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Abstract

Recommender systems have a significant impact on various
real-world applications, shaping people’s daily lives and en-
hancing productivity. Traditional recommender models aim
to collect extensive user information to accurately estimate
user preferences. However, in practical scenarios, users may
not want all their behaviors to be included in the model train-
ing process. This paper introduces a novel recommendation
paradigm that allows users to indicate their “willingness” re-
garding which data should contribute to model training. The
models are then optimized to maximize utility, which consid-
ers the trade-off between recommendation performance and
respecting user preferences. The recommendation problem is
formulated as a multiplayer game, with each user acting as a
player and using a selection vector to indicate their willing-
ness to include specific interacted items in training. To effi-
ciently solve this game, an influence function-based model is
proposed to approximate recommendation performances for
different actions without re-optimizing the model. Further-
more, an enhanced model leveraging multiple anchor actions
for the influence function is introduced to improve perfor-
mance approximation accuracy. The convergence rate of the
algorithm is theoretically analyzed, and the advantages of in-
corporating multiple anchor actions are demonstrated. Exten-
sive experiments on both simulated and real-world datasets
validate the effectiveness of the proposed models in balanc-
ing recommendation quality and user willingness. To pro-
mote this research direction, we have released our project at
https://paitesanshi.github.io/IFRQE/.

Introduction
Recommender systems are critical components in real-world
applications, providing significant business value and user
convenience. Collaborative filtering (CF) has been a funda-
mental assumption in recommender systems, assuming that
users who behaved similarly in the past will continue to be-
have similarly in the future. To accurately estimate user sim-
ilarities, recommender systems traditionally collect exten-
sive user behavior data. However, in real-world scenarios,
users may not want all their data to be used for model train-
ing. As exampled in Figure 1, a male user may occasion-
ally click on items that do not reflect his true preferences,
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and a female user may purchase items for others that are
not indicative of her own preferences. In such cases, users
may prefer that these irrelevant items not be used for train-
ing the model. This motivates the need for a recommender
system that allows users to actively indicate their willingness
regarding which items should be leveraged for training.

To address this challenge, we propose a novel, user-
controllable recommendation paradigm. In this paradigm,
each user specifies a willingness vector, which indicates
their preference for excluding certain items from model
training. We formulate the problem as a multiplayer game,
where each player represents a user and their action is a se-
lection vector representing a subset of their interacted items.
The recommender model is then optimized based on the se-
lected items from different users, striking a balance between
recommendation performance and user preferences. How-
ever, solving this game requires repeated optimization of the
recommender model to compute rewards for different ac-
tions, which may not be feasible in practice.

Faced with the aforementioned challenge, we utilize the
concept of influence functions to approximate recommenda-
tion performance without re-optimizing the model. Specif-
ically, we start by setting an anchor selection vector to
train the recommender model. Then, for different actions,
we directly compute the recommendation performance us-
ing the influence function (Koh and Liang 2017) and the
previously obtained model trained with anchor selection
vector. Our method is referred to as influence function
based recommendation quality exploration (called IFRQE
for short). To achieve more accurate performance approxi-
mation, we extend this approach by employing multiple an-
chor selection vectors. In addition to these models, we pro-
vide a theoretical analysis of the convergence rate of our
learning algorithm and demonstrate the advantages of in-
creasing the number of anchor selection vectors. Extensive
experiments are conducted using both synthetic and real-
world datasets to validate the effectiveness of our models.

It is worth noting that there have been previous works on
federated recommendation (Yang et al. 2020), recommen-
dation unlearning (Chen et al. 2022a), and controllable rec-
ommendation. However, these studies differ fundamentally
from our approach as they neither allow users to actively
indicate data nor incorporate user willingness into the opti-
mization target. Furthermore, while (Chen et al. 2022b) pro-
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Figure 1: Motivating examples. In the upper case, the user
does not want to leverage the occasionally clicked items to
train the model. In the bottom case, the items purchased for
the other people are expected to be omitted by the model.

posed a model for balancing user privacy and recommenda-
tion performance, we improve upon it by introducing more
flexible user willingness and utilizing influence functions to
enhance optimization efficiency.

The main contributions of this paper are summarized
as follows: (1) We introduce a novel recommendation
paradigm where users can explicitly indicate their willing-
ness to leverage different items for model training. (2) To ad-
dress this problem, we formulate the recommendation task
as a multiplayer game and propose two influence function-
based models for efficient game solving. (3) We provide
theoretical analysis by deriving the convergence rate of our
learning algorithm and showcasing the superiority of multi-
ple anchor selection vectors. (4) Extensive experiments are
conducted on synthetic and real-world datasets to demon-
strate the effectiveness of our models.

