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Abstract

Discriminative learning effectively predicts true object class
for image classification. However, it often results in false pos-
itives for outliers, posing critical concerns in applications like
autonomous driving and video surveillance systems. Previ-
ous attempts to address this challenge involved training im-
age classifiers through contrastive learning using actual out-
lier data or synthesizing outliers for self-supervised learn-
ing. Furthermore, unsupervised generative modeling of in-
liers in pixel space has shown limited success for outlier de-
tection. In this work, we introduce a quantile-based maxi-
mum likelihood objective for learning the inlier distribution
to improve the outlier separation during inference. Our ap-
proach fits a normalizing flow to pre-trained discriminative
features and detects the outliers according to the evaluated
log-likelihood. The experimental evaluation demonstrates the
effectiveness of our method as it surpasses the performance
of the state-of-the-art unsupervised methods for outlier detec-
tion. The results are also competitive compared with a recent
self-supervised approach for outlier detection. Our work al-
lows to reduce dependency on well-sampled negative training
data, which is especially important for domains like medical
diagnostics or remote sensing.

Introduction
As AI-based fully-autonomous technologies get introduced
in several commercial sectors, their reliability becomes im-
portant in safety-critical systems such as self-driving cars
and surgical robotics. For instance, popular image classi-
fiers (Xie et al. 2016; He et al. 2016) detect inlier objects
with high accuracy. However, they suffer from degraded per-
formance while detecting outlier objects (Hendrycks and
Gimpel 2017). Hence, it is vital to train models that can
precisely learn the data distribution of inliers such that
anomalous instances can be detected as an outlier. Such a
model should significantly improve the reliability of fully-
autonomous systems for safety-critical applications while
satisfying evolving regulatory requirements and reinforcing
the public’s trust in such systems for real-world deploy-
ment (Koopman and Wagner 2017).
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†Corresponding author.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

There are a lot of outlier-aware image classification ap-
proaches that exist in the literature. They can be catego-
rized into supervised (Hendrycks, Mazeika, and Dietterich
2019), unsupervised (Hendrycks and Gimpel 2017; Lee
et al. 2018b; Liang, Li, and Srikant 2018; Liu et al. 2020),
and self-supervised (Tack et al. 2020; Du et al. 2022). A re-
cent approach (Du et al. 2022) generates synthetic features
from the learned inlier feature distribution and selects a sub-
set of those features as outliers based on a pre-defined sam-
pling strategy. Afterward, the selected outlier features are
used for energy-based regularization of the final layer of the
classification network to encourage a lower energy for inlier
features and higher for outlier features. Subsequently, during
model inference, (Du et al. 2022) perform outlier detection
by thresholding the energy scores computed from the classi-
fication head to discriminate outlier instances from inliers.

Maximum likelihood training of the inlier data distribu-
tion should assign a lower probability estimate to the out-
liers. Generative models like normalizing flows offer pre-
cise density estimation capability for representing com-
plex distributions (Kingma and Dhariwal 2018). However,
prior works (Kirichenko, Izmailov, and Wilson 2020; Nalis-
nick et al. 2018) showed that in the pixel space, the den-
sity learned by generative models could not distinguish
anomalous instances from inliers as such learning scheme
seems to fail to capture the semantic contents. To over-
come this problem, we propose a novel framework named
QuantOD (Quantile-based Maximum Likelihood Training
for Outlier Detection) that derives the inlier feature rep-
resentations from a pre-trained image classifier and esti-
mates its density using a new maximum likelihood objective
that leverages the q-quantile of the log-likelihood scores per
training batch for learning the generative model. Our frame-
work determines the log-likelihood-based threshold by ana-
lyzing the likelihoods of inliers from the validation set. Sub-
sequently, QuantOD performs outlier detection by examin-
ing whether the log-likelihood of a test feature is above or
below this threshold. Unlike methods like (Du et al. 2022)
that synthesize outlier features for classifier regularization,
QuantOD trains exclusively on inlier data. The conceptual
simplicity of our method decreases the likelihood of unde-
sirable effects such as bias and over-optimistic evaluation.

Quantile-based optimization has been previously stud-
ied in Reinforcement Learning (Dabney et al. 2018; Zhou,
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Figure 1: Overview of the QuantOD framework during two-stage training and single-stage inference. During discriminative
training, the end-to-end image classification model including the fully-connected (FC) head is trained with standard cross-
entropy loss Lcls. In the generative training stage, the inlier features r are extracted from the pre-trained classification model
and used to train the normalizing flow model with the negative log-likelihood loss LqNLL. Note that the parameters of the
classification backbone network are frozen during generative training. During inference, a test image x′ is labeled as an outlier
if its likelihood score obtained from the flow model is less than a pre-defined likelihood threshold τ .

