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Abstract

Robust autonomous driving requires agents to accurately
identify unexpected areas (anomalies) in urban scenes. To
this end, some critical issues remain open: how to design
advisable metric to measure anomalies, and how to prop-
erly generate training samples of anomaly data? Classical ef-
fort in anomaly detection usually resorts to pixel-wise un-
certainty or sample synthesis, which ignores the contextual
information and sometimes requires auxiliary data with fine-
grained annotations. On the contrary, in this paper, we ex-
ploit the strong context-dependent nature of the segmenta-
tion task and design an energy-guided self-supervised frame-
work for anomaly segmentation, which optimizes an anomaly
head by maximizing the likelihood of self-generated anomaly
pixels. For this purpose, we design two estimators to model
anomaly likelihood, one is a task-agnostic binary estima-
tor and the other depicts the likelihood as residual of task-
oriented joint energy. Based on the proposed estimators, we
devise an adaptive self-supervised training framework, which
exploits the contextual reliance and estimated likelihood to
refine mask annotations in anomaly areas. We conduct ex-
tensive experiments on challenging Fishyscapes and Road
Anomaly benchmarks, demonstrating that without any aux-
iliary data or synthetic models, our method can still achieve
comparable performance to supervised competitors. Code is
available at https://github.com/yuanpengtu/SLEEG.

Introduction
Recent studies in semantic segmentation have achieved sig-
nificant advances on close-set benchmarks of urban scenar-
ios (Cordts et al. 2016). However, when it comes to deploy-
ment in the wild, it is necessary to enable segmentation mod-
els with the ability of anomaly detection.

Essentially, the key of segmentation with anomalies lies
in two aspects: Firstly, the anomaly score should be de-
signed to differentiate anomaly and normal pixels. Second,
extra anomaly data is critical to identify which pixel be-
longs to anomaly areas. To address these issues, a fresh wave
of approaches are proposed. To measure the likelihood of
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anomalies, some methods take insight from uncertainty es-
timation and devise a series of proxy tasks (Hendrycks and
Gimpel 2017; Mukhoti and Gal 2018; Malinin and Gales
2018; Grcić, Bevandić, and Šegvić 2022; Tian et al. 2021).
However, they usually design coupled objectives and re-
quire retraining of models, which might degrade their per-
formance (Bogdoll, Nitsche, and Zöllner 2022). On the other
hand, to generate training samples with anomaly pixels,
outlier exposure is widely adopted (Bevandić et al. 2019;
Grcić, Bevandić, and Šegvić 2022; Chan, Rottmann, and
Gottschalk 2021) by training with auxiliary data, while these
methods increase the cost due to additional labeling require-
ments, the adopted auxiliary data is also not guaranteed to be
consistent with realistic scenes. There are also approaches
using an extra reconstruction model and taking the recon-
struction error as anomaly parts (Xia et al. 2020; Di Biase
et al. 2021a; Vojir et al. 2021), which affects the efficiency
and their accuracy highly relies on reconstruction quality.

In summary, most previous efforts are designed to cap-
ture anomaly samples in classification. Nevertheless, seman-
tic segmentation differs since the its results inherently rely
on spatial context. As shown in Fig. 1, given a pretrained
model (Chen et al. 2018), the same patch yield different se-
mantic uncertainty (measured as entropy of categorical dis-
tribution) when it is placed under a different context, even
though the patch is filled with normal pixels. The empiri-
cal observation inspires that we can automatically synthe-
size anomalies from normal pixels via a self-supervised
copy-and-paste manner guided by spatial context. Such
self-supervised paradigm can (1) avoid the cost of explicitly
annotating anomalies and (2) ensure the quality of generated
anomalies by referring to their context. Therefore, we pro-
pose a new framework termed as Self-supervised Likelihood
Estimation with Energy Guidance (SLEEG), which extends
off-the-shelf segmentation models to anomaly detectors with
the guidance of energy model (LeCun et al. 2006) while
avoiding the overhead of labeling anomaly data. The SLEEG
framework is designed in a self-teaching paradigm, to prop-
erly depict the anomaly area, we propose two anomaly esti-
mators based on the joint distribution of content and anoma-
lies. The first is formulated as a simple task-agnostic clas-
sifier to differentiate anomaly and normal pixels. The other
is a task-oriented estimator and can be regarded as residual
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Figure 1: Illustration of contextual reliance in anomaly seg-
mentation tasks. The left column shows an image pasted
with a random patch at different position. The right col-
umn illustrates the corresponding entropy distribution from
segmentation results of DeepLab segmentation model (Chen
et al. 2018). Different pasted positions result in various un-
certainty distribution within the patch.

estimation of classic joint-energy model (JEM) (Grathwohl
et al. 2020), with proper design of loss function, this estima-
tor can be optimized through a dynamic energy-guided mar-
gin. Next, based on these estimators, we design an adaptive
refinement mechanism to provide dynamic anomaly samples
under different contexts, which is guided by anomaly likeli-
hood and contextual information of each pixel.