Problem Formulation
Suppose we have a user set U and an item set V . Let Ou

be the set of items interacted by user u, and we separate it
into a training set Su, a validation set T u and a testing set
Du. In our problem, each user u can specify a willingness
vector βu = {βu

1 , β
u
2 , ..., β

u
|Su|}. Intuitively, for different

items, the users may have various willingness on leverag-
ing them to train the model. Thus, we allow the users to in-
dicate a continuous value to describe their willingness flex-
ibly, that is, βu

k ∈ [0, 1], ∀k ∈ [1, |Su|]. Suppose Su =
{su1 , su2 , ..., su|Su|}, then the larger βu

k is, the more the user
do not want suk to join into the model training process. Our
primary task involves selecting an appropriate subset from
S = Su|u ∈ U for training the recommender model, en-
suring both satisfactory recommendation performance and
adherence to user willingness. Increasing the number of se-
lected items can enhance user understanding and improve
recommendation performance. However, this approach may
violate user willingness, as items with larger βu

k values may
be included. On the other hand, selecting only a few items

to train the model may better satisfy user willingness but po-
tentially lead to reduced recommendation performance. The
key challenge lies in effectively balancing recommendation
performance and user willingness.

To solve the above task, we regard each user as a player,
and formulate the recommendation problem as a multiplayer
game. For each user u, the action is a binary selection vector
ou = {ou1 , ..., ou|Su|}, where ouk = 1 means suk is selected to
train the model, otherwise ouk = 0. The reward for user u is
designed as follows:

zu(o
u,o−u)=− Lf (T u, θ̂(ou,o−u))− λ

|Su|∑
k=1

ou
kβ

u
k , (1)

where o−u = {o1, ...,ou−1,ou+1, ...,oN} is the joint se-
lection vectors of all the user except u. f is a recom-
mender model. θ̂(ou,o−u) are the parameters of f learned
based on the training samples selected by {ou,o−u}.
−Lf (T u, θ̂(ou,o−u)) is the negative validation loss based
on θ̂(ou,o−u), which is leveraged to measure the recom-
mendation performance. The second term evaluates the vio-
lation of the user willingness. If the items that the user want
to omit (e.g., βu

k is large) are selected to train the model, then
oukβ

u
k is large, which lowers the reward. λ is a pre-defined

balancing parameter.
Instead of learning the specific selection vectors, we for-

mulate our problem in a more general manner, where we
assume that there is potential distribution (or called strat-
egy) on the selection vectors for each user. Let the strategy
of user u be αu = [αu

ou ] ∈ △(2|S
u|), which is a dis-

crete distribution, and αu
ou is the probability of leveraging

the items indicated by ou to train the model. For exam-
ple, suppose the training set is Su = {0, 1, 2}, then αu is
a distribution on {A1, A2, A3, A4, A5, A6, A7, A8}, where
A1 denotes {0, 0, 0}, A2 denotes {0, 0, 1}, and so on. Fur-
thermore, A5 denotes {0, 1, 1} and αu

A5
represents the prob-

ability of using items {1, 2} for model training.
We aim to learn the optimal joint strategy α∗ =

{α1∗,α2∗, ...,αN∗}, such that the corresponding expected
reward of each user u is the largest when the other user
strategies are fixed, that is:

zu(α
u∗,α−u∗) ≥ zu(α

u,α−u∗), ∀u∈ [N ],αu∈△(2|S
u|),
(2)

where [N ] = [1, 2, ..., N ]. α−u is the joint strategy of all the
users except u. zu(αu,α−u) is the expected reward for user
u under {αu,α−u}, that is,

zu(α
u,α−u) = Eou∼αu, o−u∼α−u [zu(o

u,o−u)]. (3)

After obtaining the optimal strategy α∗, we firstly sample
the selection vectors o = {ou,o−u} from α∗. Then, the
training samples are generated by filtering S with o, which
are leveraged to optimize the final recommender model.
Remark. (i) In the above formulation, we do not impose any
assumption on f and Lf , which makes our framework ap-
plicable for any recommender model and loss function. (ii)
Although the action space in objective (2) may appear large,
potentially impacting training efficiency, there are strategies
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to mitigate this issue. In our experiments, we initialize α
with an informative prior and focus the search for the opti-
mal solution around this prior to accelerate the training pro-
cess. Additionally, in practice, one can assign the same value
ouk to items in the same category or limit user indications to
the most important or recent parts of their interactions.

The IFRQE Model
In this section, we firstly introduce a basic model for solv-
ing the above game based on influence function. Then, we
design an improved model to enhance the accuracy for ap-
proximating the recommendation performance. At last, we
theoretically analyze the learning algorithm of our model.
In the following, we describe our models more in detail.