Wang, and Feng 2020; Jiang, Peng, and Hu 2023) and for
Hyperparameter tuning (Salinas, Shen, and Perrone 2020;
Salinas et al. 2023). However, the optimization of a gen-
erative model based on the likelihood estimate of the in-
liers near the boundary of the distribution is largely unex-
plored. During training, QuantOD passes the input image to
the backbone network and extracts the features from an ap-
propriate network layer. Our framework can adapt to back-
bone networks such as ResNet (He et al. 2016) or Vision
Transformers (Dosovitskiy et al. 2021) for image classifica-
tion. Subsequently, the features from the backbone network
are provided to our generative model to estimate the den-
sity of inlier feature representations. The approach involves
learning a generative model based on normalizing flow with
a maximum likelihood objective for inlier features. During
inference, QuantOD detects the outliers by comparing their
likelihoods to the threshold we validate on inliers. The main
contributions of our work are as follows:

• We study a principled approach for outlier-aware image
classification based on the log-likelihood scoring of the
pre-trained discriminative features.

• We propose to increase the separation between inliers
and outliers by introducing a robust quantile-based maxi-
mum likelihood objective for learning a generative model
of the inlier distribution.

• Our method outperforms the state-of-the-art for unsu-
pervised outlier detection on publicly available datasets
while preserving the inlier classification performance.

• We report similar inference runtime of our approach
compared with other unsupervised outlier detection
methods due to the minimal computational overhead of
our generative model.

Related Work
Recent methods like Outlier Exposure (Hendrycks,
Mazeika, and Dietterich 2019), ATOM (Chen et al. 2021)
and Natural Habitats (Katz-Samuels et al. 2022), employ
publicly available outlier datasets in a supervised training
setup. However, defining outliers, in general, is challenging,
as any data point not sampled from the inlier data distribu-
tion can be regarded as an outlier. Hence, utilizing outlier
datasets for model supervision might lead to sub-optimal
results for unknown outliers. Therefore, the following study
exclusively focuses on self-supervised and unsupervised
methods for outlier detection.

Self-supervised Outlier Detection: Prior work like (Lee
et al. 2018a) used GANs to generate outliers in pixel space
and performed contrastive training, while (Tack et al. 2020)
perturbed inlier instances to distinguish it from the non-
perturbed instances. Similarly, ALOE (Chen et al. 2022)
trained the model with adversarial outliers generated within
the ϵ-ball. Other methods (Mohseni et al. 2020; Hendrycks
et al. 2020, 2019; Khalid et al. 2022; Ming, Fan, and Li
2022; Tao et al. 2023; Du et al. 2022) proposed to regular-
ize image classifiers via self-supervised training. However,
synthetic outliers may be sampled from imprecise decision
boundaries. Works such as (Rudolph, Wandt, and Rosen-
hahn 2021; Rudolph et al. 2022, 2023) performed defect
detection of industrial images by estimating the density of
inlier features using normalizing flow. (Li et al. 2021) cut an
image patch from one location and randomly pasted it so that
the model detects features of perturbed patches. (Ding, Pang,
and Shen 2022) learn features of reference inlier images and
their pseudo anomalies to obtain an anomaly score, while
(Deng and Li 2022) presents an encoder-decoder model
where the one class embedding of the encoder preserves
information about standard patterns but forgets anomalous
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perturbations. (Zou et al. 2022) increases the model’s invari-
ance to global changes in the input image by forcing dis-
similarity between the image features and its local perturba-
tions, whereas (Sheynin, Benaim, and Wolf 2021) captures
the multi-scale patch distribution of each training image and
performs image transformations to distinguish between nat-
ural and transformed image patches. In contrast, (Wu et al.
2022) exploit self-supervised sparse representation of inlier
features for anomaly detection. Note that defect detection is
a distinct task compared to image classification; the former
locates defects in an image, whereas the latter labels the en-
tire image as an outlier or inlier.

