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Abstract

Machine learning models now automate decisions in appli-
cations where we may wish to provide recourse to adversely
affected individuals. In practice, existing methods to provide
recourse return actions that fail to account for latent character-
istics that are not captured in the model (e.g., age, sex, marital
status). In this paper, we study how the cost and feasibility of
recourse can change across these latent groups. We introduce
a notion of group-level plausibility to identify groups of indi-
viduals with a shared set of latent characteristics. We develop a
general-purpose clustering procedure to identify groups from
samples. Further, we propose a constrained optimization ap-
proach to learn models that equalize the cost of recourse over
latent groups. We evaluate our approach through an empirical
study on simulated and real-world datasets, showing that it
can produce models that have better performance in terms of
overall costs and feasibility at a group level.

Introduction
Machine learning models now automate decisions that affect
individuals – be it to provide a loan (Siddiqi 2012), a job
interview (Ajunwa et al. 2016), or a public service (Choulde-
chova et al. 2018). Models in such settings should provide
recourse (Ustun, Spangher, and Liu 2019) – i.e., actions that
let individuals overturn their decisions through changes in
feature spaces.

Existing methods for recourse provision may output ac-
tions that exhibit biases across groups in a target population.
Such biases may affect the difficulty or feasibility of recourse.
For example, research (Espinosa et al. 2019) suggests that
race has a profound correlation with the level of education
a person has access to. In the context of a lending model,
this relationship would imply that actions that are identical
may have diverging “actionability" across protected racial
groups. In practice, they may arise due to historical biases
within the training data (see e.g., Khosla et al. 2012) or due
to the underlying model(see e.g., DeBrusk 2018; Mehrabi
et al. 2021).

Some existing literature seeks to address these issues
through interventions at the group level. For example,
Von Kügelgen et al. (2022) considers an individual’s hidden
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feature(s) in recourse generation, using group-level infor-
mation to provide subsidies. Likewise, Madras et al. (2019)
identify hidden confounders, which are unobserved factors
that alter the cost and feasibility of recourse at an individual
level.

Gupta et al. (2019) argues that negatively impacted indi-
viduals from different groups should have equal chances of
obtaining recourse, seeking to equalize the distance from the
decision boundary across groups.

This study aims to consider the actionability at the group
level instead of relying on a universal cost function. Consider
an individual who applies for a loan and gets denied; we
answer:

“What actions can I take to be part of the approved sub-
group of people with my socioeconomic background?”
The difference between the notion of group-level fair

actionability and fair recourse is demonstrated using Fig-
ure 1 (a). Here, feature distribution for working hours
follows a high variance unimodal distribution for group A0,
whereas we notice bimodal distribution for group A1, imply-
ing that higher plausibility regime (of recourses) for group
A0 is closer to the decision boundary compared to A1. Ad-
ditionally, Figure 1 (b) shows the decision boundary using
a scatter plot. Low density of individuals near the decision
boundary for A1, makes the recourse a

(1)
1 predominantly un-

desirable in comparison with a
(1)
0 for A0. Alternatively, a(2)0

and a
(2)
1 from Figure 1 (c) shows post action features which

fall within the corresponding high-density regions.
Group-level recourse plausibility of a post-action feature is

defined as its believability or realizability with respect to the
distribution of the group-specific approved sub-population.
Given the spatial proximity nature (Gustafson and Parker
1994) of plausibility, we observe that: “plausibility of post-
action features is proportional to the density of the resulting
region and similarity with the resulting region of approved
profiles.”

This study leverages the group-level approved sub-
population signals to understand actionability and thereby
train a fair actionable model. Here, a group can be any im-
mutable categorical feature in your dataset. We argue that a
recourse a0 for an individual x0 ∈ H− has higher chances of
actionability if x0 + a0 ∈ H+, where H+ is the distribution
of the approved group to which x0 belongs.
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Figure 1: Toy example scenario demonstrating the existence of group-level actionability unfairness. In these figures, orange and
red represent the negatively (A−

1 ) and positively (A+
1 ) affected sub-populations of the disadvantaged group (A1), respectively.

Blue and Green represents the negatively (A−
0 ) and positively (A+

0 ) affected sub-populations of the advantaged group (A0).
Consider a hypothetical situation where the average cost of recourse a(1)0 and a

(1)
1 for similar individuals x0 and x1 from A0 and

A1, respectively, is identical. Such recourse can be commonly followed by A0 but not necessarily by A1.

