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Abstract

In recent years, there has been growing interest in developing
robust machine learning (ML) models that can withstand ad-
versarial attacks, including one of the most widely adopted,
efficient, and interpretable ML algorithms—decision trees
(DTs). This paper proposes a novel coevolutionary algorithm
(CoEvoRDT) designed to create robust DTs capable of han-
dling noisy high-dimensional data in adversarial contexts.
Motivated by the limitations of traditional DT algorithms,
we leverage adaptive coevolution to allow DTs to evolve and
learn from interactions with perturbed input data. CoEvoRDT
alternately evolves competing populations of DTs and per-
turbed features, enabling construction of DTs with desired
properties. CoEvoRDT is easily adaptable to various target
metrics, allowing the use of tailored robustness criteria such
as minimax regret. Furthermore, CoEvoRDT has potential to
improve the results of other state-of-the-art methods by in-
corporating their outcomes (DTs they produce) into the ini-
tial population and optimize them in the process of coevolu-
tion. Inspired by the game theory, CoEvoRDT utilizes mixed
Nash equilibrium to enhance convergence. The method is
tested on 20 popular datasets and shows superior performance
compared to 4 state-of-the-art algorithms. It outperformed all
competing methods on 13 datasets with adversarial accuracy
metrics, and on all 20 considered datasets with minimax re-
gret. Strong experimental results and flexibility in choosing
the error measure make CoEvoRDT a promising approach for
constructing robust DTs in real-world applications.

Introduction
Decision trees (DTs) is a popular, easily interpretable ma-
chine learning (ML) algorithm for classification and regres-
sion tasks. One of the primary challenges in DT construc-
tion is dealing with noisy and high-dimensional data. In par-
ticular, it has been shown that ML models (including DTs)
are vulnerable to adversarial, perturbed samples that trick
the model into misclassifying them (Kantchelian, Tygar, and
Joseph 2016; Zhang, Zhang, and Hsieh 2020; Grosse et al.
2017). To address this challenge, researchers have proposed
new defensive algorithms for creating robust classification
models (see, e.g., Chakraborty et al. (2021)). A model is
defined to be robust to some perturbation range of its input
samples when it assigns the same class to all the samples
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within that perturbation range, so that small malicious alter-
ations of input objects should not deceive a robust classifier.

The vast majority of defensive algorithms for DTs fo-
cus on adversarial accuracy (Kantchelian, Tygar, and Joseph
2016; Chen et al. 2019; Guo et al. 2022; Ranzato and Zanella
2021; Justin et al. 2021). We argue that there are better met-
rics in principle, and the focus on adversarial accuracy has
been driven by computational tractability. Adversarial accu-
racy is highly sensitive to accuracy on the worst-case pertur-
bation, and when the perturbation range can be large, this
can lead to flattening of intuitively good models and bad
ones, as the worst-case perturbations can “defeat” all mod-
els.

There are other metrics that can better evaluate model ro-
bustness, like max regret (Savage 1951). Max regret is de-
fined as the maximum difference between the result of the
given model and the result of the optimal model for any in-
put data perturbation within a given range. Minimizing max
regret is referred to as the minimax regret decision criterion.
Adversarial accuracy might provide an overly optimistic or
pessimistic view of the model’s robustness by focusing only
on absolute accuracy value. In contrast, max regret is a more
realistic approach since it counts the magnitude of the poten-
tial loss by considering the model trained on perturbed data.
However, max regret cannot be directly optimized and used
as a splitting criterion in the state-of-the-art algorithms.

In recent years, researchers successfully explored the po-
tential of coevolutionary algorithms to various optimization
problems (Mahdavi, Shiri, and Rahnamayan 2015) includ-
ing DTs induction (Aitkenhead 2008). Coevolutionary algo-
rithms consist in simultaneous evolution of multiple popu-
lations, each of them representing a different aspect of the
problem. By fostering competition between populations, co-
evolutionary algorithms can guide the search towards the op-
timal solutions.

Considering the limitations of traditional DT algorithms
and the promises of coevolutionary computation, we pro-
pose a novel coevolutionary algorithm specifically tailored
for creating robust decision trees (RDTs) in adversarial con-
texts. Our approach leverages the power of adaptive coevo-
lution, allowing to exploit the competitive interactions be-
tween populations of decision trees and adversarial perturba-
tions to adapt and converge toward robust and accurate clas-
sifications for complex and noisy data. In this process, we
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can freely define robustness metrics to optimize (including
max regret) which leads to the models better tailored to han-
dle perturbed high-dimensional data. Because of the inher-
ent flexibility of evolutionary methods, we can additionally
integrate other objective criteria, such as fairness (Aghaei,
Azizi, and Vayanos 2019; Jo et al. 2022).