Unsupervised Outlier Detection: Works like (Hendrycks
and Gimpel 2017) use softmax function to detect outliers
while (Liang, Li, and Srikant 2018; Hsu et al. 2020) employ
image perturbations to enhance the performance of soft-
max function. Others use Mahalanobis distance (Lee et al.
2018b), k-nearest neighbor (Sun et al. 2022), Rectified Ac-
tivations (Sun, Guo, and Li 2021), KL divergence (Huang,
Geng, and Li 2021), DICE (Sun and Li 2022), Gram Matri-
ces (Sastry and Oore 2020) and Energy (Liu et al. 2020; Lin,
Roy, and Li 2021; Wang et al. 2021) instead of softmax func-
tion. Some methods perform outlier detection by leveraging
both inlier features and image reconstruction error (Zong
et al. 2018), estimating the Gaussian mixture model of inlier
features (Morteza and Li 2022), or performing Kolmogorov-
Smirnov test on the flow’s latent representations (Jiang, Sun,
and Yu 2022). (Rippel, Mertens, and Merhof 2021) represent
features as multivariate Gaussians for anomaly detection
while (Zhang et al. 2020; Blum et al. 2021) use embedded
features to train the flow model for pixel-level and image-
level outlier detection. (Gudovskiy, Ishizaka, and Kozuka
2022) use conditional flows to learn inlier features for de-
fect detection in industrial images while (Roth et al. 2022)
and (Lee, Lee, and Song 2022) use inlier feature embeddings
from the pre-trained model as a memory bank. PaDiM (De-
fard et al. 2021) estimates inlier patch embeddings as multi-
variate Gaussians and localize anomalies using Mahalanobis
distance while (Tsai, Wu, and Lai 2022) learns multi-scale
patches to differentiate the anomalous regions. However,
with significant class imbalance, accurate outlier detection
becomes challenging for unsupervised methods. Also, they
are highly sensitive to hyperparameters, necessitating pre-
cise tuning, which is a demanding task without a labeled
validation set. Importantly, previous self-supervised or un-
supervised methods have not explored the quantile function
for robust maximum likelihood training of the density esti-
mator for outlier-aware image classification.

Method
The key objective of an open-set image classifier is to predict
the correct class of an inlier image accurately while being
able to reject the outlier images. We denote the N training
images as x ∼ X , and the ground truth class labels for each
inlier image as y ∼ Y where each label refers to one of the
K known classes. During inference, we extract features of
an image x and estimate the density using our flow-based
generative model. In the subsequent discussion, we provide

an overview of our approach and present the quantile-based
maximum likelihood objective for density estimation of the
inlier feature representations. We also describe the model
inference and thresholding scheme for outlier detection.

QuantOD: An Overview
The workflow of our framework is shown in Figure 1. In
the first stage, we train a standard image classifier using the
multi-class cross-entropy loss Lcls given the ground-truth
class labels y. In the second stage, we obtain the inlier fea-
tures g(x) (denoted as r) from the penultimate layer of the
pre-trained image classifier. Note that g is a learnable func-
tion which we term as the backbone of the classification net-
work that transforms inlier images x to fixed-size inlier fea-
tures g(x). We then estimate the probability distribution of
g(x) via generative modeling using the invertible normaliz-
ing flow network. The flow network transforms the unknown
distribution of inlier features g(x) into a standard normal
distribution through the negative log-likelihood loss LqNLL

where 0 ≤ q < 1 is the desired quantile. Finally, given a test
image during the model inference, we extract the features
from the classifier and compute the log-likelihood score of
the test image using the pre-trained flow network. The deci-
sion whether the test image is an inlier or an outlier depends
on the log-likelihood-based threshold τ . If the log-likelihood
score of the test feature is greater than τ , the test feature is
passed through the classification head to estimate the inlier
object class along with the softmax confidence score. If the
log-likelihood score of the test feature is below τ , we assign
the test image as an outlier.

Density Estimation of Inlier Features
The task of the density estimator in the QuantOD frame-
work is to model the probability distribution p(g(x)) of the
inlier features. A robust density estimator should recognize
whether a test feature is likely or unlikely to be an outlier. We
specify our probabilistic density estimator as a parametric
function f to facilitate the selection of common distributions
such as standard Gaussians and subsequently estimate the
parameters of f using the inlier features g(x). Suppose g(x)
follows a multivariate normal distribution, meaning g(x) is
modeled as N (µ,Σ) where µ is the mean and Σ is the co-
variance of g(x). Then, such a density estimator f can com-
pute the maximum likelihood estimates based on the param-
eters µ and Σ. On the other hand, if the distribution of g(x)
is assumed to be unknown, then f can be learned as a train-
able neural network, such as flows that transforms this un-
known distribution into multivariate Gaussian and allows ef-
ficient computation of log-likelihoods. Hereon, we will use
the term g(x) as r to simplify our problem formulation.