Motivating Scenarios
We describe two real-world scenarios for motivation for loan
approval. Applicant A belongs to the old group, whereas
Applicant B belongs to the young group, and both of them
have approached a bank for a loan. Both the individuals’ loan
applications were denied by the bank and were suggested a
similar recourse.

Applicant A: Single Parent. The recourse provided by the
bank suggests increasing their working hours from 32 per
week to 40 per week. Considering that they belong to the sub-
population of denied single parent, the recourse may not be
actionable, as they may not have the flexibility of increasing
working hours per week. They are more likely to consider
taking a second remote job instead. Hence, recourse actions
that align with those of other single parents help improve the
actionability and benefit such disadvantaged groups.

Applicant B: International Student. Applicant B is an
undocumented employee with severe restrictions due to his
immigration status, often limiting their flexibility in acting
on the recourse provided. He may need more capabilities
to act upon several features such as income, working hours,
job sector etc. Such constraints are further exacerbated if
Applicant B is a student. For the holistic benefit of society and
improved trust in machine learning systems, the suggested
recourses must be unbiased in terms of plausibility metrics.
The main contributions of this work include:

1. We introduce a notion of group-level plausibility using
latent characteristics related to immutable categorical fea-
tures.

2. We introduce a fairness notion group-level plausibility
bias and provide metrics for quantification using a general
purpose clustering procedure.

3. We provide evidence of group-level plausibility bias using
a real-world dataset dataset to show its detrimental effects
on the trustworthiness of a model.

4. We consolidate the traditional performance metrics of
recourse generation and compare the proposed fairness
metric between naturally trained models and trained with
our proposed optimization.

Broader Impacts

This work is primarily designed to mitigate specific failure
modes of machine learning models used in consumer-facing
applications such as lending, hiring, and the allocation of
services. In particular, we seek to study how these models can
assign predictions that are difficult or impossible to change
across groups that are difficult to identify using features that
are not used by the model. Our work studies these biases in
responsiveness through the lens of recourse and outlines a
general-purpose approach to correct them. In particular, we
(re)introduce plausible recourse as an alternative to a low-cost
recourse.

Framework
We consider a classification task where a model f : X →
Y assigns a binary label y ∈ {±1} to an individual with
features x = [x1, . . . , xd] ∈ X = X1 × · · · × Xd ⊆ Rd. Let
D =

{(
x(i),y(i)

)}n

i=1
be the set of data samples observed

from the true underlying distribution.
Let g observing values g ∈ G = {1, . . . ,K} denote a

categorical attribute encodes a protected characteristics.
We define the following subspaces based on the true la-

bel y and predicted labelf (x): D− = {x ∈ X : y =
−1}, D+ = {x ∈ X : y = +1}, H− = {x ∈ X : f (x) =
−1}, and H+ = {x ∈ X : f (x) = −1}.

Let v(i) ∈ D be a labeled example where each v(i) is
associated with a group g ∈ G. Given a group member-
ship function m : Rd → {±1}, we define H+

g = {v(i) ∈
D| m

(
v(i)

)
= g, f (x) = +1}. and H−

g = {v(i) ∈
D| m

(
v(i)

)
= g, f (x) = −1}.
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Recourse. Given an individual with features x0 such that
f (x0) = −1, we return an action a0 that achieves recourse
by solving an optimization problem of the form:

min
a0

cost (x0,a0)

s.t. f (x0 + a0) = +1,

a0 ∈ A (x0) .

(1)

Here, cost (x0,a0) : A (x0) → R+ is any cost function used
to capture the difficulty of taking a set of actions a0 by an
individual represented by x0 and let A (x0) be the set of
feasible actions.

Measuring Plausibility
Recourse actions are traditionally specified by the cost of
changes and actionability constraints (see e.g., feasibility
sets of Karimi, Schölkopf, and Valera 2021). In this study,
we intend to maximize the overall feasibility in terms of a
proximity score prox(x0 + a0,S0) for an individual x0 with
respect to a user-specified Exemplar Set S0.

An exemplar set contains all clusters of predefined individ-
uals with certain robust properties, including prevalence and
model agnostic adversarial robustness. Given a classifier f , a
set of feasibility constraints A (x0), we recover an action by
solving the optimization problem:

min
a0

cost (x0,a0)

s.t. prox (x0 + a0,S0) ≥ ρ,

f (x0 + a0) = +1,

a0 ∈ A (x0) .