We implemented SLEEG with different models and eval-
uate on benchmarks of Fishyscapes (Blum et al. 2019) and
Road Anomaly (Lis et al. 2019a). Experimental results show
that SLEEG can bring consistent improvement over dif-
ferent baselines by training with only normal data from
Cityscapes (Cordts et al. 2016). Further, compared with
other state-of-the-art methods, SLEEG achieves competi-
tive results without training on labeled anomaly data or
updating parameters of segmentation networks. In sum-
mary, the contributions can be listed as:

• We propose SLEEG, a self-supervised framework for
anomaly segmentation in a copy-and-paste manner. In
the framework, we design two decoupled likelihood esti-
mators from an energy model, a task-agnostic estimator
for discriminative learning and a task-oriented estimator
for residual learning of joint-energy.

• Based on the proposed energy-guided estimators, we pro-
pose a dynamic mask refinement mechanism by applying
likelihood-guided pixel separation to help extract more
informative anomaly areas for training.

• Without training on labeled auxiliary data or updating
segmentation parameters, our SLEEG achieves competi-
tive performance on both Fishyscapes (Blum et al. 2019)
and Road Anomaly (Lis et al. 2019a) benchmarks.

Related Work
Anomaly Segmentation
Some of previous effort extends technique from anomaly
detection (e.g. uncertainty estimation and outlier exposure)
in classification into segmentation tasks to help identify
anomaly pixels, recently there also appears new paradigm
which exploits reconstruction error to highlight anomalies.
Uncertainty Estimation. Similar to image-level anomaly
detection approaches, early uncertainty based meth-
ods (Hendrycks and Gimpel 2016; Lee et al. 2017) focused
on measuring with maximum softmax probability since the
model tends to output uniform prediction for unseen seman-
tics. However, they are prone to misclassify pixels of tail
classes as anomalies, since the same threshold is set for all
pixels regardless of the class-wise discrepancy. To address
this issue, Jung et al. (Jung et al. 2021) proposed standard-
ized max logit (SML), which normalized the distribution of
max logit from seen classes. Recent methods try to enhance
ability of distinguishing hard samples from anomalous ones
by re-training the classifiers with anomaly objectives. How-
ever, they generally suffer from accuracy decrease on seen
categories (Bogdoll, Nitsche, and Zöllner 2022).
Outlier Exposure. Recent methods (Bevandić et al. 2018;
Chan, Rottmann, and Gottschalk 2021; Di Biase et al.
2021b; Bevandić et al. 2019; Hendrycks, Mazeika, and
Dietterich 2018) are intuitive, which utilize labeled sam-
ples from non-overlapped classes of an external dataset as
anomalies to help models differentiate unexpected pixels
against normal ones. Hendrycks et al. (Hendrycks, Mazeika,
and Dietterich 2018) forced the model to predict uniform
distribution of anomaly detection. (Chan, Rottmann, and
Gottschalk 2021) and (Di Biase et al. 2021b) leveraged in-
stance masks from COCO (Lin et al. 2014) and void cat-
egory from Cityscapes (Cordts et al. 2016) to make mod-
els generalize to unexpected objects. However, they usually
require re-training of the model and suffer from potential
degradation in accuracy of in-distribution recognition. Be-
sides, they require fine-grained annotation of anomalies (e.g.
instance mask or bounding boxes), increasing the cost of
labeling. Finally, utilizing specific datasets as outliers may
lead the anomaly detectors biased toward specific domains,
leading to degraded accuracy in real-world scenes.
Image Reconstruction. Methods based on image recon-
struction (Lis et al. 2019b; Xia et al. 2020) usually employ
generative adversarial networks (GANs) (Creswell et al.
2018) to fit the distribution of normal pixels, re-synthesize
images conditioned on predicted segmentation results and
localize the discrepancy between original images and re-
constructed ones as anomalous objects. Nevertheless, these
approaches usually heavily rely on the accurate segmenta-
tion maps and performance of reconstruction model, while
it is still difficult for the segmentation models to distinguish
hard in-distribution pixels and anomalous ones. On the other
hand, their performance can be affected by the artifacts gen-
erated by GANs as well. Finally, they also suffer from time-
consuming serialized training and inference processes of the
reconstruction networks, making them hard to be applied in
real-time scenarios (Bogdoll, Nitsche, and Zöllner 2022).
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Figure 2: Illustration of proposed SLEEG framework, an OoD head is extended and trained in a self-supervised manner to
enable a pretrained segmentation model with anomaly detection ability.