Normalizing Flow-based Distribution Learning: Let us
define the probability distribution p(r) of inlier features as
unknown with r ∈ R. We use normalizing flows as a learn-
able density estimator f that estimates p(r) indexed with
learnable parameters θ ∈ Θ. We formulate the latent obser-
vations of the flow as z ∈ Z with probability distribution
p(z) defined as multivariate standard normal distribution
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such that p(z) = N (0, I) with zero mean and unit covari-
ance. Due to the excellent property of the normalizing flow
network to be an invertible and bijective mapping between
R and Z , it transforms p(r) into a normally distributed p(z)
in the latent space. Hence, the transformation f : R → Z is
deterministic and preserves the dimensionality of the inlier
features in the latent space such that f : Rm → Rm where
m are the feature dimensions.

Network Architecture: The basic element of our normal-
izing flow network f is a series of n invertible and bi-
jective mappings called coupling blocks such that f :=
(f1, .., fj , ..., fn) with r = f−1(z; θ) and z = f(r; θ). We
follow (Dinh, Sohl-Dickstein, and Bengio 2017) to construct
our coupling blocks as learnable affine transformations, i.e.,
scaling s and translation t, respectively. We associate s and t
to be fully connected neural networks. The input to an arbi-
trary jth coupling block is first split into two parts uj

1 and uj
2

that are transformed by learnable s1, t1 and s2, t2 networks
and are coupled alternatively. The output of the jth block is
the concatenation of the resulting parts vj1 and vj2 given as:

vj1 = uj
1 ⊙ exp

(
s2(u

j
2)
)
+ t2(u

j
2) (1)

vj2 = uj
2 ⊙ exp

(
s1(v

j
1)
)
+ t1(v

j
1) (2)

where ⊙ is the element-wise multiplication, and the expo-
nential function ensures non-zero coefficients. The benefit
of constructing such a transformation is that we can eas-
ily recover uj

1, u
j
2 from vj1, v

j
2 in the inverse direction of

this coupling block with subtle modifications in the archi-
tecture. Note that s and t need not be invertible and can
be represented by any arbitrary neural network. Addition-
ally, we follow (Kingma and Dhariwal 2018) to perform a
learned invertible 1 × 1 convolution operation after every
coupling block to reverse the ordering of the feature chan-
nels, thereby ensuring each feature influences each other
through the transformation.

Quantile-based Maximum Likelihood Training
We aim to learn the parameters θ of the flow network such
that the unknown probability distribution of the inlier fea-
tures p(r) is transformed into a standard normal distribution
p(z). According to the change of variables formula, we can
define the posterior distribution pθ(r) as,

pθ(r) = p(f(r; θ)) ∗
∣∣∣∣det∂f(r; θ)∂rT

∣∣∣∣ (3)

As the training loss requires a minimization objective,
we can train the network using the negative average of the
log-likelihood scores for a set of samples in each training
batch. However, the arithmetic mean provides a measure of
central tendency in a batch of log-likelihood scores such that
some inliers may receive very low likelihoods. Therefore,
we propose a negative log-likelihood loss, LqNLL, that is
the negation of the q-quantile of the log-likelihood scores of
inlier features for each training batch. Given the observed
samples in a training batch, the flow parameters θ are opti-
mized by the negative log-likelihood of pθ(r) as:

LqNLL(r; θ) = −Qq (log(pθ(rij)))
N
i,j=1 (4)

where rij represent the inlier features of the ith training
image sample in the jth training batch, and Qq represents
the quantile function that first sorts the log-likelihood scores
in the training batch in ascending order and subsequently se-
lects the log-likelihood score at q-quantile. If the q-quantile
lies between the log-likelihood scores of two samples, the
result is computed by linearly interpolating between the two
values. If we select a low q (e.g., q = 0.05), the loss formula-
tion in Eq. 4 will encourage the likelihood maximization of
the low-likelihood inlier samples located at the distribution
boundary. Therefore, after training flow network f and up-
dating the parameters θ until the convergence of the LqNLL

loss, the likelihood pθ(r) of inlier features is likely to be
higher than those of outlier features.

