy protections (ε <10).

197.14 195.828 188.57 193.24 195.06 199.39 199.77 204.98 195.67

29.25 39.64 36.28 35.41 43.11 40.13 28.95 39.11 35.23

36.34

196.63

Med:

196.22

36.31

Up1/4

198.8

39.5

Low1/4

195.2

35.3

Outliner

[188.57, 204.98]

#1 #2 #3 #4 #5 #6 #7 #8 #9
FI

D
 S

co
re

Local id

FedIOD
FedAvg

196.22
+

+

Average

36.31

(a) (b)

FedIOD FedAvg

Ours FedAvg

Figure 4: Comparison of FID scores between FedIOD and
FedAvg on (a) 9 randomly selected local clients; and (b) av-
erage score under CIFAR10 (K=20, α=1) FL setting.

Comparison with parameter-based FL. We use DLG
(Zhu, Liu, and Han 2019) as an attacker to recover pri-
vate data using its iterative shared model parameters for
parameter-based FL. We then measure the quality of the re-
covered data using Fréchet Inception Distance (FID). We
assume a larger FID, i.e., a larger distance between the re-
covered data and private data, indicates a stronger privacy
guarantee. For our method, we measure the FID between the
synthetic images and the private images. The comparison in
Figure 4 shows that our method has a much higher FID, thus
far more privacy protected than the FL parameter-sharing
method such as FedAvg (McMahan et al. 2017).

Conclusions
In this work, we propose a novel federated learning frame-
work, FedIOD, that protects local data privacy by distilling
input and output to transfer knowledge from locals to the
central server. To cope with the highly non-i.i.d. data dis-
tribution across local nodes, we learn the input on which
each local achieves both consensual and unique results to
represent individual heterogeneous expertise. We conducted
extensive experiments with natural and medical images on
classification and segmentation tasks in a variety of real, in-
the-wild, heterogeneous FL settings. All demonstrate the ef-
ficacy of FedIOD, showing its superior privacy-utility trade-
off to others and significant flexibility in FL scenarios with-
out any prior knowledge or auxiliary real data.
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