Energy Based Modeling
There is also a series of methods applying energy func-
tion (LeCun et al. 2006) to depict probabilities of anomaly
data. These approaches apply a free-energy function (LeCun
et al. 2006) as anomaly indicators and focus on minimiz-
ing energy for normal instances while maximizing energy
for outlier samples. And the energy value is taken as mea-
surement to predict anomaly probability of samples. Previ-
ous energy-based models generally employ Markov Chain
Monte Carlo to estimate energy score whereas high-quality
samples cannot be generated in this manner. To address this
issue, (Tian et al. 2021) takes the insight from absent-
ing learning, and utilizes the joint-energy (Grathwohl et al.
2020) with smooth terms to help switch between normal
classification task and anomaly detection, while still requir-
ing outlier exposure strategy with fine-grained annotation.

Methodology
In this section we introduce the detail of SLEEG framework,
which is depicted as Fig. 2. Given an image I ∈ R3×H×W

with H,W indicating its spatial resolution, its spatial coor-
dinate set is defined as Ω, we associate the pixel xω at each
coordinate ω ∈ Ω with a triplet variable (zω, yω, oω), where
zω ∈ RD represents the encoded feature of dimension D,
yω ∈ {0, 1, · · · ,K − 1} denotes predicted categorical la-
bels over K close-set semantic classes, and oω ∈ {0, 1} is a
binary indicator to denote whether xω belongs to anomaly.
Our approach follows the classical Encoder-Decoder meta-
architecture in semantic segmentation, where an encoder
FΦ(·) : R3×H×W → RD×H×W extracts deep features and
a segmentation decoder gϕ(·) : RD → RK is responsi-
ble to predict categorical distribution, both Φ, ϕ can be pre-
trained parameters from off-the-shelf segmentation models.
Similarly, we further extend a learnable anomaly decoder
hθ(·) : RD → R2 (termed as OoD head in Fig. 2) from
original segmentation model, the output of which is utilized
to derive two different anomaly estimators. The learnable
parameter θ is trained in a self-supervised pipeline by maxi-
mizing the estimator scores in pseudo anomaly areas.

Anomaly Estimators for Likelihood Maximization
In anomaly detection, our goal is to accurately model the
anomaly likelihood given input data p(oω|zω). To this end,
we resort to the Bayes Rule to derive the conditional proba-
bility, however, since the feature encoding zω is jointly mod-
eled with both semantic yω and anomaly oω , the likelihood
probability can be derived with different marginalization

p(oω|zω) =
p(zω, oω)∑1

oω=0 p(zω, oω)
=

p(zω, oω)∑K
yω=1 p(zω, yω)

(1)

This converts the estimation from conditional distribution
p(oω|zω) to the joint distribution of p(zω, oω) and p(zω, yω).
To analytically estimate the joint distribution, we recap the
energy-based model (LeCun et al. 2006; Grathwohl et al.
2020) by reinterpreting the decoder gϕ(·) as an energy func-
tion, which estimates the joint distribution p(zω, yω)

p(zω, yω;ϕ) =
1

T (ϕ)
exp(gϕ(zω))[yω] (2)

where [yω] is the yω-th index of output categorical vector,
and T (ϕ) =

∫
zω

∑
yω

exp(gϕ(zω))[yω]dzω is an unknown
normalization factor. Similarly, the learnable anomaly de-
coder hθ(·) can be regarded as an energy function to esti-
mate the distribution of p(zω, oω)

p(zω, oω; θ) =
1

Γ(θ)
exp(hθ(zω))[oω] (3)

where Γ(θ) is another constant factor similar to T (ϕ). By
inserting Eq. (3) into Eq. (1), we can derive analytical rep-
resentation of p(oω|zω) which only focuses on anomalies
regardless of segmentation tasks. On the other hand, when
inserting both Eq .(3) and Eq .(2) into Eq. (1), we essentially
take semantic distribution p(zω, yω) into account for estima-
tion. Hence we obtain two different anomaly estimators.
Task Agnostic Estimator (TAE). By taking the anomaly
segmentation as a pixel-wise binary classification problem,
we can easily derive the likelihood from Eq. (3) and Eq. (1)
with the normalization factor Γ(θ) eliminated

pa(oω|zω; θ) =
exp(hθ(zω))[oω]∑

oω∈{0,1} exp(hθ(zω))[oω]
(4)
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Since Eq. (4) is a normalized probability function, we can
optimize this estimator via simple cross-entropy loss