Log-Likelihood Based Threshold
During inference, the log-likelihood score of a test feature r′
can be derived from the learned flow model with parameters
θ. The feature r′ to be assigned as an inlier or an outlier relies
on the log-likelihood score log(pθ(r

′)). Since it is a binary
classification problem, a threshold τ is required to distin-
guish inlier and outlier features. We assign test feature r′ as
an outlier if log(pθ(r′)) < τ and inlier if log(pθ(r′)) ≥ τ . If
the test feature is detected as an inlier, we obtain the pre-
dicted inlier class with the softmax confidence score from
the classification head. We label the test feature as an outlier
if log(pθ(r′)) < τ . For fixing a suitable threshold τ , there
is a natural trade-off between false positives (i.e., outliers
wrongly classified as inliers) and false negatives (i.e., inliers
misclassified as outliers). Therefore, we adopt the TPR-β
thresholding scheme for determining τ , where 1 − β is a
false alarm rate and β is fixed at 95%, meaning 95% of the
inlier features are corrected detected. We evaluate the perfor-
mance of our approach using the standard outlier detection
metrics such as Area under the Receiver Operating Charac-
teristics (AUROC ↑), False Positive Rate at 95% True Posi-
tive Rate (FPR95 ↓), and Area under Precision-Recall Curve
(AUPR ↑) where True Positive is the correct detection of an
inlier image. For inlier classification performance, we com-
pute accuracy between the predicted and groundtruth classes
for the validation images of the inlier dataset.

Experiments
This section provides experimental details about the pro-
posed QuantOD framework and outlines the image datasets
used during training and model inference. We also show our
main results on the outlier detection performance and com-
pare them with other related methods on different combina-
tions of inlier and outlier datasets. Subsequent experiments
involve ablation studies, where we analyze the effect of the
meta-parameters, and the network architecture of the image
classifier as well as the normalizing flow network on outlier
detection. We also report the results for the inlier classifica-
tion performance and inference runtime.
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Method Outlier Datasets (Metrics: FPR95 ↓ (%) / AUROC ↑ (%))
Textures SVHN Places365 LSUN-C LSUN-R iSUN Average

MSP (2017) 59.28 / 88.50 48.49 / 91.89 59.48 / 88.20 30.80 / 95.65 52.15 / 91.37 56.03 / 89.83 51.04 / 90.91
Mahal (2018b) 15.00 / 97.33 12.89 / 97.62 68.57 / 84.61 39.22 / 94.15 42.62 / 93.23 44.18 / 92.66 37.08 / 93.27
ODIN (2018) 49.12 / 84.97 33.55 / 91.96 57.40 / 84.49 15.52 / 97.04 26.62 / 94.57 32.05 / 93.50 35.71 / 91.09
Energy (2020) 52.79 / 85.22 35.59 / 90.96 40.14 / 89.89 8.26 / 98.35 27.58 / 94.24 33.68 / 92.62 33.01 / 91.88
GEM (2022) 15.06 / 97.33 13.42 / 97.59 68.03 / 84.44 39.46 / 94.13 42.89 / 93.27 44.41 / 92.60 37.21 / 93.23

QuantOD (Ours) 12.85 / 97.27 9.39 / 97.94 36.75 / 91.04 7.49 / 98.42 19.05 / 96.08 17.50 / 96.39 17.17 / 96.19
Method Metrics: AUPR ↑ (%) / Inference Time ↓ (seconds)

Textures SVHN Places365 LSUN-C LSUN-R iSUN Average
MSP (2017) 97.16 / 15.15 98.27 / 6.22 97.10 / 17.23 99.13 / 7.96 98.12 / 13.79 97.74 / 9.05 97.92 / 11.57

Mahal (2018b) 99.41 / 61.03 99.47 / 51.02 96.20 / 54.95 98.81 / 52.76 98.60 / 74.99 98.45 / 58.69 98.49 / 58.91
ODIN (2018) 95.28 / 19.89 98.00 / 10.64 95.82 / 19.76 99.33 / 11.83 98.77 / 15.10 98.54 / 12.83 97.62 / 15.01
Energy (2020) 95.41 / 15.49 97.64 / 6.08 97.30 / 15.53 99.66 / 7.82 98.67 / 9.26 98.27 / 7.90 97.83 / 10.35
GEM (2022) 99.41 / 61.03 99.47 / 51.02 96.11 / 54.95 98.81 / 52.76 98.61 / 74.99 98.42 / 58.69 98.47 / 58.91

QuantOD (Ours) 99.40 / 18.88 99.59 / 7.53 97.73 / 11.28 99.70 / 10.35 99.20 / 9.16 99.28 / 9.09 99.15 / 11.04

Table 1: Validation performance of QuantOD framework compared with five recent unsupervised methods for outlier detection
given the image classification task on CIFAR-10 as the inlier dataset. The performance for other methods are courtesy of
Energy (Liu et al. 2020) and GEM (Morteza and Li 2022). Each of the methods were trained on WideResNet40 (Zagoruyko
and Komodakis 2016) as the backbone architecture. The results from QuantOD are averaged from three trial runs each with
different initial random seeds. The inlier classification accuracy for other methods as reported by Energy (Liu et al. 2020) is
94.84%, and we report 94.68% for the QuantOD framework. We report the inference runtime for all the compared methods on
the same hardware settings while running the pre-trained model on the outlier datasets.