The Basic Model

To solve the game defined based on (1) and (2), one has to
derive the validation loss Lf (T u, θ̂(o)) for different o’s. A
straightforward method is firstly training f for each o to ob-
tain the corresponding parameter θ̂(o), and then the loss is
computed based on the validation set T u and θ̂(o). How-
ever, such method is infeasible, since repeatedly training the
recommender model is quite time-consuming. Fortunately,
the previous studies on influence function (Koh and Liang
2017) may shed some lights on approximating the validation
loss without retraining the model. In specific, we first define
an anchor selection vector õ = {õ1, ..., õN}, and then train
the recommender model f based on õ to obtain the param-
eters θ̃. At last, for a selection vector o, we approximate
Lf (T u, θ̂(o)) based on the following theory:

Theorem 1. Given the model parameters θ, we define the
validation loss by Lf (T u,θ) =

∑
y∈T u lf (y,θ), where

lf (y,θ) is the loss of sample y based on θ. Suppose | ▽2

lf (s
v
k, θ̃)| ≤ B and

∑
v

∑|Sv|
k=1(õ

v
k − ovk)B is a small value,

then the validation loss for o is:

Lf (T u, θ̂(o))

≈Lf (T u, θ̃)− 1

Z

∑
y∈T u

∑
v∈U

|Sv|∑
k=1

ovk▽lf (y, θ̃)H
−1

θ̃
▽lf (s

v
k, θ̃)

(4)
where θ̃ = argminθ

1
Z

∑
v∈U

∑|Sv|
k=1 õ

v
klf (s

v
k,θ) are the

parameters learned based on the anchor selection vector. Z
is the total number of training samples. ▽lf (·) is the gradi-
ent of a sample loss. Hθ̃ = 1

Z

∑
v

∑|Sv|
k=1 õ

v
k ▽2 lf (s

v
k, θ̃) is

the Hessian matrix of the training loss.

The proof of this theorem is presented in the
Appendix1. Based on this theory, we can com-
pute Lf (T u, θ̂(o)) without retraining the model via
θ̂(o) = argminθ

1
Z

∑
v

∑|Sv|
k=1 o

t,v
k lf (s

v
k,θ). By bring-

1Refer to Appendix: Proof of Theorem 1. Our Appendix is
available at https://github.com/Paitesanshi/IFRQE.

ing (4) into (1), zu(ou,o−u) can be written as:

zu(o
u,o−u) = −Lf (T u, θ̃)+

1

Z

∑
y∈T u

∑
v∈U

|Sv|∑
k=1

ovk▽lf (y, θ̃)H
−1

θ̃
▽lf (s

v
k, θ̃)−λ

|Su|∑
k=1

oukβ
u
k .

(5)
Accordingly, the expected reward zu(α

u,α−u) is:

Theorem 2. Let gv
y = [g(sv1, y), ..., g(s

v
|Sv|, y)], where

g(svk, y) = ▽θlf (y, θ̃)
TH−1

θ̃
▽θ lf (s

v
k, θ̃), then:

zu(α
u,α−u) =

∑
ou

αu
ou [(

∑
y∈T u

gu
y

N
− λβu)Tou] + C,

(6)
where C = −L(T u, θ̃) +

∑
v ̸=u Eo[(o

v)T
∑

y∈T u

gv
y

Z ].

The deriving process of the above theorem is presented
in the Appendix. To solve objective (2), we need to find an
optimal αu for the following optimization problem:

max
αu

∑
ou

αu
ouA(ou), s.t.

∑
ou

αu
ou = 1, αu

ou ≥ 0 (7)

where we denote (
∑

y∈T u

gu
y

N − λβu)Tou by A(ou).

The Improved Model
The key of the above method lies in the accurate approx-
imation of Lf (T u, θ̂(o)). However, if the current selection
vector o is too much different from the anchor vector õ, then
the assumption

∑
v

∑|Sv|
k=1(õ

v
k−ovk)B is a small value in the-

ory 1 may not hold, which can lead to larger approximation
errors. To alleviate this problem, we propose to set multiple
anchor vectors {õ1, õ2, ...õT }, where õt = {õt,1, ..., õt,N}
is the tth anchor vector and õt,vk is the kth element of õt,v .
For approximating Lf (T u, θ̂(o)), we select the anchor vec-
tor nearest to o, where we have the following theory.

Theorem 3. For a candidate selection vector o, sup-
pose t = argmini∈[1,T ]

∑N
v=1 D(õi,v,ov), where D is

the hamming distance between two vectors, and θ̃t =

argminθ
1
Z

∑
v

∑|Sv|
k=1 õ

t,v
k lf (s

v
k,θ), then:

Lf (T u, θ̂(o))

≈Lf (T u,θ̃t)− 1

Z

∑
y∈T u

∑
v∈U

|Sv|∑
k=1

ovk▽lf (y, θ̃
t)H−1

θ̃t
▽lf (s

v
k, θ̃

t),

(8)
where Hθ̃t =

1
Z

∑
v

∑|Sv|
k=1 õ

t,v
k ▽2 lf (s

v
k, θ̃

t).

Based on (8), the expected reward can be derived based
on the following theory.