La(θ) =− Exω∈Sood
[log pa(oω = 1|zω; θ)]

− Exω∈Sid
[log pa(oω = 0|zω; θ)] (5)

where Sood denote the set of anomaly pixels and Sid is the
set of normal pixels.
Task Oriented Residual Estimator (TORE). When taking
joint probability p(zω, yω) from Eq. (2) for marginalization
in Eq. (1), the estimated likelihood pt(oω|zω; θ) is coupled
with constants Γ(θ) and T (ϕ), which is intractable, hence
we transform the likelihood into logarithmic form

log pt(oω|zω; θ) = hθ(zω)[oω] + JEM(zω) + C(ϕ, θ)

JEM(zω) = − log
∑
yω

exp(gϕ(zω))[yω] (6)

where C(ϕ, θ) = log (T (ϕ)/Γ(θ)) is a constant w.r.t zω .
Note that the second term in Eq. (6) is exactly the negative
joint-energy model (JEM) (Grathwohl et al. 2020), which
can be regarded as “coarse” estimation of uncertainty, there-
fore Eq. (6) essentially takes decoder hθ to estimate the
residual of JEM score, hence to “refine” the anomaly area.
To optimize the estimator while handling intractable factor
C(ϕ, θ), we exploit a margin loss to compare the likelihood
of anomaly and normal pixels and eliminate additive con-
stant C(ϕ, θ)

Lo(θ) = {Exω∈Sid
[log pt(oω = 1|zω; θ)]−

Exω′∈Sood
[log pt(oω′ = 1|zω′ ; θ)] + γ}+ (7)

where γ is a hyperparameter to control the margin, {·}+ in-
dicates truncating the value to 0 if it is negative.
Difference from other energy-based methods. Note that
the loss term in Eq. (7) can be reformulated as1

Lo(θ) = {Exω∈Sid
[hθ(zω)]− Exω′∈Sood

[hθ(zω′)] + γ̂}+
γ̂ = γ + Exω∈Sid

[JEM(zω)]− Exω′∈Sood
[JEM(zω′)] (8)

Therefore, our TORE is different from other methods that di-
rectly update classifiers to optimize JEM (Grcić, Bevandić,
and Šegvić 2022; Tian et al. 2021), instead it takes estimated
joint-energy to dynamically control γ̂ of anomaly confidence
between anomaly and normal pixels. This dynamic margin
γ̂ is also verified more helpful than a static margin γ in the
ablation study. Finally, the predicted anomaly score can be
expressed as the combination of both estimators

A(xω) = log pa(oω|zω; θ∗) + λ log pt(oω|zω; θ∗) (9)

where λ is a balance factor and θ∗ denotes the parameters of
OoD head after optimization. In Eq. (9) we omit the constant
term C(ϕ, θ) since it does not affect the relative order of
different pixels.

Self-supervised Training with Refined Patch
In this section we describe our self-training pipeline, which
is illustrated in Fig. 2. Different from classical outlier expo-
sure (Bevandić et al. 2021; Di Biase et al. 2021a), we aim at

1For simplicity, we ignore the index symbol [oω = 1] here.

Figure 3: Visualization of generated patches with random
shapes on training set of Cityscapes. Area with redred mask
denotes anomaly pixels after mask refinement, the blueblue
area represents the ignored pixels from pasted patches.