Datasets: We train QuantOD on CIFAR-10 (Krizhevsky,
Hinton et al. 2009) dataset that consists of 60000 color im-
ages of 32×32 resolution in 10 different object classes, with
6000 images per class. The dataset split has 50000 train-
ing images and 10000 test images and are evenly distributed
among the classes, each representing an object. We evaluate
the performance of our model on six outlier datasets, namely
Textures (Cimpoi et al. 2014), SVHN (Netzer et al. 2011),
Places365 (Zhou et al. 2017), LSUN-C (Yu et al. 2015),
LSUN-R (Yu et al. 2015) and iSUN (Xu et al. 2015). The
outlier datasets were selected such that there was no overlap
between inlier object classes and outlier semantics.

Classification network: For training our QuantOD
framework with the inlier CIFAR-10 dataset, we used
WideResNet40 (Zagoruyko and Komodakis 2016) as the
backbone architecture for the image classification with a
depth and width of 40 and 2, respectively. The architec-
ture is also the backbone network for the other evaluated
approaches in Table 1. In our work, the meta-parameters of
the WideResNet40 model were fixed similar to the ones used
by Energy (Liu et al. 2020). The features used for training
our normalizing flow model are 128-dimensional that are ob-
tained from the penultimate layer of the WideResNet40 net-
work. During inference, the extracted features are utilized
by the density estimator for likelihood-based outlier detec-
tion and are also used by the final fully-connected layer to
predict the inlier classification logits.

Density estimator: We use normalizing flow as the den-
sity estimator to model the distribution of inlier features. The
results in Table 1 are based on the Glow (Kingma and
Dhariwal 2018) architecture that performs a learned invert-
ible 1 × 1 convolution after every coupling block such that
each feature influences the learnable parameters of the flow

model. The s and t transformations are fully-connected (FC)
networks, and we do not perform sub-sampling on the fea-
tures, thereby preserving their dimensionality.

Meta-parameters: The training and inference of the
QuantOD framework were done using four NVIDIA A100-
SXM4 GPUs. For training our framework, the standard
training split of the inlier dataset is utilized in the experimen-
tal setup. In the first stage, the classifier was trained for 100
epochs, with standard Cross-Entropy loss using Stochastic
Gradient Descent (SGD) optimization with a learning rate of
0.1, the momentum of 0.9, and a weight decay of 5e−4. We
also use the cosine learning rate scheduler (Loshchilov and
Hutter 2017), which gradually decays the initial learning rate
of 0.1 to a minimum of 1e−6. The dropout rate of the classi-
fier was set to 0.3. The second stage flow model was trained
for 50 epochs with the dropout rate for the fully-connected
network in each coupling block set as 0.3 and Adam opti-
mizer having a learning rate of 9e−5 and weight decay of
1e−6. The batch size for both the first and second training
stage was set to 128 for efficient use of hardware.

Main Results
In Table 1, we evaluate QuantOD with state-of-the-art
methods for unsupervised outlier detection, all within the
context of the inlier image classification task on CIFAR-
10. On average, we report superior performance, achiev-
ing a 15.84 and 19.91 percentage points improvement on
FPR95 compared to the other leading methods, namely
Energy (Liu et al. 2020), and Mahalanobis (Lee et al.
2018b), respectively. Our method also surpasses the AU-
ROC score of Mahalanobis, with approximately three per-
centage points, while also delivering a better AUPR perfor-
mance. We achieve such improvements while maintaining
the inlier classification accuracy when compared with other
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approaches. With iSUN as the outlier dataset, improvements
of 14.55 and 2.89 percentage points were recorded in FPR95
and AUROC, respectively, compared to the previous best
method, i.e., ODIN (Liang, Li, and Srikant 2018). Similarly,
for Textures and SVHN as the outlier datasets, an improve-
ment of 2.15 and 3.5 percentage points were observed in the
FPR95 score, compared to the nearest previous approach,
Mahalanobis. We think the low-dimensional feature embed-
dings contain salient attributes of the inlier semantics. Hence
when trained on such inlier attributes, the flow estimates
its probability distribution and can robustly distinguish an
outlier feature from an inlier feature. Our model inference
runtime is comparable to the Energy method due to mini-
mal computational overhead of the flow network. We report
faster runtime compared to the Mahalanobis, since this ap-
proach computes the Mahalanobis distance of the test fea-
tures from the class-conditional Gaussians and selects the
distance from the closest class as the confidence score. Such
an iterative computation result in a performance bottleneck.