Theorem 4. Let At = {o|
∑N

v=1 D(õt,v,ov) ≤∑N
v=1 D(õt′,v,ov), ∀t′ ̸= t}, gt,v

y = [g(svk, y, t)]
|Sv|
k=1, where

g(svk, y, t) = ▽lf (y, θ̃
t)H−1

θ̃t
▽ lf (s

v
k, θ̃

t) and gt,v =∑
y∈T u gt,v

y . We define zu(o
u,o−u, t) = −Lf (T u, θ̃t) +
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Algorithm 1: Learning algorithm for αu
m

1 Indicate the learning rate γ.
2 Let α−u = α−u

m−1 and αu
1 = αu

m−1.
3 for l in [1, L] do
4 Sample ou,o−u according to αu

l ,α
−u.

5 Compute the gradient ĝou based on (11).
6 Let [ĝ]s = 1(s = ou)ĝou .
7 Update αu

l+1 = Π△[αu
l + γĝ], where Π△ means

projecting a vector into a simplex.
8 end
9 Return αu = 1

L

∑L
l=1 α

u
l .

1
Z

∑
y∈T u

∑
v∈U

∑|Sv|
k=1 o

v
k ▽ lf (y, θ̃

t)H−1

θ̃t
▽ lf (s

v
k, θ̃

t)−
λ
∑|Su|

k=1 o
u
kβ

u
k , Then, we have:

zu(α
u,α−u) = Eo[

T∑
t=1

1(o ∈ At)zu(o
u,o−u, t)]

=
T∑

t=1

∑
o

1(o ∈ At)α
u
ouα−u

o−u{−L(T u, θ̃t)+
1

Z

∑
v ̸=u

(ov)Tgt,v

+
1

Z
(ou)Tgt,u − λ(ou)Tβu},

(9)
where 1(c) = 1 if the condition c is true, otherwise 1(c) = 0.
And α−u

o−u = α1
o1 ...α

(u−1)
ou−1 α

(u+1)
ou+1 ...αN

oN .

The proof of the above theorem is presented in the Ap-
pendix.

Finally, we derive αu by solving the following problem:

max
αu

T∑
t=1

∑
o

1(o ∈ At)α
u
ouα−u

o−uB(ou,o−u, t),

s.t.
∑
ou

αu(ou) = 1, αu(ou) > 0

(10)

where the notation B(ou,o−u, t) = −L(T u, θ̃t) +
1
Z

∑
v ̸=u(o

v)Tgt,v + 1
Z (ou)Tgt,u − λ(ou)Tβu.

Since it is hard to efficiently obtain a closed-form solu-
tion for αu, we learn it based on the projected gradient de-
scent method (Calamai and Moré 1987). More specifically,
the gradient of zu(αu,α−u) w.r.t αu

ou is:

∂zu(α
u,α−u)

∂αu
ou

def
= gou

= Eo−u [
T∑

t=1

B(ou,o−u, t)1(o−u ∈ St(o
u))].

(11)

where St(o
u) = {o−u|[ou,o−u] ∈ At}. Let g = [gou ]ou

be the gradient of zu(αu,α−u) w.r.t αu, which is a 2|S
u| di-

mensional vector. ĝou is the stochastic gradient by sampling
o−u from α−u. Then the complete training process can be
seen in Algorithm 2.

Algorithm 2: Learning Algorithm with Multiple θt

1 Initialize {α1,α2, ...,αN} and let
αu

0 = αu (u ∈ [1, N ]).
2 Indicate the max iteration number M and threshold κ.
3 Indicate the anchor vectors {õ1, õ2, ...õT }.
4 Obtain the model parameters θ̃t for each õt.
5 for m in [1, M] do
6 for u in [1, N] do
7 Let α−u

m−1 =

{α1
m−1, ...,α

u−1
m−1,α

u+1
m−1, ...,α

N
m−1}.

8 Obtain αu
m by inputting α−u

m−1 and αu
m−1

into Algorithm 1.
9 end

10 if |αu
m −αu

m−1| < κ , ∀u ∈ [1, N ] then
11 Break.
12 end
13 end
14 Output αu∗ = αu

m (u ∈ [1, N ]).

Theoretical Analysis
In this section, we provide theoretical analysis on the con-
vergence of our algorithm and also present the advantage of
multiple anchor selection vectors comparing with the single
one in terms of the validation loss approximation. For the
convergence analysis, we have the following theory:

Theorem 5. Based on the definition of g, we have
zu(α

u,α−u) = (αu)Tg. Suppose ĝ is an unbiased esti-
mation of g, and ||ĝ(αu)||22 ≤ G, then the solution obtained
from Algorithm 1 is larger than the optimal solution minus
a bounded value, that is:

E[zu(α̂
u,α−u)] ≥ max

αu
E[zu(α

u,α−u)]− (
1

Lγ
+ γ2G2),

(12)
where α̂u is obtained based on Algorithm 1.