(2)

Here:
• prox(x0 + a0,S0) : X → R+ is a proximity score for the

post-action features x0 + a0 to an Exemplar Set S0.
• ρ measures the minimum required proximity for x0 + a0

to be feasible and can vary for each group.
ρ can be specifically configured for every group based on

the variance within S0. This ensures that a0 ensures underly-
ing group characteristics. ρ ensures that x0 + a0 gets closer
to S0. Configuring ρ = 0 returns a traditional low-cost action
and ρ > 0 leads x0 + a0 to be within a specified width of S0,
for example, an ε-ball around S0.

Let x̂0 = x0 + a0 be the post action feature profile of x0.
prox(x̂0,S0) estimates a plausibility score by capturing the
proximity of x̂0 to the closest exemplar set S0. Our choice is
motivated by Karimi et al. (2020a)’s definition of: (i) domain-
consistency; (ii) density-consistency; and (iii) prototypical-
consistency.

Group Plausibility. For a the post-action feature profile
x̂0 for an individual x0 from a group g, we characterize plau-
sibility score using the proximity nature of prox(x̂0,S0) as
plaus (x̂0,Sg) of a post-action feature profile x̂0 with respect
to any corresponding (approved) exemplar set Sg ∈ H+

g ,
using:

plaus (x̂0,Sg) ∝ density of Sg, and
plaus (x̂0,Sg) ∝ similarity with Sg

(3)

We now define group plausibility using the patch proxim-
ity index (Gustafson and Parker 1994) used to quantify the
spatial context of a patch in relation to its neighbors. In our
context, we define the proximity of x̂0 with respect to any
resulting neighbors set S(i)

g ∈ Sg .
Definition 1 (Group Plausibility). For any individual x0 in
group g ∈ G, we measure the group-level recourse plausibil-
ity plaus (x̂0,Sg) of post-action features x̂0 using:

plaus (x̂0,Sg) := max
{

coverage
(
S(i)
g

)
×similarity

(
x̂0,S(i)

g

)
: S(i)

g ∈ Sg

}
(4)

where coverage
(
S(i)
g

)
measures the fraction of data

points covered by S(i)
g and similarity

(
x̂0,S(i)

g

)
provides

a score of how similar x̂0 is with respect to S(i)
g , respectively.

We maximize the proximity score of the resulting post-
action features with respect to any S(i)

g ∈ Sg. The resulting
x̂0 must be closer to any of the exemplar profile clusters
irrespective of the proximity score with other clusters.

Alternatively, mean based proximity score∑
S

(i)
g ∈Sg

coverage
(
S
(i)
g

)
× similarity

(
x̂0, S

(i)
g

)
fails

in the following scenario in our formulation.
Let plaus (x̂0,S0) = 2.0 with two clusters hav-

ing coverage
(
S(1)
g

)
× similarity

(
x̂0,S(1)

g

)
= 2.0 and

coverage
(
S(2)
g

)
× similarity

(
x̂0,S(2)

g

)
= 2.0. Here, the

resulting profile is not specifically closer to any of the exem-
plar sets.

Equalizing Recourse across Plausible Groups
In this section, we introduce exemplar set, our proposed
metric to measure the plausibility of a post-action feature
profile, and introduce a notion of plausibility bias. Then, we
propose an optimization based model training technique to
alleviate such bias caused at the group level.

Specifying an Exemplar Set
Action plausibility does not rely on the traditional cost of
actions due to its prototypical nature (Karimi et al. 2020a).
This is unlike the traditional model decision boundary based
low-cost actions. This provides degrees of freedom to capture
individual action costs. For example, a low-density cluster
signals profiles that are more likely to be outliers, which are
possible to attain but peculiar or atypical for most individuals
from that group.

The proposed plausibility metric captures the individual’s
group-level desirability of the actions. Identification of G
should be done with care to ensure that it will not lead to
inadvertent discrimination across protected groups.

Our study is motivated by the fact that an individual is
more likely to enact actions that have led to approval for
individuals in their exemplar group.

We define groups based on the prevalence of feature values.
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Figure 2: Demonstration of the effectiveness of plaus (x̂0,S0). x̂
(2)
0 has a high plaus

(
x̂
(2)
0 ,S0

)
due to its high coverage

(
S
(2)
g

)
and similarity

(
x̂
(2)
0 , S

(1)
g

)−1

, unlike x̂
(1)
0 which has a low plaus

(
x̂
(1)
0 ,S0

)
.