Ablation Studies
We performed a detailed evaluation of our approach on
varied experimental setups, such as the architecture of the
classifier and normalizing flow network, the effect of mean
vs. quantile-based LqNLL loss, quantifying outlier detec-
tion performance of QuantOD with CIFAR-100 as inlier
dataset and the performance comparison of QuantOD with
approaches that estimate class-conditional Gaussians.

T S P LC LR iS T S P LC LR iS

T: S: P: LC: LR: iS:

Figure 2: Validation on varying q value in LqNLL loss.

Figure 3: Validation of mean vs q = 0.05 at each training
epoch. The results are over iSUN as the outlier dataset.

Mean vs Quantile-based LqNLL Loss: We trained mul-
tiple instances of our QuantOD framework on CIFAR-10
as an inlier by varying the parameter q in the LqNLL loss.
Figure 2 presents the FPR95 and AUROC results on six out-
lier datasets. Generally, the model trained on the quantile-
based negative log-likelihood loss with q = 0.05 outper-
forms the mean-based negative log-likelihood loss. We be-
lieve the quantile-based loss encourages optimization of the

likelihood scores for inlier images situated at the boundary
of the training manifold, leading to better outlier separation
during inference. Conversely, the mean-based loss may not
maximize the likelihood of boundary inliers as effectively
as those near the distribution mean. To further examine this
phenomenon, we compared the FPR95 and AUROC perfor-
mance of mean vs 0.05-quantile based loss at each training
epoch of the flow network. The results in Figure 3 demon-
strate that as training progresses, the 0.05-quantile-based
log-likelihood loss consistently enhances outlier detection
performance. In contrast, the mean-based loss reaches its
peak after a few epochs and subsequently performs worse.
This study validates the superiority of performing quantile-
based maximum likelihood training of the generative model.

Classifier Dim Acc FPR95 AUROC AUPR
WideResNet40 128 94.68 9.39 97.94 99.59

ResNet18 512 95.10 31.01 94.85 98.99

Table 2: Validation of the classifier architecture trained on
CIFAR-10 as the inlier and tested on SVHN. The results are
on Glow as the flow model. The dimensionality of r is de-
noted as Dim, and the classification accuracy as Acc in %.

Architecture of the Classifier Backbone: We evaluated
the classifier backbone for outlier detection performance by
training them with CIFAR-10 as the inlier and testing on
SVHN as the outlier dataset. We kept the meta-parameters
of the flow model fixed for this experiment. We compared
baseline model WideResNet40 (Zagoruyko and Komodakis
2016) having the dimensionality of feature r as 128 with
ResNet18 (He et al. 2016) having the feature dimension-
ality of 512. Table 2 shows that the outlier detection per-
formance reduces as the dimensionality of the features in-
crease. With higher dimensionality, the features become in-
creasingly sparse, thereby preventing accurate modeling of
inlier distribution and effective identification of outlier fea-
tures. The results convey that the low-dimensional features
from the WideResNet40 model are more representative and
therefore favored for outlier detection. Additionally, increas-
ing the dimensionality of r does not significantly enhance
classification accuracy, as the network architecture plays a
more crucial role than the feature dimensions themselves.

Architecture of Normalizing Flow: Table 3 demonstrates
the influence of altering the flow’s meta-architecture. We
assess four different flow models, namely NICE (Dinh,
Krueger, and Bengio 2015), RealNVP (Dinh, Sohl-
Dickstein, and Bengio 2017), Glow (Kingma and Dhariwal
2018), and GIN (Sorrenson, Rother, and Köthe 2020). No-
tably, Glow achieves superior performance due to its precise
density estimation. Next, we examine the influence of vary-
ing the coupling blocks (n) in the Glow model. The optimal
results are observed with n = 8, as further increases offer
negligible improvements in outlier detection performance
but come with additional computational overhead. For the
evaluation of the flow after varying fully connected (FC) lay-
ers at each coupling block, Glow with eight coupling blocks
is used. The best performance is achieved with three FC lay-
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Flow Architecture Blocks (n) FC Layers FC Neurons Clamping FPR95 ↓ (%) AUROC ↑ (%) AUPR ↑ (%)
NICE (2015) 8 2 512 - 27.68 94.63 98.81
GIN (2020) 8 2 512 3.0 18.45 96.30 99.18