We prove this theory in Appendix. It provides foundations
for Algorithm 1, which demonstrates that the learned strate-
gies are nearly optimal. For the advantage of using multiple
anchor selection vectors, we have the following theory:

Theorem 6. For two sets of anchor selection vectors P =

{õ1
P , õ

2
P , ...õ

TP

P } and Q = {õ1
Q, õ

2
Q, ...õ

TQ

Q }, suppose

AP
t ={o|

∑N
v=1D(õt,v,ov)≤

∑N
v=1 D(õt′,v,ov), ∀õt′∈P },

AQ
t ={o|

∑N
v=1D(õt,v,ov)≤

∑N
v=1 D(õt′,v,ov), ∀õt′∈Q}.

Based on theory 1, we consider the following upper bounds
of the approximation error for the validation loss:

err(P ) =

TP∑
t=1

∑
o∈AP

t

[
∑
v

D(õt,v,ov)]B,

err(Q) =

TQ∑
t=1

∑
o∈AQ

t

[
∑
v

D(õt,v,ov)]B.

(13)

We have if P ⊆ Q, then err(P ) ≥ err(Q).
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The proof of this theorem is provided in the Appendix,
indicating that including the single anchor vector in the mul-
tiple anchor vectors reduces the upper bound of the approxi-
mation error for the validation loss. However, it is important
to note that introducing more anchor vectors inevitably re-
quires additional retraining of the recommender model, con-
sequently resulting in a decrease in efficiency. Nevertheless,
the improved model allows for a balance between approxi-
mation accuracy and model efficiency.

Related Work
Recommender system is a rapidly developing research field,
with a large amount of models developed each year (Ricci,
Rokach, and Shapira 2015; Wang et al. 2023). Early rec-
ommender models primarily relied on matrix factorization
techniques (Koren, Bell, and Volinsky 2009). However, with
the advancements in deep learning, numerous deep recom-
mender models have emerged. These models encompass
various approaches, such as sequential (Kang and McAuley
2018; Chen et al. 2018; Wang et al. 2021) and graph-based
algorithms (Wang et al. 2019; He et al. 2020). In an ef-
fort to protect user privacy, federated recommender models
have been proposed (Lin et al. 2020; Wu et al. 2021; Yang
et al. 2020; Chen et al. 2020). These models aim to shift
the training process from the server to the clients to prevent
access to raw user behaviors and ensure privacy. While our
model can also contribute to privacy protection, it does not
assume an adversarial server. Instead, our focus is on pre-
venting the leakage of privacy information through recom-
mendation results. Another relevant area is recommendation
unlearning, which seeks to eliminate the influences of user-
item interactions from trained recommender models (Chen
et al. 2022a; Li et al. 2022). However, these models do not
account for user active disclosure behaviors or incorporate
user willingness into optimization targets. Controllable rec-
ommendation has also received attention in recent studies
(Wang et al. 2022; Parra and Brusilovsky 2015). However,
these approaches primarily aim to break filter bubbles rather
than aligning with user-indicated willingness. Game theory-
based recommender models have also been explored (Ben-
Porat and Tennenholtz 2018; Xu et al. 2018; Halkidi and
Koutsopoulos 2011). Although our work shares some simi-
larities with these models, we distinguish ourselves by con-
structing the game from the user’s perspective, not limiting
our framework to rating behaviors, and leveraging influence
functions to enhance recommendation performance estima-
tion, a novel approach in this context.

Experiments
In this section, we conduct comprehensive experiments to
demonstrate the effectiveness of our models, where we fo-
cus on the following research questions: RQ1: Whether
our framework can achieve better trade-off between the
recommendation performance and user willingness? RQ2:
Whether the validation loss can be properly approximated
by our framework? RQ3: What is the influence of the num-
ber of anchor selection vectors? RQ4: How does the dataset
sparsity influence the performance of our framework? RQ5:

Whether our framework is effective for different weighting
parameter λ’s? RQ6: Whether our framework is effective for
the user willingness with different characters? RQ7: How
does our framework perform if the recommender model is
trained from scratch without using the influence function? In
the following, we first introduce the experiment setup, fol-
lowed by a presentation and analysis of the empirical results
to address the above questions.

Experiment Setup
Datasets. We base our experiments on both synthetic and
real-world datasets. For the synthetic dataset, we generated
it based on a well known recommendation simulator called
RecSim2. In specific, we generate 1000 users and 1000
items. For each user or item, we simulate its profiles by four
random features, which is denoted by eu ∈ R4 or ev ∈ R4.
The dataset is generated according to the observational pa-
rameter τuv = 1(σ(eTuev) ≥ η), where 1(·) is the indicator
function and η is a threshold for setting the hardness of gen-
erating the interaction. If τuv = 1, then the user-item pair
(u, v) is observed in the dataset. For the willingness of user
u on item v, we simulate it by: βu