The main contribution of this paper is proposition of
a novel coevolutionary algorithm (CoEvoRDT) capable of
creating robust decision trees. CoEvoRDT has the following
key properties:
• supremacy over state-of-the-art (SOTA) solution on 13

out of 20 datasets with adversarial accuracy metric and
on all 20 datasets with minimax regret,

• predominance over existing evolutionary-based ap-
proaches for RDTs construction,

• to the best of our knowledge, it is the first algorithm able
to directly optimize minimax regret for RDTs,

• it employs novel game theoretic approach for construct-
ing the Hall of Fame with Mixed Nash Equilibrium,

• the algorithm is easily adaptable to various target metrics,
• by design, CoEvoRDT can be used for potential improve-

ment of results of other SOTA methods by including their
resulting DTs in the initial population and optimizing
them through coevolution.

Problem Definition
Let X ⊂ Rd be a d-dimensional instance space (inputs) and
Y be the set of possible classes (outputs). A classical clas-
sification task is to find a function (model) h : X → Y ,
h(xi) = yi, where yi is true class of xi. Classification per-
formance of model h can be measured by accuracy:

acc(h) =
1

|X|
∑
xi∈X

I[h(xi) = yi],

where I[h(xi) = yi] returns 1 if h predicts the true class of
xi, and 0, otherwise.

Let Nε(x) = {z : ||z − x||∞ ≤ ε} be a ball with cen-
ter x and radius ε under the L∞ metric. The adversarial
accuracy of a model h is accuracy on the perturbation in
the perturbation set that produces the lowest accuracy. It is
formally defined as

accadv(h, ϵ) =
1

|X|
∑
xi∈X

min
zi∈Nε(xi)

I[h(zi) = yi].

The max regret of a model h is the maximum regret
among all possible perturbations z ∈ Nε. Regret is the dif-
ference between the best accuracy possible on a particular
perturbation and the accuracy h achieves:

regret(h, {zi}) = max
h′

acc(h′, {zi})− acc(h, {zi}),

where acc(h, {zi}) is the accuracy achieved by h when {xi}
is replaced with {zi}. Max regret be expressed as:

mr(h) = max
zi∈Nε(xi)

regret(h, {zi})
.

The problem addressed in this paper is finding a DT
trained on X that for a given ε optimizes (maximizes for
adversarial accuracy or minimizes for max regret) a given
robustness metric (one of the two above-mentioned).

Motivating Example
Consider a financial institution that makes loan acceptance
decisions. DTs are well-suited for such high-stakes sce-
nario (Alaradi and Hilal 2020). The dataset of loan appli-
cants in Figure 1 has two features: income I and credit score
CS. The system should correctly make a binary credit deci-
sion D: accept (1) or reject (0).

For the data in T1, a simple one-node DT can achieve
100% accuracy. One possible decision rule to achieve this is
CS ≥ 55, which we call DT1.

Figure 1: Motivational example – perturbed input data and 3
decision trees.

The features of training data may not be representative of
test data due to bugs in the system, inaccurate input data,
or distribution shift. Table T2 shows a potential perturbation
of the data in T1. In T2, DT1 misclassifies A1 (returning 1
instead of 0). A more robust decision tree, DT2, accurately
classifies all applicants in T1 and T2.

T3 is an example with a larger perturbation that affects
both income and credit score. In this perturbation, the three
applicants have the same features, meaning that no DT
can classify them correctly. Thus, the adversarial accuracy
against any perturbation set that includes T3 is at most 2

3 .
However, achieving such accuracy is easy, any DT that al-
ways predicts 1 will do so, including the decision rule I ≥ 0
(DT3). Consequently, for methods optimizing the adversar-
ial accuracy metric, DT3 is one of the optimal solutions, but
it is neither robust nor desired. Maximizing adversarial ac-
curacy myopically focuses on the hardest perturbations in
the perturbation set.

From a max regret perspective, DT2 outperforms DT3.
Max regret considers not only the worst-case perturbation
accuracy, but also the difference between the accuracy of
the optimal DT and the robust DT for every perturbation.
The regret of DT2 is 0 on all three datasets, resulting in a
max regret of 0. DT3 achieves regret of 1

3 on T1 and T2
and 0 on T3, resulting in a max regret of 1

3 . Thus, under the
minimax regret criteria, DT2 would be selected over DT3.
Adversarial accuracy loses its ability to distinguish between
models as perturbations become large—intuitively good and
bad can achieve the same scores.

Related Work
There has been substantial recent work on the construction
of robust decision trees. One line of work aims to improve
robustness by choosing more appropriate splitting criteria.
RIGDT-h (Chen et al. 2019) constructs robust DTs based on
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the introduced notion of adversarial Gini impurity, a modi-
fication of classical Gini impurity (Breiman 2017) adapted
to perturbed input data. This method was further improved
in the GROOT algorithm (Vos and Verwer 2021), which
mimics the greedy recursive splitting strategy that traditional
DTs use and scores splits with the adversarial Gini impurity.
The most recent approach, Fast Provably Robust Decision
Trees (FPRDT) (Guo et al. 2022) is a greedy recursive ap-
proach to a direct minimization of the adversarial loss. It
uses the 0/1 loss, rather than traditional surrogate losses such
as square loss and softmax loss, as the splitting criterion dur-
ing the construction of the DT. In experiments, we compare
to Guo et al. (2022) and refer the reader to that paper for
comparisons with prior methods. Max regret cannot be di-
rectly optimized by these methods, which leverage specific
properties of adversarial accuracy to design splitting criteria.