generating training samples with both anomaly pixels Sood

and normal area Sid in a self-supervised manner without
manual mask annotation.
Anomaly Patch Rendering. Intuitively, due to the contex-
tual reliance of the segmentation network, a random patch
can be an anomaly part once placed under somewhat un-
natural pattern, even if the patch is cropped from a normal
image. With this consideration, we design a dynamic copy-
and-paste strategy to generate pseudo anomaly samples (as
shown in Fig. 2). In detail, for each input image, we first
randomly crop N rectangle patches from other images as
candidates. To ensure the geometric diversity of anomalies,
we extract the Harris corner points (Harris, Stephens et al.
1988) within each candidate and crop the minimum poly-
gon containing all these points as anomaly patch, finally, all
cropped polygons are randomly pasted on input image.
Adaptive Mask Refinement. As the patches are randomly
pasted, they can still contain objects which fits the context
well. Taking these pixels as anomaly will reversely hinder
the detection results. Therefore, to fully leverage the contex-
tual information, we take the estimated anomaly likelihood
A(xω) as guidance to measure the inconsistency between
context and pasted patches and further refine the pasted
polygons. Formally, we define the coordinates set of the i-th
pasted polygon area as Ωp

i , and aim at finding a threshold η∗

to separate out pixels more likely to be anomalies

Sood = {xω|ω ∈ ∪N
i=1Ω

p
i ∧ A(xω) ≥ η∗} (10)

To properly refine the pasted patch, we design the threshold
η∗ in a dynamic manner such that pixels within each sepa-
rated group share similar anomaly likelihood. Therefore we
search the threshold by minimizing the variance of anomaly
scores within each pixel group in pasted area

η∗ = argmin
η

V arxω∈Sood
[A(xω)] + V arxω /∈Sood

[A(xω)]

s.t. ω ∈ ∪N
i=1Ω

p
i min

ω
A(xω) ≤ η ≤ max

ω
A(xω) (11)
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Method OoD Data Re-training FS LAF FS Static
FPR95 ↓ AP ↑ FPR95 ↓ AP ↑

Synboost (Di Biase et al. 2021a) ✓ ✗ 15.79 43.22 18.75 72.59
Density - Logistic Regression (Blum et al. 2021) ✓ ✓ 24.36 4.65 13.39 57.16
Bayesian Deeplab (Mukhoti and Gal 2018) ✗ ✓ 38.46 9.81 15.50 48.70
OoD Training - Void Class (Blum et al. 2021) ✓ ✓ 22.11 10.29 19.40 45.00
Discriminative Outlier Detection Head (Bevandić et al. 2021) ✓ ✓ 19.02 31.31 0.29 96.76
Dirichlet Deeplab (Malinin and Gales 2018) ✓ ✓ 47.43 34.28 84.60 31.30
DenseHybrid† (Grcić, Bevandić, and Šegvić 2022) ✓ ✓ 6.18 43.90 5.51 72.27
PEBAL† (Di Biase et al. 2021b) ✓ ✓ 7.58 44.17 1.73 92.38
CoroCL† (Liu et al. 2023) ✓ ✓ 2.27 53.99 0.52 95.96

MSP (Hendrycks and Gimpel 2017) ✗ ✗ 44.85 1.77 39.83 12.88
Entropy (Hendrycks and Gimpel 2017) ✗ ✗ 44.83 2.93 39.75 15.41
Density - Single-layer NLL (Blum et al. 2021) ✗ ✗ 32.90 3.01 21.29 40.86
kNN Embedding - density (Blum et al. 2021) ✗ ✗ 30.02 3.55 20.25 44.03
Density - Minimum NLL (Blum et al. 2021) ✗ ✗ 47.15 4.25 17.43 62.14
Image Resynthesis (Lis et al. 2019a) ✗ ✗ 48.05 5.70 27.13 29.60
SML (Jung et al. 2021) ✗ ✗ 21.52 31.05 19.64 53.11
GMMSeg (Liang et al. 2022) ✗ ✗ 6.61 55.63 15.96 76.02
FED-U (Gudovskiy, Okuno, and Nakata 2023) ✗ ✗ 11.38 20.45 21.58 67.80
SLEEG (ours) ✗ ✗ 6.69 59.66 10.49 68.93

Table 1: Comparison with previous methods on the FS test set. “OoD Data” indicates training with additional labeled anomaly
data. “Re-training” means updating parameters of segmentation network. † indicates training with WideResNet38. Bold values
and underlined values represent the best and second best results (Comparison is conducted within each group).

The problem in Eq. (11) is solved in a grid scanning manner,
which is equivalent to finding the maximum gap between
mean values of groups (Otsu 1979). After the refinement,
the pasted areas not attributed to Sood is labeled as ignored
and will not be used for loss computation. On the other hand,
we take all pixels outside the pasted area as normal set Sid.
Fig. 3 shows some examples after our refinement, it can be
clearly observed that some part fitting the context well is
automatically filtered out and other areas that are more con-
tradictory to context are left for training. With the set sepa-
ration above, we can reversely apply Eq. (5) and Eq. (7) to
train the OoD head in a self-supervised paradigm.