We start by clustering the approved profiles of the
group g from the training dataset into c clusters Sg ={
S(1)
g , . . . ,S(c)

g

}
, where c is a hyperparameter selected by

a domain expert. The details of the main procedure are as
follows:

1. We estimate the density of each cluster S(i)
g ∈ Sg using

the training dataset. We cluster approved data samples
from the training dataset and associate a coverage score
coverage

(
S(i)
g

)
to each cluster. The choice of clusters

must satisfy:
1) Positive Coverage: coverage

(
S(i)
g

)
> 0 ∀ S(i)

g ∈ Sg ,

2) Total coverage:
∑

S(i)
g ∈Sg

coverage
(
S(i)
g

)
= 1.

2. The number of clusters c is domain dependent and can
influence the average plaus (·) score. Please note that any
choice of c should be identical across all the groups for
consistency of plaus (·).
For both the special cases of c = 1, and of c = |D+

g |
where |D+

g | = |D+
g′ | : ∀g, g′ ∈ G, we have plaus (·) ∝

similarity (·). In the former scenario, we have 1 cluster per
group, and in the latter scenario, we have |D+

g | clusters
for every g ∈ G.

3. Similarity score similarity
(
x̂0,S(i)

g

)
of the post-action

feature profile x̂0 with respect S(i)
g can be approximated

using any ℓp norm based distance metric. We choose ℓ2
norm-based distance metrics to estimate the similarity
score for our experiments.

Measuring Plausibility Bias
Our formulation of plausibility draws on group level infor-
mation, which requires a closer look at differences across
groups. Existing literature focuses on equalizing recourse
costs across groups (Gupta et al. 2019).

However, fairness in terms of the traditional cost function,
which is approximated using a distance metric from the fac-

tual profile, may not capture the unfairness in plausibility. To
address this blind spot, we propose to capture a straightfor-
ward notion of group-level unfairness in plausibility.

We start with a measure of the group-level plausibility-
based unfairness measure for a classifier f .

Definition 2 (Expected plausibility). The expected plausi-
bility of recourse for a classifier f : X → {±1} over H−

is: plausH− (f) = EH−,D+ [plaus (x̂0,S0)], where x̂0 is the
post-action feature profile resulting from solving the opti-
mization problem in (2).

Definition 3 (Group plausibility bias). The group-level plau-
sibility unfairness of a classifier f for a dataset D is measured
as: ∆P := maxg,g′∈G

∣∣∣plausH−
g
(f)− plausH−

g′
(f)

∣∣∣ .
where plausH−

g
(f) is the group average of plaus (x̂0, f) :

∀ x0 ∈ H−
g .

Our work advocates for equalized plausibility across pro-
tected groups. We propose an optimization-based modeling
procedure we call “Fair Feasible Training” (FFT) to train a
model with an additional bias constraint.

We now alleviate the effects of plausibility bias. Gupta et al.
(2019) equalizes recourse action costs across groups, while
we propose to train models that equalize recourse across
latent groups by including ∆P as part of the model training
procedure.

Definition 4 (Fair Feasible Training). Given a dataset D ={(
x(i),y(i)

)}n

i=1
and ϵ > 0, we train a feasibly fair classi-

fier f by solving the following optimization problem:

min L (x, y)

s.t. max
g,g′∈G

∣∣∣plausH−
g
(f)− plausH−

g′
(f)

∣∣∣ ≤ ϵ.
(5)

where L (x, y) is overall loss aggregated across D and we
approximate plausH−

g
(f) using plausD−

g
(f) during the train-

ing process. plausD−
g
(f) measures the mean distance of de-

nied individuals of group g to their approved group counter-
parts, using the training dataset.
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Standard Training Proposed Training

Model Method Succ.
Rate

Avg.
Tim.

Con.
Vio.

Red. Pro. Spa. Succ.
Rate

Avg.
Tim.

Con.
Vio.

Red. Pro. Spa.

GS 1.00 0.03 0.00 2.63 1.14 4.97 1.00 0.03 0.00 2.10 1.24 5.05
Wachter 1.00 0.05 2.00 3.20 1.25 6.94 1.00 0.05 2.00 1.77 1.42 6.95

N.N. AR(-LIME) 0.51 1.72 0.00 0.00 1.34 1.60 0.76 1.94 0.00 0.00 1.31 1.50
CCHVAE 1.00 0.11 3.73 7.82 3.11 8.64 1.00 0.28 3.74 7.80 3.13 8.64
FACE 1.00 4.37 4.81 6.63 4.35 7.84 1.00 4.46 4.66 6.39 4.34 7.79
GS 1.00 0.02 0.00 2.30 1.50 5.32 1.00 0.02 0.00 2.19 1.74 5.59
Wachter 1.00 0.05 2.00 2.00 1.38 6.94 1.00 0.06 2.00 1.43 1.69 6.92