Ranzato and Zanella (2021) introduced a genetic adver-
sarial training algorithm (Meta-Silvae) to optimize DT sta-
bility, building on a history of using genetic algorithms
for DTs Barros et al. (2011), and leveraging the geo-
metric of adversarial accuracy. Our approach utilizes a
coevolutionary method and, to the best of our knowl-
edge, it is the first application of this technique to cre-
ating robust DTs. At the same time, the effectiveness of
coevolutionary algorithms was experimentally proven in
many other domains including multi-objective optimiza-
tion (Meneghini, Guimaraes, and Gaspar-Cunha 2016; Tian
et al. 2020), non-cooperative games (Razi, Shahri, and Kian
2007; Żychowski and Mańdziuk 2023), preventing adversar-
ial attacks (O’Reilly and Hemberg 2018), or Generative Ad-
versarial Networks training (Costa, Lourenço, and Machado
2019; Toutouh et al. 2023).

An alternative, exact, approach to robust DTs proposed by
Justin et al. (2021) uses a mixed-integer optimization formu-
lation. However, at present, its present applicability is lim-
ited to small datasets (approximately less than 3200 samples
and/or up to 36 features).

Although, to the best of our knowledge, max regret
has not been specifically studied in DTs, it was applied
to other domains, e.g., neural network training (Alaiz-
Rodrıguez, Guerrero-Curieses, and Cid-Sueiro 2007), rein-
forcement learning (Azar, Osband, and Munos 2017; Xu
et al. 2021), robust planning in uncertain Markov deci-
sion processes (Rigter, Lacerda, and Hawes 2021), Secu-
rity Games (Nguyen et al. 2014), and computing randomized
Nash equilibrium (Gilbert and Spanjaard 2017).

CoEvoRDT Algorithm
A general overview of the Coevolutionary method for Ro-
bust Decision Trees (CoEvoRDT) is presented in Algo-
rithm 1. CoEvoRDT maintains two populations: one con-
tains encoded DTs, and the other contains input data pertur-
bations. Both populations are initialized with random ele-
ments and then developed alternately. First, the DT popula-
tion is modified by evolutionary operators (crossover, muta-
tion, and selection) through lc generations. Then, the pertur-
bation population is evolved through the same number of lc
generations. The above loop is repeated until the stop condi-
tion is satisfied.

Algorithm 1: CoEvoRDT pseudocode.
1: PT ← InitializeDecisionTreesPopulation()
2: PP ← InitializePerturbationsPopulation()
3: HoFT = HoFP = ∅ // HoF - Hall of Fame
4: Ntop = 20
5:
6: while stop condition not satisfied do
7: for 1..lc do
8: PT ← PT ∪ Crossover(PT )
9: PT ← PT ∪Mutate(PT )

10: PT ← Evaluate(PT , PP , HoFP )
11: P ∗

T ← GetElite(PT )
12: while |P ∗

T | < NT do
13: P ∗

T ← P ∗
T ∪ BinaryTournament(PT )

14: end while
15: PT ← P ∗

T

16: T ,P ←MixedNashEquilibrium(PT , PP )
17: HoFT ← HoFT ∪ T
18: HoFP ← HoFP ∪ P
19: end for
20:
21: for 1..lc do
22: PP ← PP ∪ Crossover(PP )
23: PP ← PP ∪Mutate(PP )
24: PP ← Evaluate(PP , PT , HoFT , Ntop)
25: P ∗

P ← GetElite(PP )
26: while |P ∗

P | < NP do
27: P ∗

P ← P ∗
P ∪ BinaryTournament(PP )

28: end while
29: PP ← P ∗

P

30: T ,P ←MixedNashEquilibrium(PT , PP )
31: HoFT ← HoFT ∪ T
32: HoFP ← HoFP ∪ P
33: end for
34: end while
35:
36: return argmaxt∈PT

ξ(t)

Decision Tree Population
The DT population contains NT individuals. Each individ-
ual represents one candidate solution (DT) which is encoded
as a list of nodes. Each node is represented by a 7-tuple:
node = {t, c, P, L,R, o, v, a}, where t is a node number
(t = 0 is the root node), c is a class label of a terminal
node (meaningful only for terminal nodes), P is a pointer to
the parent node, L and R are pointers to the left and right
children, respectively (null in a terminal node), o indicates
which operator is to be used (<,>,=) and v is a real num-
ber that indicates the value to be tested on attribute a.

The initial population consists of trees generated by ran-
domly choosing attributes and split values, and halting the
growth of each DT when the tree reaches a depth randomly
selected from an interval [2, 10].