v = σ(sug(eu, ev) + bu),
where su is sampled from a uniform distribution in the
range of [a1, a2], controlling the sensitivity of the user will-
ingness. Smaller su means that the user has similar will-
ingness on leveraging different items to train the model,
while larger su means that the user willingness on differ-
ent items are more diverse. bu is sampled from a Gaus-
sian distribution N (0, a3), indicating the average level of
the user willingness. g is a one-layer fully connected neural
network with randomly assigned parameters. In the experi-
ments, the threshold η and (a1, a2, a3) are initially set as 0.5
and (0.5, 1, 1), respectively. Then, we tune them to study
the influence of different dataset sparsities and user willing-
ness characters on our framework performance. For the real-
world experiments, we evaluate different models based on
three publicly available datasets from different domains, in-
cluding Diginetica3, Steam4 and Amazon Video5. Diginet-
ica and Amazon Video are e-commerce datasets, where we
are provided with the user-item purchasing records. Steam
is a game dataset, which includes the interactions between
the users and games. The statistics of the above datasets are
concluded in Appendix.

Baselines. To demonstrate the generality of our idea, we
implement the base model f with the following recom-
mender algorithms6: MF (Koren, Bell, and Volinsky 2009)
is the traditional matrix factorization method. NeuMF (He
et al. 2017) is a well known neural collaborative filtering
model. LightGCN (He et al. 2020) is a graph-based rec-
ommender model. We compare our framework to various
methods. Firstly, Random uses user behaviors randomly in
training (i.e., selection vector o is randomly sampled). Sec-

2https://github.com/google-research/recsim
3https://darel13712.github.io/rs datasets/Datasets/diginetica/
4https://steam.internet.byu.edu/
5https://jmcauley.ucsd.edu/data/amazon/
6Experiments with more other base models can be found in the

Appendix.
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Dataset Simulation Diginetica Steam Amazon Video
Metric F1 ↑ wv↓ reward↑ F1 ↑ wv↓ reward↑ F1 ↑ wv↓ reward↑ F1 ↑ wv↓ reward↑

MF 1.75(.022) 2.12(.007) -2.25(.032) 4.72(.044) 2.01(.053) -2.65(.072) 10.4(.043) 2.62(.014) -2.99(.093) 1.70(.012) 2.36(.021) -2.43(.022)

w/ Random 1.73(.031) 2.01(.006) -2.13(.014) 4.18(.014) 1.96(.013) -2.04(.006) 9.40(.009) 2.61(.017) -2.82(.015) 1.53(.011) 2.24(.022) -2.30(.023)

w/ Threshold 1.70(.036) 2.01(.032) -2.20(.021) 4.70(.012) 1.97(.011) -2.06(.040) 9.25(.048) 2.35(.023) -2.57(.017) 1.50(.026) 2.12(.027) -2.20(.021)
w/ Proactive 1.23(.025) 1.56(.013) -2.25(.007) 2.21(.018) 1.30(.024) -1.99(.016) 9.93(.019) 2.08(.022) -2.43(.025) 1.55(.035) 1.94(.026) -2.07(.005)
w/ IFRQE 1.50(.015) 1.97(.003) -2.09(.017) 5.23(.008) 2.01(.014) -2.18(.006) 10.4(.012) 2.14(.012) -2.43(.015) 1.57(.015) 1.70(.016) -2.10(.005)
w/ IFRQE++ 1.63(.007) 1.82(.003) -1.92(.012) 4.02(.011) 1.79(.019) -1.92(.022) 9.83(.017) 2.13(.032) -2.42(.014) 1.72(.012) 1.87(.032) -1.98(.056)

NeuMF 0.87(.017) 2.13(.013) -2.32(.011) 4.22(.013) 2.01(.015) -2.11(.003) 10.2(.007) 2.62(.012) -2.76(.007) 1.65(.014) 2.36(.013) -2.47(.010)

w/ Random 0.89(.009) 2.02(.005) -2.19(.011) 2.38(.018) 1.91(.011) -2.11(.016) 7.73(.005) 2.47(.019) -2.59(.011) 1.80(.014) 2.31(.006) -2.41(.010)

w/ Threshold 1.50(.032) 2.01(.048) -2.18(.031) 4.01(.012) 1.97(.044) -2.13(.006) 7.50(.019) 2.35(.020) -2.86(.010) 1.55(.002) 2.12(.018) -2.21(.017)
w/ Proactive 1.83(.005) 2.01(.023) -2.18(.017) 1.30(.008) 1.69(.011) -2.14(.012) 9.55(.025) 2.22(.032) -2.42(.005) 1.43(.015) 1.96(.006) -2.41(.015)
w/ IFRQE 1.40(.014) 1.91(.013) -2.48(.013) 2.92(.137) 2.01(.017) -2.17(.019) 8.17(.033) 2.16(.019) -2.45(.027) 1.83(.015) 1.99(.014) -2.24(.012)
w/ IFRQE++ 0.70(.015) 1.80(.003) -2.11(.011) 3.00(.017) 1.91(.013) -2.08(.023) 8.87(.021) 2.21(.014) -2.37(.027) 1.22(.031) 2.00(.014) -2.17(.011)