L.R. AR 0.80 1.84 0.00 0.00 1.81 1.98 0.80 2.14 0.00 0.00 1.52 1.64
CCHVAE 1.00 0.17 3.74 8.78 3.77 9.29 1.00 0.22 3.71 3.33 3.91 9.41
FACE 1.00 4.29 4.72 6.57 4.42 7.87 1.00 5.83 4.69 6.11 4.49 7.71

Table 1: Overview of recourse actions for models trained using baseline methods and our approach on the Adult Income dataset.
Reference– Succ. Rate: Success Rate, Avg. Tim.: Average Time, Con. Vio.: Constraint Violations, Red.: Redundancy,
Pro.:Proximity, Spa.: Sparsity.

The main idea for this approximation is to equalize the
spread between approved and denied sub-populations across
groups during model training. With the proposed optimiza-
tion, any existing recourse methodologies can be used to
achieve equalized group-level plausibility across groups. An
alternate approach of post-training based technique carries
the risk of increased recourse costs for disadvantaged groups.

Experiments
In this section, we present empirical results to show that the
traditional approaches for recourse provision lead to plausi-
bility bias and that our proposed approach (FFT) can mitigate
these effects.

Setup
We train two kinds of classification models on the Adult In-
come dataset: Neural Networks (NN) and Logistic Regression
(LR). For each model class, we fit a model using a baseline
algorithm that optimizes cross-entropy loss and another using
our proposed risk minimization in (4) utilizing the Male and
Female sub-populations as the constraining groups.

The NN models contain three layers of [18, 9, 3] nodes
with ReLU activation functions, a standard drawn from the
CARLA (Pawelczyk et al. 2021) recourse package.

All models achieved comparable accuracy on the holdout
set: the standard and constrained NN models denoted by θstdnn ,
θfftnn saw 78.8% and 79.4% accuracy, respectively. While the
standard and constrained LR models denoted by θstdlr and
θfftlr saw 79.2% and 78.6% accuracy, respectively. We chose
sex_Female as our protected group for our experiments.

Recourse methods. Although our experiments focus on
one protected group, we note that the selection of groups can
be parameterized to capture all the necessary groups. For all

(a) Comparison chart of plaus(·) (f)

(b) Stacked distribution of plausD+
(·)

(f)

Figure 3: plaus(·) (f) of various recourse techniques for gen-
der and race groups. For reference, plausD+

(·)
(f) for training

data is also shown in image (a). Image (b) visualizes distribu-
tional differences of plausD+

(·)
(f) across immutable groups.
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(b) Standard training

(c) Fair Feasible Training

Figure 4: Stacked distribution of plaus(·) (f) illustrates the
distribution of plausibility scores across groups.

models, we then calculated a variety of recourse options on a
sample of 500 adversely impacted individuals.

Recourse Methods used for our experiments are: Wachter
(Wachter, Mittelstadt, and Russell 2017), Growing Spheres
(GS) (Laugel et al. 2017), Actionable Recourse (AR) (Ustun,
Spangher, and Liu 2019), Feasible and Actionable Coun-
terfactual Explanations (FACE) (Poyiadzi et al. 2020) and
CCHVAE (Pawelczyk, Broelemann, and Kasneci 2020).

Results & Discussion

We provide evidence of several forms of plausibility bias. For
instance, we identify that a particular feature distribution of a
population categorized by strategically identifying protected
groups shows idiosyncrasies across these groups.

On Group Level Effects Firstly, we show that feature
distributions vary significantly at the immutable feature
level. The distribution of age, education-num and
hours-per-week for the Adult Income (Dua and Graff
2017) dataset, when stratified by group shows the distribu-
tional uniqueness of individual protected groups (correspond-
ing figures are included in the Appendix). For example, we
observe twin peaks for single woman in education-num,
which suggests that any recourse that lands the individual in
the low-frequency region may not be actionable. The similar
small second peak for single woman can be observed for
hours-per-week feature.