Each individual from the population is selected for
crossover with probability pc. Selected individuals are
paired randomly, and the crossover operator selects random
nodes in two individuals and exchanges the entire subtrees
corresponding to each selected node, generating two off-
spring individuals which are added to the current population.

The mutation operator introduces random changes to the
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individuals. Each individual is mutated with probability pm.
The mutation operator applies randomly one of the three
following actions: (i) replacing a subtree with a randomly
generated one, (ii) changing the information in a randomly
selected node (setting a new random splitting value v or op-
erator o), (iii) prune a randomly selected subtree. For each
mutated individual the mutation is applied 10 times and the
highest-fitness individual (among these 10) is added to the
current population.

The evaluation procedure is performed against the per-
turbation population (described next). For each individual
(a candidate DT) the metric being optimized is computed
against all perturbations from the adversarial population.
Since the number of perturbations is relatively small any ar-
bitrary chosen metric can be effectively calculated and as-
signed as an individual’s fitness value.

Perturbation Population
The perturbation population consists of NP individuals P ⊂
Rd. Each of them represents a perturbed input set X (one
perturbation per instance), i.e., ∀x∈X∃!px∈P : px ∈ Nε(x).

The initial population contains random perturbations
generated by drawing uniformly each perturbation element
from the set of possible ones (according to ε criteria).

The crossover procedure selects a random subset of in-
dividuals (each individual is taken with probability pc) and
pairs them randomly. Then, for each pair, perturbed input
instances from both individuals are mixed randomly, i.e.,
given two crossed parents c0 = (x0

1, . . . , x
0
n) and c1 =

(x1
1, . . . , x

1
n) the offspring is c0 = (xi1

1 , . . . , xin
n ) and c1 =

(x1−i1
1 , . . . , x1−in

n ), where i1, . . . , in ∈ {0, 1}.
Mutation is applied with probability pm independently to

each individual. If a chromosome is selected for mutation,
for each input instance and each attribute with probability
0.5 its encoded value is randomly perturbed, i.e. a new ran-
dom feasible (according to ε constraint) value is assigned.

Evaluation of the perturbation individuals is not an ob-
vious task. On the one hand, assigning the average accuracy
versus all DTs in the DT population as a fitness value may be
a weak approach. Observe that a given perturbation may be
powerful only against a specific though relevant subset of the
DTs, and as such should be preserved, but averaging across
all DTs will decrease its fitness, posing a risk of omitting
it in the selection process. On the other hand, if the pertur-
bation fitness value was computed only against the best DT
from the DT population, it would lead to an oscillation of the
perturbation population. All perturbations would tend to be
efficient for a particular DT, becoming vulnerable to other
DTs and losing diversity. Thus, we use Ntop = 20 highest-
fitness DTs (merged with all DTs from HoF) to evaluate
each perturbation and perform a targeted optimization with
Ntop = 1 only if we would otherwise terminate. See supple-
mentary material (SM) (Żychowski, Perrault, and Mańdziuk
2023) for experimental justification of the above choice.

Hall of Fame
Hall of Fame (HoF) is a mechanism used to retain and store
the best-performing individuals (solutions) that have been

encountered during the evolutionary process. By preserv-
ing them, the HoF prevents the loss of valuable information
and ensures that the best-performing solutions are not dis-
carded during the evolution. The most common approach is
to add one of the highest-fitness individuals from each gen-
eration (Michalewicz 1996). We find this approach to subop-
timal with respect to diversity. Although the HoF stores the
best solutions, it can also be used to maintain a diverse set
of high-performing individuals. Diversity is essential in evo-
lutionary algorithms to avoid premature convergence, when
the algorithm gets stuck in a local optimum and fails to ex-
plore better solutions. The HoF can promote diversity by
storing solutions that represent different regions of the so-
lution space.

In our coevolutionary approach, HoF is used to assess so-
lutions more accurately. Namely, instead of calculating the
fitness function only against individuals from the adversarial
population, it is calculated against a merged set of HoF and
population individuals.

Instead of adding the highest-fitness individual to the
HoF, in CoEvoRDT, we use a game-theoretic approach.
Decision trees and perturbation populations can be treated
as sets of strategies of two players in a non-cooperative
zero-sum game. Then, it is possible to calculate mixed
Nash equilibrium. The result is the pair of mixed strate-
gies, i.e., a subset of DTs from the population with as-
signed probabilities T = {(T1, pT1), . . . , (Tn, pTn)} and
a similar subset of perturbations with probabilities P =
{(P1, pP1

), . . . , (Pm, pPm
)}. Formally, a mixed Nash equi-

librium is a pair (T ,P) such as ∀T ′ ̸=T ξT (T ′,P) ⪯
ξT (T ,P) and ∀P′ ̸=PξP (T ,P ′) ⪯ ξP (T ,P) where
ξT |P (T ,P) denotes some objective robustness metrics cal-
culated for a “mixed” decision tree T and ”mixed” pertur-
bation P (either adversarial accuracy or max regret, in our
experiments). Note that this is zero-sum because, in robust
optimization, the adversary aims to minimize the DT pay-
off (i.e., objective function): ξT (T ,P) = −ξP (T ,P). We
add mixed strategies from Nash equilibria to both HoFs, and
they are used in the evaluation process as described above.
To evaluate a metric against a mixed object (tree or pertur-
bation), we calculate the expected metric value—first com-
puting the metric for each pair of pure strategies and then
taking a weighted average according to the Nash equilib-
rium probabilities. We limit HoF size by the lowest-fitness
element when a fixed maximum size is exceeded.

