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Abstract
Counterfactual explanations shed light on the decisions of
black-box models by explaining how an input can be altered
to obtain a favourable decision from the model (e.g., when
a loan application has been rejected). However, as noted re-
cently, counterfactual explainers may lack robustness in the
sense that a minor change in the input can cause a ma-
jor change in the explanation. This can cause confusion on
the user side and open the door for adversarial attacks. In
this paper, we study some sources of non-robustness. While
there are fundamental reasons for why an explainer that re-
turns a single counterfactual cannot be robust in all instances,
we show that some interesting robustness guarantees can be
given by reporting multiple rather than a single counterfac-
tual. Unfortunately, the number of counterfactuals that need
to be reported for the theoretical guarantees to hold can be
prohibitively large. We therefore propose an approximation
algorithm that uses a diversity criterion to select a feasible
number of most relevant explanations and study its robustness
empirically. Our experiments indicate that our method im-
proves the state-of-the-art in generating robust explanations,
while maintaining other desirable properties and providing
competitive computational performance.

1 Introduction
Counterfactual explanations support the outcome of a black-
box machine learning model by explaining how the input
could be changed to produce a different decision (Guidotti
et al. 2019; Karimi et al. 2023; Stepin et al. 2021; Wachter,
Mittelstadt, and Russell 2017). Roughly speaking, a coun-
terfactual explainer is called robust, if a minor change in the
input cannot cause a major change in the explanation. The
actual change can be quantified, for example, by the Eu-
clidean distance, by the number of features that have to be
changed or by a cost associated with changing the features.
One motivation for robustness is user justifiability. Two sim-
ilar users would expect to get a similar explanation and an
individual user may be surprised if a minor change in its
characteristics would result in a completely different expla-
nation (Hancox-Li 2020). Robustness is also relevant from
a fairness perspective because some non-robust counterfac-
tual explainers can be manipulated such that they offer better
explanations for particular subgroups (Slack et al. 2021).
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Figure 1: The figure shows the decision boundaries of two
classes B (blue outer region) and Y (yellow inner region) in
two scenarios (left, right). In both cases, the points x, x1, x2

are relatively close, but their corresponding counterfactuals
c, c1, c2 on the decision boundary are relatively far away
from each other wrt. Euclidean distance.

There are different reasons for non-robustness. As noted
in (Slack et al. 2021), local search methods as hill-climbing
can be highly sensitive to input perturbations and may there-
fore not be robust. All heuristic methods can be susceptible
to such problems, in particular if they rely on randomiza-
tion. However, as noted in (Fokkema, de Heide, and van Er-
ven 2022), there are more fundamental problems that can
cause robustness problems. Intuitively, whenever an input is
between two decision boundaries on opposite sides, a minor
change in the input can result in a major change in the com-
puted counterfactual (see Figure 1 for an illustration). Note
that this problem even applies to exact methods.

The problem in Figure 1 occurs if the input x is close
to the center between decision boundaries. Clearly, a coun-
terfactual explainer that returns a single counterfactual is
bound to lack robustness in such a scenario. One intuitive
idea to overcome this fundamental problem is to report mul-
tiple counterfactuals instead of a single one. In Section 4,
we study this idea theoretically and identify some interest-
ing cases under which an exhaustive explainer can guarantee
robustness by returning all approximate counterfactuals with
respect to some tolerance parameter ϵ. Unfortunately, the ex-
haustive explainer is not practically viable because the num-
ber of identified counterfactuals can be prohibitively large or
even infinite. The blowup is partially caused by sets of coun-
terfactuals that are redundant in the sense that they are all
very similar. Reporting all of them is not desirable from an
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explanation perspective (because the explanation becomes
too large) and is, indeed, not always necessary for guar-
anteeing robustness. To overcome these issues, we propose
an approximation algorithm in Section 5 that incrementally
builds up a set of counterfactuals while filtering new candi-
dates based on a diversity criterion. In Section 6, we study
the robustness and general performance of our approxima-
tion algorithm and compare it to DiCE (Mothilal, Sharma,
and Tan 2020), a state-of-the-art algorithm to generate sets
of diverse explanations. Our experiments show that our algo-
rithm is more robust and also outperforms DiCE along other
metrics of interest, while maintaining superior runtime per-
formance1.