Recourse Performance Metrics. Our results in Table 1
show that performance is remarkably consistent for FFT. Al-
though FFT often incurs longer recourse generation times
(seeing an average 24.6% increase in run time across recourse
methods), it consistently identifies recourse that shows lower
redundancy (an average 31.7% reduction). This is somewhat
surprising; although we hypothesize that FFT learns more
separable data representations, which may impact the ulti-
mate redundancy of generated recourse. We observe that
overall proximity costs are not significantly affected by FFT.
Rather, FFT constrains the ultimate recourse to be feasibly
fair to protected groups. Although recourse proximity fair-
ness is not explicitly included in the cost function, we suspect
the ultimate gains in proximity fairness result from learning
a max-margin classifier on underlying fair representations.

Standard Training Exhibits Plausibility Bias. Fig-
ure 3 (a) shows plaus(·) (f) for the recourse actions generated
by Wachter, GS, AR, FACE. Figure 3 (b) further shows the
distributional differences of plaus(·) (f) at an individual level
for the raw dataset.

FFT moderates Plausibility Bias. We compare the
plaus (·) distributional differences across individuals based
on their prediction, group, true label, and model. We observe
from Figure 4 that the proposed training induces a consistent
uni-modal plaus (·) distribution across groups, while standard
training results in bimodal feasibility scores where female in-
dividuals in particular, see higher feasibility costs. To assess
the fairness performance of FFT, we compare:
• Expected recourse cost of a classifier (Ustun, Spangher,

and Liu 2019), costH− (f): measured as the average ℓ2 dis-
tance x̂0 and x0, of the protected groups used to constrain
the training process.

• Expected Plausibility of a classifier (Definition 2),
plausH− (f): measured as the inverse average ℓ2 distance
of x̂0 and corresponding exemplar set S0 of its associated
positive group.

Our findings are shown in Figure 5. We observe that for both
model families, FFT consistently provides recourse that is
fairer in terms of plausibility and the overall cost.

Concluding Remarks
In this work, we outlined a new approach to account for
latent groups in applications where we wish to provide re-
course. In particular, we developed machinery to identify
such groups from data and studied the implicit disparity in
plausibility across these groups. For example, suggesting
naive and arguably famous recourse action of increasing the
working hours to a single parent is not feasible. We proposed
a method to train classifiers to mitigate these effects and
demonstrated their capacity in practice.

Limitations. Group-level plausibility may not ensure in-
dividual actionability (see e.g., Kothari et al. 2023). Our
proposed approach may also exacerbate the cost of recourse.
Our study raises the question of whether it is sufficient for
a recourse to change the model’s decision or whether a re-
course improves the affected individual’s overall group-level
profile.
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(a) NN model: costH− (f) (b) NN model: plaus
−1

H− (f)

(c) LR model: costH− (f) (d) LR model: plaus
−1

H− (f)

Figure 5: Feasibility performance metrics for NN and LR models across a variety of recourse methods.

Related Work. Our work is related to a previous study
(Karimi, Schölkopf, and Valera 2021) where the authors re-
ferred to it as believability or realizability of recourse and
refers to the likeness of the counterfactual profile resulting
from the suggested set of actions. (Karimi et al. 2020a)
refers plausibility as (i) domain-consistency; (ii) density-
consistency; and (iii) prototypical-consistency. Providing
recourse based on manifold learning (Pawelczyk, Broele-
mann, and Kasneci 2020) motivates us to utilize under-
lying group distributions for suggesting group-level data-
dependent recourse that accounts for group-level actionability
patterns (Yetukuri 2023). Manifold-based CCHVAE (Pawel-
czyk, Broelemann, and Kasneci 2020) generates high-density
counterfactuals using a latent space model. However, there
is often no guarantee that the what-if scenarios identified
are attainable. Another line of research (Karimi et al. 2020a)
leverages causal knowledge (Karimi, Schölkopf, and Valera
2021) to identify recourse via minimal interventions. Taking
causal knowledge is beneficial for identifying a recourse;
however, the true underlying structural causal model is often
unavailable (Karimi et al. 2020b).

Density-based soft constraints are essential for capturing
group-level feasibility signals. FACE (Poyiadzi et al. 2020)
follows high-density paths to produce feasible counterfactual
explanations, establishing the necessary condition of density
for a feasible recourse. However, such feasible paths may
not exist for certain groups if the approved and denied sub-
populations are significantly farther apart than other groups.
Other studies that learn from the dataset’s underlying struc-
ture include REVISE (Joshi et al. 2019) and CRUDS (Downs
et al. 2020). However, existing literature does not consider

the distributional differences across groups while suggesting
a recourse leading to plausibility bias across groups. We dif-
fer from existing literature, which prioritizes distance to the
decision boundary by evaluating the actionability of recourse
with respect to the distance to H+.
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