A similar approach was previously proposed in (Ficici and
Pollack 2003) but instead of storing in HoF pure strategies
from mixed Nash equilibrium we add mixed strategies. The
intuition is that a mixed tree is more robust to diverse per-
turbations, which has a positive impact on the evolution of
perturbations. Similarly, mixed perturbations force the DT
population to create more robust DTs that are resistant to a
wide spectrum of perturbed data. We demonstrate this in the
experiments section.

Selection
The selection process decides which individuals from the
current population will be promoted to the next generation.
In the beginning, e individuals with the highest fitness value
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are unconditionally transferred to the next generation. They
are called elite and preserve the highest-fitness solutions.
Then, a binary tournament is repeatedly executed until the
next generation population is filled with N individuals. In
each tournament, two individuals are sampled (with replace-
ment) from the current population (including those affected
by crossover and/or mutation). The higher-fitness chromo-
some (the winner) is promoted to the next generation with
probability ps (so-called selection pressure parameter). Oth-
erwise, the lower-fitness one is promoted.

Stop Condition
The algorithm ends when at least one of the following condi-
tions is satisfied: (a) CoEvoRDT attains the maximum num-
ber of generations (lg), (b) no improvement of the best-found
solution (DT) is observed in consecutive lc generations. If
condition (b) is satisfied, an additional local perturbation im-
provement subroutine is performed. This procedure is part
of the stopping condition and aims to find a better perturba-
tion for the best-fitness decision trees (DTs). Specifically, for
each DT with the highest fitness value, the perturbation pop-
ulation evolves using the same process as outlined in lines
21–33 of the Algorithm 1, but with Ntop = 1 (see line 24).
This means that the evaluation for each perturbation is con-
ducted against the DT with current highest fitness. If, for all
of those DTs, this routine discovers a perturbation that de-
creases the fitness of the DT, the counter lc is reset to zero,
and the algorithm execution continues (with Ntop = 20 and
the population’s state before local perturbation improvement
subroutine execution supplemented with the newly found
better perturbation).

To verify conditions (a) and (b) only generations of the
DT population are considered. The highest-fitness DT is re-
turned as a CoEvoRDT result.

Convergence
The alternating optimization can be understood as improv-
ing candidate DTs while progressively tightening a bound on
the robust objective, as any set of perturbation provides a up-
per (resp., lower bound) on adversarial accuracy (resp., max
regret). When Ntop = 1 (e.g., at convergence), the bound of
the objective has been tightened as much as possible for a
candidate DT.
Theorem 1. If both the decision tree and the perturbation
population contain an individual that maximizes their fitness
against the opposing population, the decision tree in the cur-
rent population with the highest fitness optimizes the robust
objective.

Proof. Suppose the stop condition is met and fitness is max-
imized by the decision tree and perturbation populations. We
claim that the highest-fitness decision tree h maximizes the
robust objective. Suppose that this is not the case. Then, ei-
ther (i) there exists a perturbation z that would lower h’s
fitness and is missing from the adversarial population or (ii)
there is a decision tree h′ that would have higher fitness than
h but is missing. (ii) cannot occur because we assume that
h maximizes fitness. (i) cannot happen because Ntop = 1
when the stop condition is met.

Results and Discussion
Experimental setup. The proposed method was tested on
20 widely used classification benchmark problems of vari-
ous characteristics – the number of instances, features, and
perturbation coefficient. All selected datasets were used in
previous studies mentioned in the Related work section, and
they are publicly available at https://www.openml.org. Ta-
ble 1 summarizes their basic parameters.

dataset ε Instances Features Classes
ionos 0.2 351 34 2
breast 0.3 683 9 2
diabetes 0.05 768 8 2
bank 0.1 1372 4 2
Japan:3v4 0.1 3087 14 2
spam 0.05 4601 57 2
GesDvP 0.01 4838 32 2
har1v2 0.1 3266 561 2
wine 0.1 6497 11 2
collision-det 0.1 33000 6 2
mnist:1v5 0.3 13866 784 2
mnist:2v6 0.3 13866 784 2
mnist 0.3 70000 784 10
f-mnist:2v5 0.2 14000 784 2
f-mnist:3v4 0.2 14000 784 2
f-mnist:7v9 0.2 14000 784 2
f-mnist 0.2 70000 784 10
cifar10:0v5 0.1 12000 3072 2
cifar10:0v6 0.1 12000 3072 2
cifar10:4v8 0.1 12000 3072 2

Table 1: Basic parameters of the benchmark datasets.