Experiments
Datasets
We evaluate SLEEG in several widely used anomaly
datasets: FishyScapes (FS) Lost & Found (Blum et al. 2021),
FishyScapes (FS) Static (Blum et al. 2021), Road Anomaly
(Lis et al. 2019a), Segment-Me-If-You-Can(SMIYC)(Chan
et al. 2021) and StreetHazards (Hendrycks et al. 2019b).
FS Lost & Found contains high-resolution samples for au-
tonomous driving scenes. FS Lost & Found is built based on
the Lost & Found (Pinggera et al. 2016) and adopts the same
collection setup as Cityscapes (Cordts et al. 2016), which is
also a segmentation benchmark for urban scenes. Specifi-
cally, 37 types of unexpected real road obstacles and 13 dif-
ferent street scenarios are included. A validation set of 100
samples is publicly available, while the hidden test set with
275 images is unknown. All the methods need to submit the
code to the website2 to evaluate on this test set.

2https://fishyscapes.com/results

FS Static is artificially built upon the validation set of
Cityscapes, where unexpected objects are collected from the
Pascal VOC dataset (Everingham et al. 2010) and positioned
randomly on the images. Specifically, only objects not be-
longing to the pre-defined classes of Cityscapes are used.
This dataset consists of a public validation set with 30 im-
ages and a hidden test set with 1,000 images.
Road Anomaly includes real-world images collected on-
line, where anomalous obstacles encounter on or locate
near the road. All the images are re-scaled to a size of
1,280 × 720 and pixel-wise annotations of unexpected ob-
jects are provided. Since there exists larger domain gap be-
tween Road anomaly and Cityscapes, generalization ability
of models is essential to the performance on this dataset, fol-
lowing previous works (Tian et al. 2021; Liang et al. 2022),
we evaluate SLEEG on the test set consisting of 60 images.
Other Benchmarks. Besides the datasets above, we further
evaluate on other benchmarks including SMIYC (Chan et al.
2021) and Streethazards (Hendrycks et al. 2019b), which
contain anomalies collected either from real-world or vir-
tual game engine. The corresponding results can be found in
supplementary material.

Implementation Details
For fair comparisons, we follow the similar settings of (Jung
et al. 2021; Di Biase et al. 2021b) to utilize the segmen-
tation model of DeepLab series (Chen et al. 2018) with
ResNet101 (He et al. 2016) backbone, which is pre-trained
on Cityscapes and keep fixed without further re-training.
The lightweight OoD head consists of three stacked Conv-
BN-ReLU blocks and is trained for 40, 000 iterations with
batchsize of 8, the balance factor is set as λ = 0.5 for
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Method OoD Data FS LAF Validation FS Static Validation Road Anomaly Test
FPR95 ↓ AP ↑ FPR95 ↓ AP ↑ FPR95 ↓ AP ↑

Synboost (Di Biase et al. 2021a) ✓ 34.47 40.99 47.71 48.44 59.72 41.83
DenseHybrid† (Grcić, Bevandić, and Šegvić 2022) ✓ 6.10 63.80 4.90 60.00 - -
PEBAL† (Tian et al. 2021) ✓ 4.76 58.81 1.52 99.61 44.58 45.10
CoroCL† (Liu et al. 2023) ✓ 0.85 92.46 2.52 70.61 - -

MSP (Hendrycks and Gimpel 2017) ✗ 45.63 6.02 34.10 14.24 68.44 20.59
MaxLogit (Hendrycks et al. 2019a) ✗ 38.13 18.77 28.50 27.99 64.85 24.44
SynthCP (Xia et al. 2020) ✗ 45.95 6.54 34.02 23.22 64.69 24.87
SML (Jung et al. 2021) ✗ 14.53 36.55 16.75 48.67 49.74 25.82
GMMSeg (Liang et al. 2022) ✗ 13.11 43.47 - - 47.90 34.42
FED-U (Gudovskiy, Okuno, and Nakata 2023) ✗ 11.35 37.05 20.15 46.32 - -
SLEEG (ours) ✗ 10.90 70.90 3.85 77.23 42.60 38.10

Table 2: Comparison on FS validation sets and Road Anomaly. “OoD Data” indicates the method adopts additional labeled data
as anomalies for training. † indicates training with WideResNet38 backbone. Bold values represent the best results (Comparison
is conducted within each group) .

test. And we apply a warmup strategy for mask refinement.
First we take JEM as anomaly score for 6, 000 iterations and
then replace it with estimated anomaly likelihood. Follow-
ing common setting (Jung et al. 2021; Blum et al. 2021; Xia
et al. 2020), the average precision (AP) and false positive
rate (FPR95) at true positive rate of 95% are adopted as
metrics to perform comprehensive evaluation. Among these
metrics, FPR95 and AP are more crucial since there exists
severe imbalance between anomaly and normal pixels.