LightGCN 0.90(.005) 2.13(.008) -2.82(.012) 7.50(.009) 2.01(.012) -2.71(.009) 10.1(.010) 2.62(.009) -3.13(.014) 2.15(.021) 2.36(.008) -3.05(.007)

w/ Random 0.82(.013) 2.02(.013) -2.71(.022) 7.48(.011) 1.95(.005) -2.64(.007) 10.0(.027) 2.49(.026) -3.07(.019) 1.75(.003) 2.24(.009) -2.93(.015)

w/ Threshold 0.96(.038) 2.01(.008) -2.70(.003) 7.13(.017) 1.97(.040) -2.60(.011) 9.40(.048) 2.35(.027) -2.82(.046) 1.53(.033) 2.12(.022) -2.30(.048)
w/ Proactive 1.01(.013) 1.78(.011) -2.48(.017) 5.51(.038) 1.42(.007) -2.11(.018) 10.3(.021) 2.12(.022) -2.81(.015) 1.28(.013) 1.95(.016) -2.64(.018)
w/ IFRQE 0.97(.008) 2.12(.010) -2.82(.014) 4.88(.019) 1.47(.011) -2.16(.013) 9.02(.016) 2.49(.025) -2.82(.008) 1.90(.007) 1.75(.018) -2.13(.013)
w/ IFRQE++ 0.75(.022) 1.75(.008) -2.44(.016) 5.26(.012) 1.32(.014) -2.01(.009) 8.90(.018) 2.48(.018) -2.80(.005) 1.62(.013) 1.75(.009) -2.03(.023)

Table 1: Overall comparison between different models. We use bold fonts to label the best performance for each dataset,
evaluation metric and base model. “()” indicates the standard error. The results of F1 are percentage values with “%” omitted.
For the metrics, ↑ means the larger the better, while ↓ means the lower the better. The performance improvements of our model
against the baselines are significant under paired t-test.

ondly, Threshold sets oku = 0 if βk
u > 0.5. We also compare

with Proactive(Chen et al. 2022b), a model designed to con-
sider both recommendation accuracy and user privacy. For
the sake of fairness, we use the same parameter λ to bal-
ance these two aspects in objective. Our basic and improved
methods are named IFRQE and IFRQE++, respectively.

Implementation Details. For each user, we use 20% and
10% of interactions for testing and validation, respectively,
with the rest for training. All models employ binary cross
entropy as the loss function. Recommendation performance
is evaluated using F1 (Chicco and Jurman 2020) with five
items recommended for comparison to the ground truth. To
assess adherence to user willingness, we calculate overall
willingness violation, wv = 1

|U|
∑

u∈U
∑|Su|

k=1 o
u
kβ

u
k , lower

wv indicating higher satisfaction. Model performance in
balancing recommendation quality and user willingness is
compared via reward (eq. 1). Our framework and base-
lines are optimized for the same reward, testing different
λ’s. Anchor selection vectors in IFRQE and IFRQE++ are
randomly selected7. Model hyperparameters are set via grid
search. For instance, the number of anchor selection vectors
is searched in [1, 2, ..., 10], learning rate and batch size in
[0.0001, 0.001, 0.005, 0.01] and [1024, 2048, 4096], respec-
tively. Anchor selection vectors are binomially distributed,
with a mean of 0.9. For real-world datasets, we simulate
user willingness with random assignments. To control for
randomness, we repeat experiments ten times, reporting av-
erage and standard error. More implementation details8 and

7IFRQE++’s anchor selection vectors include those of IFRQE
8MindSpore implementation at https://github.com/mindspore-

lab/models/tree/master/research/huawei-noah/IFRQE.

complete experiment results can be found in the Appendix.

Overall Comparison
The overall comparison results are presented in Table 1.
From the user willingness perspective, our model consis-
tently outperforms the base model and heuristic methods,
indicating a finer consideration of user preferences. This im-
provement is expected, as the base model utilizes all avail-
able items for training, while the heuristic methods adopt a
coarser approach to user willingness. In terms of recommen-
dation performance, our models exhibit only a moderate de-
crease compared to the base model, with an average drop
of approximately 8.02%. Notably, in certain cases, such as
with the Diginetica and Amazon Video datasets using MF as
the base model, our approach even demonstrates improved
performance. This observation suggests that the removal of
items with higher βu

k values, which may not be essential for
predicting items in the testing set, leads to higher rewards
by aligning with user willingness and enhances performance
by focusing on more informative training samples. From the
reward perspective, our framework consistently achieves the
best performances across most datasets and base models, il-
lustrating the effectiveness and generalizability of our ap-
proach in striking a balance between recommendation qual-
ity and user willingness. On average, our IFRQE++ method
improves the base model by approximately 12.4%, 11.1%,
14.6%, and 21.3% on the simulation, Diginetica, Steam, and
Amazon Video datasets, respectively. The superior perfor-
mance of our framework compared to the random method
underscores the non-trivial nature of the problem and the
limitations of random selection. When compared to Proac-
tive, our framework demonstrates comparable performance
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Figure 3: Model comparisons on the datasets with differently
characterized user willingness.