The CoEvoRDT parameter values used in the experiments
and their selection process is described in detail in the SM.
Since there is no straightforward method to calculate the ex-
act values of adversarial accuracy and minimax regret (due
to the presence of infinitely many possible perturbations),
the results presented below are computed based on a sample
of 105 random perturbations. The reasoning behind choos-
ing this particular sample size is explained in the SM.

We adopted the Lemke-Howson algorithm (Lemke and
Howson 1964) for calculating Mixed Nash Equilibrium
from Nashpy Python library (Knight and Campbell 2018).
The CART (Breiman 2017) method was used for comput-
ing the reference tree for minimax regret (i.e., highest ac-
curacy trees for a particular perturbation). Statistical signif-
icance was checked according to the paired t-test with p-
value ≤ 0.05. All tests were run on Intel Xeon Silver 4116
@ 2.10GHz. CoEvoRDT source code is available online at
https://github.com/zychowskia/CoEvoRDT.

Robustness. CoEvoRDT was trained separately for max
regret and adversarial accuracy, and compared with 4 SOTA
methods (discussed in the related work section). The results
are shown in Tables 2 and 3, respectively. They were also
compared with the CART algorithm (Breiman 2017), a pop-
ular method for creating DTs for non-perturbed training data
(not designed for the RDT scenario). In both tables, the last
column (CoEvoRDT+FPRDT) presents the results of adding
the FPRDT output DT to the CoEvoRDT initial population,
and running CoEvoRDT afterwards. On the max regret met-
ric, CoEvoRDT clearly outperforms all other competitors on
all datasets. Adding the FPRDT tree only narrowly improves
its outcome. The results support our claim that SOTA meth-
ods, which cannot directly minimize max regret, perform
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dataset CART Meta Silvae RIGDT-h GROOT FPRDT CoEvoRDT CoEvoRDT+FPRDT
ionos .094±.000 .075±.007 .071±.006 .061±.005 .061±.006 .052±.004 .052±.005
breast .103±.000 .056±.006 .069±.006 .059±.005 .057±.005 .049±.004 .049±.005
diabetes .202±.000 .126±.008 .132±.009 .124±.009 .117±.007 .096±.006 .094±.007
bank .186±.000 .102±.007 .108±.008 .090±.006 .089±.007 .076±.006 .076±.006
Japan3v4 .107±.000 .090±.006 .083±.006 .067±.006 .066±.004 .062±.006 .061±.006
spam .097±.000 .079±.006 .083±.006 .074±.006 .074±.006 .070±.005 .069±.005
GesDvP .152±.000 .129±.008 .133±.010 .129±.008 .131±.009 .114±.007 .114±.007
har1v2 .105±.000 .074±.006 .084±.007 .068±.006 .068±.006 .064±.005 .064±.005
wine .140±.000 .125±.008 .127±.009 .111±.009 .109±.008 .090±.006 .090±.007
collision-det .142±.000 .099±.007 .093±.007 .088±.006 .091±.007 .061±.006 .059±.006
mnist:1v5 .249±.000 .078±.007 .076±.006 .071±.006 .067±.005 .055±.006 .055±.005
mnist:2v6 .268±.000 .083±.007 .087±.006 .072±.005 .069±.005 .055±.004 .054±.004
mnist .395±.000 .143±.009 .139±.009 .125±.007 .124±.009 .113±.008 .112±.008
f-mnist2v5 .273±.000 .254±.015 .249±.015 .223±.013 .238±.014 .196±.011 .196±.011
f-mnist3v4 .290±.000 .259±.014 .254±.015 .246±.014 .232±.013 .202±.011 .199±.011
f-mnist7v9 .283±.000 .255±.014 .251±.015 .237±.014 .240±.014 .208±.013 .207±.012
f-mnist .427±.000 .345±.020 .337±.018 .292±.017 .286±.016 .238±.014 .237±.015
cifar10:0v5 .419±.000 .351±.019 .379±.021 .347±.019 .314±.018 .241±.015 .236±.013
cifar10:0v6 .403±.000 .362±.021 .368±.020 .342±.018 .341±.019 .289±.016 .289±.016
cifar10:4v8 .408±.000 .357±.019 .360±.021 .339±.018 .331±.019 .283±.016 .281±.017

Table 2: Max regrets (mean ± std error). CoEvoRDT+FPRDT obtained the best results for all datasets. The best results are
bolded. Gray background indicates that a given method is statistically significantly better than all other methods.