Experiments Results
FS Leaderboard. Tab. 1 provides results on test sets of FS
benchmark. Following (Blum et al. 2019), previous methods
are categorized based on whether they require re-training
the segmentation network or extra OoD data. Compared
with previous methods without re-training or extra anomaly
data, SLEEG works effectively to outperform most com-
petitors by large margins. SLEEG can even surpass some
methods with re-training and extra anomaly data (Tian et al.
2021; Di Biase et al. 2021a) by large margins and achieve
a new SOTA performance of AP on Lost & Found track,
which includes anomalies in more realistic scenes. On the
artificially-generated FS Static, SLEEG is on par with the
SOTA method DenseHybrid, which requires extra data and
adopts stronger Wide-ResNet as its feature extractor. Al-
though SLEEG is inferior to some methods relying on extra
data in FS Static, this is due to the external data (Lin et al.
2014) adopted falls into similar distribution of anomalies in
FS Static (Everingham et al. 2010), thus they suffer a large
performance gap between artificial Static track and realistic
LAF, while SLEEG keeps superiority on both tracks.
FS Validation Sets. Tab. 2 shows comparisons on the vali-
dation sets of FS Lost & Found and Static. In terms of AP,
our anomaly detector achieves the best results for all metrics
on FS Lost & Found and competitive performance on FS
Static. Specifically, when compared with GMMSeg (Liang
et al. 2022), SLEEG yields significant improvements of
26.4% on AP and reduce FPR95 to 10.9%. The results
demonstrate the effectiveness and robustness of our SLEEG

Patch
Policy

Refine
ment

FS LAF Validation Road Anomaly Test
FPR95 ↓ AP ↑ FPR95 ↓ AP ↑

Void
as OoD - 19.3 47.3 69.1 21.3

Square
Patch

✗ 25.4 45.7 67.9 18.2
✓ 13.8 62.5 47.8 34.8

Convex
Patch

✗ 13.3 61.9 44.8 35.9
✓ 10.9 98.3 42.6 38.1

Table 3: Investigation of patch policies on FS and Road
Anomaly validation set. “Void as OoD” denotes training
with pixels of void class in Cityscapes as anomaly samples.

on detecting real-world anomaly instances. Similar to results
in Tab. 1, methods with auxiliary anomaly data (e.g. PE-
BAL) or synthetic model (e.g. SynthCP) usually suffer from
significant performance gap between artificial anomaly in
FS Static and anomalies in realistic scenes from LAF, since
they tend to overfit label anomalies. In contrast, SLEEG can
yield relative consistent performance gain.
Road Anomaly Test Sets. We further compare SLEEG
with recent advanced anomaly segmentation methods on
Road Anomaly in Tab. 2, it is observed that SLEEG out-
performs most competitors by a large margin when no la-
beled anomaly data is available. Since there exists larger in-
herent domain shift between Road anomaly and Cityscapes
than Fishyscapes, previous methods (e.g. SML (Jung et al.
2021)) that perform well on Fishyscapes are prone to
suffer from poor accuracy on Road anomaly. However,
our SLEEG yields significant improvements on both two
datasets, demonstrating the robustness of SLEEG in tackling
open-world scenes with diverse styles.

In-depth Discussion
Effectiveness of Different Estimators. We explore the con-
tribution of TAE and TORE on FS Lost & Found and Road
Anomaly test sets. We take the pure JEM (Grathwohl et al.
2020) measurement as baseline detector. It can be observed
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Estimator FS LAF Validation Road Anomaly Test
TAE TORE FPR95 ↓ AP ↑ FPR95 ↓ AP ↑

% % 27.0 31.0 79.9 18.9
! % 25.7 57.5 47.6 33.5
% ! 18.4 47.9 51.2 31.6
! ! 10.9 70.9 42.6 38.1

Table 4: Ablation results for different likelihood estimators
on FS validation set and Road Anomaly validation set.