2 Related Work
Counterfactual explanations and their properties. Sev-
eral approaches have been proposed to compute counterfac-
tual explanations for learning models. The seminal work of
Wachter et al (Wachter, Mittelstadt, and Russell 2017) used
gradient-based optimisation to generate counterfactual ex-
planations for neural networks. These counterfactuals are
obtained by optimising a loss function that encourages their
validity (i.e., the counterfactual flips the classification out-
come of the network) and proximity (i.e., the counterfactual
is close to the original input for which the explanation is
sought under some distance metric). Following this initial
proposal, other approaches have been developed to enforce
additional properties on the explanations they produce. For
instance, DiCE (Mothilal, Sharma, and Tan 2020) proposed
novel loss terms to generate sets of counterfactual explana-
tions for a given input. By maximising the diversity within
the set, the authors provide a method to better approximate
local decision boundaries of machine learning models, thus
improving the explanatory power of counterfactuals. A dif-
ferent approach is proposed in proto (Van Looveren and
Klaise 2021), where the authors present a method to gen-
erate counterfactual explanations that lie in the data mani-
fold of the dataset in an attempt to improve their plausiblity.
The method relies on class prototypes identified by varia-
tional auto-encoders or kd-trees to guide the search for high-
quality explanations. Moving away from continuous opti-
misation techniques for differentiable models, (Mohammadi
et al. 2021) cast the problem of finding counterfactual expla-
nations as a constrained optimisation problem encoded and
solved using Mixed-Integer Linear Programming. Similarly,
FACE (Karimi et al. 2020) uses Satisfiability Modulo The-
ory solving to derive a model-agnostic counterfactual expla-
nation algorithm. For further details on counterfactual ex-
planations we refer to (Karimi et al. 2023), which offers a
recent survey on the state of the art in this area.

Robustness and explainability. As explanations are in-
creasingly used to guide decisions in areas with clear so-
cietal implications (ProPublica 2016; FICO Community
2019), their reliability has come under scrutiny. In partic-
ular, recent work has highlighted issues related to the ro-

1The full version of this paper including proofs is available at:
https://arxiv.org/abs/2312.06564. Code available at: https://github.
com/fraleo/robust counterfactuals aaai24.

bustness of state-of-the-art counterfactual explainers. For in-
stance, (Upadhyay, Joshi, and Lakkaraju 2021; Black, Wang,
and Fredrikson 2022; Jiang et al. 2023; Hamman et al.
2023) study how the validity of counterfactual explana-
tions is affected when the weights of a neural network are
slightly altered, e.g., due to retraining or fine-tuning, ob-
serving that many state-of-the-art approaches fail to gen-
erate robust counterfactuals in this setting. Robustness to
model changes is also investigated in (Dutta et al. 2022),
where the authors consider tree-based classifiers and pro-
pose a statistical procedure to test the robustness of counter-
factual explanations when minor modifications are applied
to the tree. A related notion of robustness is also studied
in (Leofante, Botoeva, and Rajani 2023; Pawelczyk, Broele-
mann, and Kasneci 2020), where the authors consider the
more general setting of robustness under model multiplicity.

In another line of work, (Leofante and Lomuscio 2023)
show that the validity of a counterfactual explanation may
be compromised by adversarial perturbations directly ap-
plied to the explanation itself. The authors discuss how such
lack of model robustness (as opposed to input robustness as
we consider here) hinder a transparent interaction between
humans and AI agents. The authors propose to use formal
verification techniques to counter this problem and derive a
method to rigorously quantify the robustness of the expla-
nations they produce. The same notion of robustness is also
addressed in (Pawelczyk et al. 2023), where a probabilistic
method is proposed to generate robust counterfactuals.