dataset CART Meta Silvae RIGDT-h GROOT FPRDT CoEvoRDT CoEvoRDT+FPRDT
ionos .310±.000 .695±.039 .701±.045 .783±.047 .795±.047 .791±.044 .795±.049
breast .250±.000 .797±.047 .838±.052 .874±.047 .876±.055 .885±.054 .889±.056
diabetes .542±.000 .554±.035 .569±.033 .623±.043 .648±.039 .617±.038 .648±.037
bank .633±.000 .510±.031 .468±.033 .541±.036 .658±.040 .657±.043 .663±.037
Japan3v4 .576±.000 .566±.035 .564±.037 .584±.035 .667±.039 .665±.037 .668±.037
spam .302±.000 .637±.036 .467±.028 .723±.045 .746±.049 .751±.049 .753±.045
GesDvP .478±.000 .637±.039 .548±.033 .716±.045 .735±.040 .740±.046 .741±.044
har1v2 .232±.000 .706±.045 .707±.047 .806±.048 .804±.049 .818±.054 .820±.052
wine .620±.000 .637±.039 .474±.027 .637±.036 .674±.037 .688±.046 .692±.047
collision-det .743±.000 .772±.047 .764±.044 .784±.052 .792±.051 .798±.053 .803±.049
mnist:1v5 .921±.000 .952±.056 .957±.054 .954±.056 .966±.058 .964±.059 .969±.061
mnist:2v6 .862±.000 .906±.054 .919±.050 .917±.052 .922±.049 .917±.053 .922±.051
mnist .673±.000 .702±.041 .704±.042 .743±.048 .742±.049 .745±.043 .754±.046
f-mnist2v5 .675±.000 .951±.053 .945±.060 .971±.057 .978±.055 .982±.055 .982±.059
f-mnist3v4 .632±.000 .808±.049 .793±.044 .819±.048 .865±.050 .869±.056 .870±.054
f-mnist7v9 .642±.000 .824±.045 .81±.052 .829±.052 .876±.050 .868±.054 .880±.047
f-mnist .464±.000 .492±.033 .525±.033 .536±.035 .531±.033 .544±.036 .546±.040
cifar10:0v5 .296±.000 .502±.033 .347±.026 .485±.036 .678±.046 .685±.039 .693±.039
cifar10:0v6 .587±.000 .540±.038 .477±.029 .556±.037 .688±.040 .692±.046 .697±.043
cifar10:4v8 .256±.000 .514±.032 .488±.033 .473±.032 .661±.042 .663±.045 .664±.037

Table 3: Adversarial accuracies (mean ± std error). CoEvoRDT+FPRDT obtained the best results for all datasets. Box denotes
that CoEvoRDT+FPRDT is statistically significantly better than all other methods. The best results are bolded. Gray background
indicates that a given method is statistically significantly better than all other methods (except CoEvoRDT+FPRDT).

minimax regret adversarial accuracy computation time [s]

N N FPRDT N CoEvoRDT CoEvoRDT
+ N FPRDT

N CoEvoRDT
+ N FPRDT N FPRDT N CoEvoRDT CoEvoRDT

+ N FPRDT
N CoEvoRDT
+ N FPRDT N FPRDT N CoEvoRDT CoEvoRDT

+ N FPRDT
N CoEvoRDT
+ N FPRDT

1 .304 .238 .237 .237 .531 .544 .546 .546 19 79 97 97
2 .302 .237 .236 .236 .535 .546 .548 .548 40 161 114 185
3 .301 .237 .236 .236 .539 .548 .549 .550 60 240 134 272
4 .300 .236 .236 .235 .545 .550 .552 .553 80 321 165 362
5 .299 .236 .235 .235 .548 .552 .554 .557 99 406 183 496
10 .293 .234 .233 .233 .552 .557 .559 .562 195 774 264 939
20 .284 .230 .230 .229 .558 .564 .566 .568 391 1553 454 1869
50 .282 .229 .229 .227 .563 .568 .568 .569 956 3863 999 4564

100 .282 .228 .229 .227 .566 .568 .568 .569 1921 7981 1990 9026

Table 4: Best results of repeated N algorithms’ runs for fashion-mnist dataset. In CoEvoRDT + N FPRDT output DTs from N
FPRDT independent runs were incorporated into CoEvoRDT initial population.
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minimax regret adversarial accuracy computation time [s]

HoF size Nash mixed
tree

Top K as
mixed tree

Nash single
trees Top K Best Nash mixed

tree
Top K as

mixed tree
Nash single

trees Top K Best Nash mixed
tree

Top K as
mixed tree

Nash single
trees Top K Best

0 .261 .261 .261 .261 .261 .533 .533 .533 .533 .533 47 47 47 47 47
10 .242 .248 .247 .251 .259 .535 .535 .535 .534 .533 50 50 50 50 50
20 .240 .246 .245 .249 .256 .536 .536 .536 .536 .534 55 54 55 56 51
50 .241 .244 .245 .249 .254 .536 .536 .536 .536 .534 61 58 59 62 54

100 .239 .243 .243 .247 .253 .538 .538 .537 .537 .535 68 63 66 65 56
200 .238 .242 .242 .244 .250 .543 .539 .540 .539 .535 77 70 76 77 59
500 .237 .241 .241 .243 .248 .545 .540 .540 .540 .536 86 79 91 90 60
∞ .237 .239 .240 .240 .248 .545 .540 .541 .540 .536 86 77 85 85 61