RealNVP (2017) 8 2 512 3.0 20.18 95.91 99.08
Glow (2018) 8 2 512 3.0 17.17 96.19 99.15
Glow (2018) 2 2 512 3.0 19.26 95.89 99.09
Glow (2018) 4 2 512 3.0 17.67 96.13 99.15
Glow (2018) 16 2 512 3.0 17.28 96.36 99.21
Glow (2018) 8 1 512 3.0 19.80 95.69 99.02
Glow (2018) 8 3 512 3.0 16.98 96.55 99.27
Glow (2018) 8 4 512 3.0 17.03 96.39 99.23
Glow (2018) 8 2 128 3.0 17.83 96.35 98.20
Glow (2018) 8 2 256 3.0 18.11 96.22 99.19
Glow (2018) 8 2 1024 3.0 17.77 96.10 99.14

Table 3: Validation of the Normalizing Flow meta-parameters with WideResNet40 as the backbone and CIFAR-10 as the inlier
dataset. The results are averaged across the six outlier datasets. The baseline flow network has 8 blocks, 2 layers, 512 neurons,
and the Glow (Kingma and Dhariwal 2018) architecture. The parameter q in the LqNLL loss is fixed as 0.05 for all experiments.

ers, in terms of all the evaluation metrics. We performed ad-
ditional experiments by varying the number of neurons in
the FC layers while keeping the number of layers and blocks
fixed as two and eight, respectively. Our results convey that
512 neurons in each of the FC layers provide the best per-
formance for enhancing the flow model’s outlier detection
capability. By comparing the results in Table 1 and Table 3,
it is evident that regardless of the meta-parameter and the
architecture of the coupling block, our method outperforms
most unsupervised outlier detection approaches.

Method FPR95 AUROC AUPR Acc Time
MSP (2017) 80.41 75.53 93.93 75.96 12.81
ODIN (2018) 74.64 77.43 94.23 75.96 17.17
Energy (2020) 73.60 79.56 94.87 75.96 12.69

QuantOD (Ours) 67.90 82.32 95.48 75.55 13.89

Table 4: Validation on CIFAR-100 as inlier and results aver-
aged over six outlier datasets on WideResNet40 as the back-
bone. The accuracy (Acc) in % and Time in seconds.

CIFAR-100 as Inlier: We further trained our QuantOD
framework on the CIFAR-100 as the inlier dataset and eval-
uated its performance with other unsupervised approaches
on the six outlier datasets. The results in Table 4 show that
QuantOD performs equally well when trained on CIFAR-
100. We report on average 5.7 and 2.76 percentage points
improvement in FPR95 and AUROC performance when
compared with the Energy-based method. We also report
marginal improvements in terms of AUPR metric and com-
petitive inference runtime when compared with the Energy
method. The results convey the superiority of QuantOD ir-
respective of the inlier dataset on which it is trained.

Class-conditional Gaussians: Unsupervised methods
such as Mahalanobis (Lee et al. 2018b), and self-supervised
approaches like VOS (Du et al. 2022), rely on per-class
generative modeling of inlier features. Such a learning
scheme is distinct from our approach, which employs flow
model to learn a unified feature distribution across inlier
classes. Despite the notable difference, we compared the

(

(

Figure 4: Comparison of QuantOD with approaches that
perform class-conditional generative modeling of inlier fea-
tures on both CIFAR-10 and CIFAR-100 as inliers. The re-
sults are averaged over the six outlier datasets.

performance of QuantOD with these two methods in Fig-
ure 4. The results are based on the same WideResNet40 as
the backbone architecture. We report better outlier detection
performance than both methods on inlier as CIFAR-10. For
the model trained on CIFAR-100, we report better FPR95
and AUROC scores than VOS while Mahalanobis performs
better than our approach. For a high number of inlier
classes, Mahalanobis method has the better capability
to estimate the closest distance of outlier features from
class-conditional feature distribution.

Conclusion
Detecting shifts in data distribution is crucial to prevent
neural networks from misclassifying unfamiliar inputs. This
work proposed a new maximum likelihood objective for ro-
bust outlier detection without needing outlier awareness dur-
ing training. The results demonstrate that, through the care-
ful formulation of maximum likelihood training and accu-
rate learning of inlier density in feature space, our approach
outperforms other unsupervised methods and remains com-
petitive with generative approaches that rely on per-class
modelling. Importantly, our framework adds a generative
model to a discriminative classifier while incurring mini-
mal computational overhead, making the approach suitable
for real-time applications. Future work can involve class-
conditional normalizing flows, thereby aiming to improve
the performance by leveraging full available supervision.
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