To the best of our knowledge, the only existing work that
aims at improving input robustness is (Slack et al. 2021).
In particular, they showed that algorithms based on gradi-
ent search can be highly sensitive to changes in the input
and may thus result in radically different explanations for
very similar events. While they offer useful empirical ob-
servations on how to circumvent this robustness issue, they
do not propose an algorithm to generate counterfactuals that
are robust. In this paper we fill this gap and propose to move
away from instance-based explanations and instead report
multiple, diverse counterfactuals to improve the robustness
of counterfactual explanations.

3 Background
We focus on classification problems over tabular data. Our
datasets are defined by a set of feature variables (features)
X1, . . . , Xk and a class variable C. We let D1, . . . , Dk de-
note the domains associated with the variables and L de-
note the class labels associated with the class C. We let
D = ×k

i=1 Di denote the set of all inputs (of the classi-
fication problem). A domain D is called discrete if D is
countable and continuous if D is an uncountable subset of
R. A classification problem P = ((D1, . . . , Dk), L,E) con-
sists of domains, class labels and a set of training examples
E = {(xi, yi) | 1 ≤ i ≤ N,xi ∈ D, yi ∈ L}. A training ex-
ample (xi, yi) consist of an instantiation xi of the variables
and a class label yi. A classifier is a function Cl : D → L
that assigns a class label l ∈ L to every input x.

Counterfactual explanations explain how an input can be
changed to change the classification outcome. For example,
in a loan application scenario, users may be interested in
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learning what they have to change in order to be successful.
Formally, given a classifier Cl and an input x ∈ D such that
Cl(x) = y, a counterfactual explanation is an input c ∈ D
such that Cl(c) ̸= y and c is close to x. Proximity can be
defined by different measures. This includes metrics like Eu-
clidean or Manhattan distance, weighted variants and mea-
sures that count the number of features that change. Given
one such distance measure d : D×D → R+

0 , a point x′ ∈ D
may satisfy the proximity constraint if it minimizes the dis-
tance among all points that take a different class label or if
the distance is below a particular threshold. Unless stated
otherwise, we do not make any assumptions about d other
than that it is non-negative. Often, d will be a metric, that is,
it will also satisfy
Definiteness: d(x1,x2) = 0 if and only if x1 = x2.
Symmetry: d(x1,x2) = d(x2,x1).
Triangle Inequality: d(x1,x3) ≤ d(x1,x2) + d(x2,x3).

In the following, we will consider two types of counter-
factuals.
Definition 1 (Counterfactuals). Given a reference point x ∈
D and a distance measure d, the counterfactual distance
(cfd) of x is defined as

cfd(x) = inf{d(x,x′) | x′ ∈ D,Cl(x) ̸= Cl(x′)}. (1)
A point c ∈ D such that Cl(c) ̸= Cl(x) is called a strong
counterfactual (wrt. x) if

d(x, c) = cfd(x) (2)
and, for ϵ ≥ 0, an ϵ-approximate counterfactual (wrt. x) if

d(x, c) ≤ cfd(x) + ϵ. (3)
Let us make some simple observations.

• If the domain D forms a complete metric space, then for
every boundary point x of a class such that x belongs
to the class, we have cfd(x) = 0. In this case, if the dis-
tance measure d satisfies Definiteness, there are no strong
counterfactuals for x because the distance of a counter-
factual must be non-zero.

• Every strong counterfactual is an ϵ-approximate counter-
factual for all ϵ ≥ 0.

In the following, we will consider approximate and exact
counterfactual explainers. Since our first observation implies
that strong counterfactuals may not exist even though ap-
proximate counterfactuals do, we allow that even an exact
counterfactual explainer returns approximate counterfactu-
als in this boundary case. To this end, we assume that exact
explainers have a tolerance parameter ϵ. Let us note that, in
practice, even explainers based on exact optimization meth-
ods are typically only ϵ-approximate d-minimizing due to
limited precision.
Definition 2 (Counterfactual Explainer). A counterfactual
explainer E is a function that takes as input a classifier Cl
and an input x ∈ D and returns a set E(Cl,x) ⊂ D of
counterfactuals. We say that:
• E is ϵ-approximate d-minimizing if every c ∈ E(Cl,x)

is an ϵ-approximate counterfactual wrt. x,
• E is d-minimizing (with tolerance ϵ > 0) if every c ∈
E(Cl,x) is a strong counterfactual whenever cfd(x) > 0
and an ϵ-approximate counterfactual if cfd(x) = 0.