Table 5: Results with respect of HoF size for fashion-mnist dataset. ∞ means that there was no limit on HoF size.

significantly worse than CoEvoRDT in terms of this met-
ric. From an adversarial accuracy perspective, for 13 out of
20 datasets, CoEvoRDT yielded the best mean results (5 of
them statistically significant). For the remaining 7 datasets
FPRDT method was superior (with statistical significance in
3 cases). For this metrics, adding FPRDT tree to the initial
CoEvoRDT population (CoEvoRDT+FPRDT) led to clear
advantage versus baseline CoEvoRDT and FPRDT alone.

For a more detailed analysis, fashion-mnist dataset is se-
lected as one of the largest. Detailed results for all other
datasets are presented in the SM.

Runtime comparison. In general, CoEvoRDT runtime
varies from a few seconds to a couple of minutes for the
largest datasets. The average computation time of a single
run of the strongest competitor, FPRDT is 2 to 8 times lower
than CoEvoRDT. Thus, the natural question which can arise
is what if we run FPRDT multiple times to have an equal
computation budget and choose the best result. This ap-
proach is addressed in Table 4, which presents computation
time and the best results in terms of minimax regret and ad-
versarial accuracy for multiple runs of FPRDT, CoEvoRDT,
and CoEvoRDT initialized with multiple FPRDT outcomes.
More runs can notably improve results for all methods. For
max regret, even within 100 repeats, FPRDT was not able to
find a solution close to the single CoEvoRDT outcome. For
adversarial accuracy multiple FPRDT runs outperformed
CoEvoRDT, but for greater numbers of repeats (above 20)
both methods seem to converge to similar results. Given
some constrained computation budget the best option is to
run CoEvoRDT + N FPRDT.

HoF size and construction. Table 5 presents the results
for various HoF sizes. For each size, 5 variants of construct-
ing HoF are considered: adding one mixed tree from mixed
Nash equilibrium after each generation (which is the base-
line used in CoEvoRDT), adding all single trees from mixed
Nash equilibrium (i.e., all the pure strategies with positive
probability), adding only one highest-fitness tree from the
population, adding top K highest-fitness individuals from
the current population (where K is the number of trees from
Nash mixed equilibrium) and adding one mixed tree com-
posed of top K highest-fitness trees with equal probabilities.
Firstly, it is clear that even small HoF significantly improves
results for all variants. Moreover, adding a Nash mixed tree
seems to be the best option, while adding only one highest-
fitness tree is the worst approach. The advantage of Nash
mixed tree and top K as a mixed tree with equal probabili-

ties over Nash single trees and top K trees shows the benefit
of using mixed trees in the HoF. It may stem from the fact
that mixed tree is more robust to various perturbations, and
consequently the perturbation population is forced to find
better perturbations to outplay those mixed trees. As a result,
the DT population is forced to create even more robust trees.
At the same time, the straightforward approach of creating
a mixed tree of highest-fitness individuals is less powerful
than a mixed tree from mixed Nash equilibrium.

The generation limit of CoEvoRDT was set to 1000, but
in practice, it was rarely reached and the other stop condition
(no improvement of best-found solution) was fulfilled first.
The average number of generations across all datasets was
385. The lowest average number was observed for the dia-
betes (152), and the highest for cifar10:0v5 (865). The depth
of DTs generated by CoEvoRDT varies from 6 to 23 which
is not much different than DTs created by other methods.

CoEvoRDT memory consumption is low and does not
exceed 150 MB for the largest datasets.

Conclusions
In this paper, we present CoEvoRDT, a novel coevolutionary
algorithm designed to construct robust decision trees capa-
ble of handling perturbed high-dimensional data. Our mo-
tivation stems from the vulnerability of traditional DT al-
gorithms to adversarial perturbations and the limitations of
existing defensive algorithms in optimizing specific metrics
like max regret. The flexibility of CoEvoRDT in accommo-
dating various target metrics makes it adaptable to a wide
range of applications and domains, including when robust-
ness is mixed with other objectives such as fairness. We pro-
pose a novel game-theoretic approach to constructing the
Hall of Fame with Mixed Nash Equilibrium, which signif-
icantly contributes to the DTs robustness and convergence
speed. CoEvoRDT can additionally integrate results from
another strong and fast method into the initial population,
if one is available, to further improve performance.

CoEvoRDT was comprehensively tested on 20 popu-
lar benchmark datasets and compared with 4 SOTA algo-
rithms, presenting on par performance to the best compet-
itive method in adversarial accuracy metrics, and outper-
forming all competitors in terms of minimax regret.

Our future work focuses on investigating the potential of
implementing CoEvoRDT as a multi-population algorithm,
such as the island model (Skolicki 2005), to speed up con-
vergence and potentially further boost its performance.
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