Figure 4: Investigation on the influence on AP and false pos-
itive rate with varied patch number N (left) and margin value
γ (right) on FS Lost & Found validation set.

from Tab. 4 that TAE brings significant improvements to
the baseline by training with self-generated OoD samples.
Further, by dynamically adjusting the margin of anomaly
scores, TORE also brings a large performance boost of
around 13% in AP and significant reduction in FPR95 as
well. Finally, SLEEG is capable of achieving the best per-
formance by seamlessly integrating two estimators.

Specifically, as indicated by Eq. (8), we also compare the
automatic energy-guided margin γ̂ with a manually tuned
static value γ for the training of TORE, which is equivalent
to eliminating the JEM terms in Eq. (8). For both setting,
we set γ = 15, the results can be illustrated in Tab. 6. It is
clear that the margin with a dynamically controlled compo-
nent as Eq. (8) can consistently outperforms the static mar-
gin, indicating the residual form of anomaly likelihood can
adaptively capture effective training samples.
Investigation on Patch Policy. Tab. 3 shows the compari-
son results for different patch policies on FS Lost & Found
validation set and road anomaly validation set. We design
a baseline which regards pixels labeled with “void” from
Cityscapes as auxiliary anomaly data (denoted as “Void as
OoD”). From Tab. 3, training with simple square patches
performs slightly inferior to baseline, since this is prone to
implicitly learn useless shape-related prior. With more vari-
ous shapes, convex patches brings significant improvements.
Besides, by performing our refinement strategy, SLEEG
can also achieve significant improvement even with sim-
ple square patch. Finally, imposing further refinement on the
convex patch achieves the best performance.
Parameter Sensitivity. We further investigate the influence
of patch number and margin value on the FS Lost & Found
validation set. As shown in Fig. 4, SLEEG performs best
when margin γ = 15 and patch number N = 10 . The re-

Model Method FS LAF Val FS Static Val
FPR95 ↓ AP ↑ FPR95 ↓ AP ↑

OCR
Net

SML 18.28 39.96 15.07 47.90
JEM 22.90 23.27 16.80 34.03

Void Class 16.65 46.62 17.74 29.30
SLEEG 8.89 72.51 7.6 73.01

ISA
Net

SML 18.67 28.76 14.86 32.15
JEM 35.57 22.65 16.22 45.22

Void Class 29.17 43.53 17.18 24.61
SLEEG 12.28 65.79 3.33 80.03

FCN

SML 39.80 17.59 14.53 28.92
JEM 39.36 21.83 13.47 30.51

Void Class 24.29 43.44 14.79 22.72
SLEEG 21.01 63.11 5.31 61.29

Table 5: Comparison between SLEEG and other methods on
FS validation sets with different segmentation models. ”Void
Class” denotes training models with pixels that fall into void
class as anomaly samples. The mIoU for OCRNet (Yuan and
Wang 2020), ISANet (Huang et al. 2019) and FCN (Shel-
hamer 2017) are 80.66, 80.51, 77.72 respectively.

Margin Type FS LAF Validation Road Anomaly Test
FPR95 ↓ AP ↑ FPR95 ↓ AP ↑

Static γ 12.3 1 65.2 56.2 34.4
Dynamic γ̂ 10.9 70.9 42.6 38.1

Table 6: Ablation results of comparing static/dynamic mar-
gin (Eq. (8)) on FS and Road Anomaly validation set.

sults demonstrate that SLEEG achieves similar performance
across all settings, implying SLEEG is not very sensitive to
both patch number and margin value. Finally, we set patch
number and margin to 10 and 15 respectively.
Extension to More Segmentation Models. Finally, as
shown in Tab. 5, we also validate the generalization abil-
ity of SLEEG by training with different advanced segmenta-
tion frameworks, including OCRNet (Yuan and Wang 2020),
ISANet (Huang et al. 2019) and FCN (Shelhamer 2017),
where SLEEG consistently surpasses SML and JEM across
all the frameworks with more than 20% AP improvement on
average. Additionally, it is observed that SLEEG performs
better on FS Lost& Found validation set when adopting net-
works with higher mIoU scores, implying that SLEEG can
work effectively with various frameworks.

Conclusion
In this paper, we propose SLEEG, a simple and flexible
anomaly segmentation model without re-training or labeled
anomaly data, which exploits a task-agnostic binary esti-
mator, and a task-oriented energy residual estimator for
anomaly likelihood estimation, and incorporate them with
an adaptive copy-and-paste mask policy for self-supervised
learning. Extensive experimental results verify the effective-
ness of our method and competitive performance is achieved
on both FS Lost & Found validation and test sets by SLEEG.
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