4 Counterfactual Robustness Limitations
and the Exhaustive Explainer Eϵ

exh

Our goal is to design a counterfactual explainer that guar-
antees that whenever two inputs x1,x2 ∈ D are close, then
their corresponding counterfactuals are close. In general, we
allow that counterfactual explainers return a set of coun-
terfactuals. There are various ways to measure distance be-
tween two sets. Ideally, we would like to guarantee that for
every counterfactual in E(Cl,x1), there is a close counter-
factual in E(Cl,x2) and vice versa. To measure this, we
consider two set distance measures. The first one averages
the distance of counterfactuals between the sets, whereas the
second takes the maximum:

set-distancedΣ(S1, S2) =
1

2 · |S1|
∑

c1∈S1

min
c2∈S2

d(c1, c2)

+
1

2 · |S2|
∑

c2∈S2

min
c1∈S1

d(c2, c1). (4)

set-distancedmax(S1, S2) =
1

2

(
max
c1∈S1

min
c2∈S2

d(c1, c2)

+ max
c2∈S2

min
c1∈S1

d(c2, c1)
)
. (5)

The following lemma states some simple, but useful facts
about our set distance measures.
Lemma 1. • For all distance measures d, and all
∅ ⊂ S1, S2 ⊆ D, set-distanced∑(S1, S2) ≤
set-distancedmax(S1, S2).

• If d satisfies Symmetry, S1 = {c1} and S2 =
{c2} (S1 and S2 contain a single point), then
set-distanced∑(S1, S2) = set-distancedmax(S1, S2) =

d(c1, c2).

Proof. Please refer to the full version of this paper.

The first item explains that the maximum distance is more
conservative in the sense that it always returns a distance at
least as large as the sum-distance. That is, if we know that
the maximum distance is smaller than some ϵ > 0, then so is
the sum distance. The second item explains that the defini-
tions generalize symmetric distance measures from points to
sets. This is important for our experiments because it guar-
antees a fair comparison between counterfactual explainers
that return a single counterfactual and those that return a set.

We are now ready to give a first formalization of robust-
ness. Intuitively, we demand that if two inputs are close, then
the set-distance between their counterfactual explanations
must be proportional to the distance between the inputs. We
use the maximum distance in the definition since it is more
conservative.
Definition 3 ((ϵ, k)-Robustness). A counterfactual ex-
plainer E is (ϵ, k)-robust with respect to a distance measure
d if for all inputs x1,x2 ∈ D with Cl(x1) = Cl(x2) and
d(x1,x2) < ϵ, we have:

set-distancedmax(E(Cl,x1), E(Cl,x2)) ≤ k · d(x1,x2).
(6)
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Figure 2: Critical s-balls with respect to Manhattan (left),
Euclidean (middle) and Chebyshev (right) distance.

While (ϵ, k)-robustness is desirable, it may be impossi-
ble to satisfy. The geometric intuition is shown in Figure 1.
Whenever the input x is close to two counterfactuals on op-
posite sides, a minor change in x can cause a major change
in the corresponding counterfactual. We make this intuition
algebraically more precise in the following example.

Example 1. Consider a classification problem withD = Rn

and two classes Y (yellow region in Figure 1) and B (blue
region). We use the Euclidean distance as a distance mea-
sure and let Y be the r-ball {x ∈ Rn | d(0,x) ≤ r}
centered at 0 as illustrated in Figure 1. Assume that the
counterfactual explainer finds counterfactuals by minimiz-
ing the Euclidean distance, that is, E(Cl,x) = {c ∈ Rn |
d(c,x) = cfd(x)}. Consider an input x ̸= 0 in the r-ball.
Then there is a unique counterfactual c ∈ E(Cl,x). Now
consider x2 = −x. By symmetry, the corresponding coun-
terfactual will be c2 = −c. Furthermore, since c, c2, 0 are
collinear (they lie on the line through c and c2), we have
d(c, c2) = d(c, 0)+d(0, c2) = 2 ·r. If we choose x,x2 such
that d(x,x2) <

2r
k , then d(x,x2) > k · d(x,x2). Since we

can choose x,x2 such that the distance is arbitrarily small,
E cannot be (ϵ, k)-robust for any choice of ϵ and k.