improvements, while significantly reducing the training time
required. Specifically, our framework achieves similar re-
sults to Proactive in a fraction of the time, suggesting its
practicality and feasibility in real-world scenarios. Further-
more, in the comparison between IFRQE and IFRQE++,
the latter consistently outperforms the former in a variety
of cases. We hypothesize that the incorporation of multiple
anchor vectors enables a more accurate approximation of the
validation loss, facilitating the learning of optimal strategies
and resulting in better rewards.

Approximation of the Validation Loss
The key of our framework for speeding up the training ef-
ficiency lies in the approximation of the validation loss. In
this section, we study how large is approximation error in-
duced by our framework. We present the performance of MF
on datasets Diginetica and Amazon Video, with the com-
plete results provided in the Appendix. We firstly generate
ten selection vectors and train the base model to obtain the
parameters and the corresponding real validation loss. Then,
we approximate the validation loss by equation (4) and (8),
where we use two anchor vectors in IFRQE++. At last, the
(approximated) validation losses are reported by averaging
over all the selection vectors, and we compute the approx-
imation error by |real validation loss−approximated validation loss|

real validation loss . The
results are presented in Figure 2(a), where we can see: the
approximation accuracy of IFRQE and IFRQE++ are satis-
fied. Especially, on Amazon Video, the approximation er-
ror of IFRQE++ is only 1.2%. By leveraging more anchor
vectors, IFRQE++ is more accurate than IFRQE on both
datasets. In specific, the approximation error is reduced from
19.2% to 15.2% and 9.4% to 1.2% on the datasets of Digi-
netica and Amazon Video, respectively.

Influence of the Number of Anchor Vectors
In this section, we investigate the influence of parameter
T on the final performance by tuning its value within the

range of [1, 10]. Notably, T = 1 corresponds to the method
IFRQE. Following the experimental settings described ear-
lier, we present the reward and time cost for each T in
Figure 2(b), with comprehensive results provided in the
Appendix. From the results, we observe that the reward
achieved by our framework is sub-optimal when T = 1,
which aligns with the findings presented in Table 1. By in-
creasing the number of anchor vectors, the reward improves.
In most cases, as T increases, the reward initially rises be-
fore reaching an optimal point where it stabilizes. We spec-
ulate that initially, additional anchor vectors contribute to
more accurate validation approximation, leading to better re-
wards. However, once a sufficient number of anchor vectors
are included, further increasing T may not provide signifi-
cant improvements as the validation approximation primar-
ily relies on key anchor vectors. Regarding efficiency, as T
increases, our model incurs a longer time cost. This outcome
is expected since larger values of T necessitate more rounds
of base recommender model retraining. Notably, these ob-
servations indicate that IFRQE++ offers an opportunity to
balance the effectiveness and efficiency of the framework.

Influence of Different User Willingness
Here we study whether our model is always effective on dif-
ferently characterized user willingness. We base the exper-
iments on the simulation datasets, where the willingness of
a user is controlled by the sensitive parameter su and aver-
age willingness level bu. Considering that the distributions
of su and bu are determined by a1, a2 and a3, we build four
datasets by specifying (a1, a2, a3) with A = (0.6, 2, 1.2),
B = (0.4, 2, 0.8) and C = (0.6, 1, 1.5) and D = (0.5, 1, 1),
respectively, to simulate different user willingness charac-
ters. We present the comparisons of different models on
these datasets in Figure 3, where we can see: the random
method is less competitive, and sometimes, it is even worse
than the base model (e.g., Datasets A and B with LightGCN
as the base model). For different datasets and base models,
IFRQE and IFRQE++ can usually obtain the second best and
best performances. This result agrees with the observations
in Table 1 and manifests that our methods are generally ef-
fective for different user willingness characters.

Conclusion and Future Work
This paper improved traditional system-centered recommen-
dation paradigm by allowing users to participate into the
model optimization process via specifying their willingness.
We built two models based on influence function to effi-
ciently solve the above problem, and also provided theoret-
ical guarantees. Extensive experiments were conducted to
demonstrate the effectiveness of our models. However, there
are some limitations can be studied in the future. We do not
consider the dynamic nature of the recommender system,
therefore, an interesting direction is to study the temporal
user willingness, for example, under online settings. Addi-
tionally, we assume that the user overall utility is a linear
combination between the recommendation quality and user
willingness. One can extend it to the non-linear case, where
more efforts are needed to solve the multiplayer game.
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