Note that the example can be generalized to many other
non-linear classification settings. To illustrate this, Figure 2
shows some s-balls with respect to Manhattan, Euclidean
and Chebyshev distance. It should be geometrically clear
that the same argument applies in these scenarios. The
essence of these examples is that the existence of multiple
counterfactuals can cause robustness problems. In order to
avoid the problem, we have to allow, at least, that counterfac-
tual explainers return more than one counterfactual. How-
ever, even when returning multiple counterfactuals, (ϵ, k)-
robustness cannot be guaranteed because boundary counter-
factuals (i.e., counterfactuals with distance cfd(x) + ϵ) are
always lost when making an arbitrarily small step away from
them. However, we can satisfy a weaker notion that guaran-
tees that strong counterfactuals are preserved.

Definition 4 (Weak ϵ-Robustness). E is weakly ϵ-robust
with respect to d if for all inputs x1,x2 ∈ D such that
Cl(x1) = Cl(x2) and d(x1,x2) < ϵ, we have that if
xc1 ∈ E(Cl,x1) is a strong counterfactual with respect to
x1, then xc1 ∈ E(Cl,x2)

Conceptually, we can define a weakly ϵ
2 -robust counter-

factual explainer by returning all ϵ-approximate counterfac-
tuals. We call the corresponding explainer the exhaustive ϵ-
approximate explainer and denote it by Eϵ

exh. Before show-
ing that Eϵ

exh is indeed ϵ
2 -robust, we state a simple lemma

that is useful for proving robustness guarantees in general.

Lemma 2. If d satisfies the triangle inequality, then for all
x1,x2 ∈ D such that Cl(x1) = Cl(x2), we have cfd(x1) ≤
d(x1,x2) + cfd(x2).

Proof. Please refer to the full version of this paper.

Proposition 1. If d satisfies Symmetry and the Triangle In-
equality, then Eϵ

exh is weakly ϵ
2 -robust.

Proof. Please refer to the full version of this paper.

We give a geometrical illustration of the proposition in the
full version after the proof. The following example explains
why we cannot give a general robustness guarantee for ϵ-
approximate counterfactuals that are not strong.

Example 2. Consider again the example in Figure 1. Let
ϵ > 0 be minimally chosen such that c is an ϵ-approximate
counterfactual for x2. Then, c ∈ Eϵ

exh(Cl,x2). However,
when we let x3 be another input on the line segment between
x2 and c2, then we will lose c and all of its close neighbours
in Eϵ

exh(Cl,x3).

Let us note, however, that this case only occurs in bound-
ary cases. Intuitively, a counterfactual is safer the closer it is
to a strong counterfactual. To make this intuition more pre-
cise, we define a notion of safety of counterfactuals based
on a given input that is to be explained and the tolerance
parameter ϵ of Eϵ

exh (c.f., Def. 2).

Definition 5. A counterfactual c of x is called δ-safe with
respect to Eϵ

exh(Cl,x) if δ = cfd(x)+ϵ−d(x, c) and δ ≥ 0.

For example, strong counterfactuals are ϵ-safe. Bound-
ary ϵ-approximate counterfactuals as in Example 2 are 0-
safe. All other ϵ-approximate counterfactuals are δ-safe for
some δ ∈ (0, ϵ). As we show next, Eϵ

exh also gives us
some robustness guarantees for δ-safe counterfactuals that
are not strong. Using our previous terminology, the follow-
ing proposition roughly states that Eϵ

exh is δ
2 -robust for δ-

safe counterfactuals.

Proposition 2. Suppose that d satisfies Symmetry and the
Triangle Inequality. If c ∈ Eϵ

exh(Cl,x) is δ-safe, then for
all x′ ∈ D such that Cl(x) = Cl(x′) and d(x,x′) < δ

2 , we
have c ∈ Eϵ

exh(Cl,x
′).

Proof. Please refer to the full version of this paper.

Intuitively, Eϵ
exh guarantees that the closer a counterfac-

tual is to being a strong counterfactual, the further away we
can move from the reference point without losing it.

Although Eϵ
exh enjoys interesting robustness guarantees,

it is not practical as the number of ϵ-approximate counter-
factuals is infinite in continuous domains and potentially ex-
ponentially large (with respect to the number of features) in
discrete domains. In the next section, we will therefore focus
on approximating Eϵ

exh by a subset of diverse counterfactu-
als that provide a good trade-off between explanation size
and robustness guarantees.
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5 Approximating Eϵ
exh

From a user perspective, there is no point in reporting a large
set of counterfactuals that are all very similar. Instead, we
should try to identify a small set of diverse counterfactuals
that represent the counterfactuals in Eϵ

exh well. We assume
that our dataset E is representative for the data that can oc-
cur in our domain and guide our search for representative
counterfactuals by the examples that occur in E. Our ap-
proach performs the following four main steps , which we
also illustrate in Figure 3:

1. Order examples based on distance from input (Fig 3a).
2. Filter examples based on distance (Fig 3b).
3. Filter remaining examples based on diversity (Fig 3c).
4. For every remaining example, compute a corresponding

counterfactual via binary search (Fig 3d).

In step 1, we are given an input x with class Cl(x) = l.
We construct the set:

S1 = {(x′, d(x,x′)) | (x′, y) ∈ E,Cl(x′) ̸= l} (7)

consisting of pairs of counterfactual points from E and their
distance to x. We order the elements in S1 according to the
distance in increasing order.

In step 2, we restrict S1 to the closest candidates. There
are two natural options to cutoff candidates.

Number-based: pick the M closest candidates.
Distance-based: pick all candidates within a tolerance

threshold.

The number-based approach cannot adapt to different char-
acteristics of E. For example, depending on whether the
counterfactuals in E are all very close (dense) or all very
far away (sparse), we may want to make a different choice
of M . The distance-based selection computes the minimum
distance of a counterfactual in E:

m = min
(x′,y′)∈E

d(x′,x), (8)

and picks all candidates with distance at most (1 + ϵ) · m
(all counterfactuals that are at most 100 · ϵ% more distant
than the closest counterfactual). Hence, it will pick a larger
number when E is dense and a smaller number when E is
sparse. We let S2 denote the set obtained from S1 by picking
the closest candidates according to our selection criterion:

S2 = distanceF ilter(S1, α), (9)

where the parameter α determines the number of candi-
dates (number-based) or the tolerance threshold ϵ (distance-
based).

In step 3, we filter S2 according to some diversity crite-
rion. We consider two alternatives for this purpose.

Angle-based: We quantify the difference between two
counterfactuals c1, c2 by the angle between them relative
to the input x. Formally, we compute the cosine distance
between (x1 − x) and (x2 − x).

Distance-based: Based on the distance between c1 and c2.

Algorithm 1: Binary linear-search algorithm

Input: reference point x, counterfactual c, desired accuracy
γ

Output: closest counterfactual on line segment between x
and c

1: while d(x, c) > γ do
2: x′ ← x+c

2
3: if Cl(x′) = Cl(x) then
4: x← x′

5: else
6: c← x′

7: return c

We create the filtered set S3 in a greedy fashion. Starting
with the set containing only the closest counterfactual, we
successively add elements from S2 (still ordered by dis-
tance) if they are sufficiently different from all candidates
that have already been added. For the cosine distance, we
use the intuition that the angle between the vectors should
be sufficiently large. For the distance-based filter we de-
mand that the distance between two counterfactuals is at
least 100·β% more than m (Equation 8) for some β ∈ [0, 1],
which leads to the constraint d(x, y) ≥ (1+β)·m. We define
S3 by filtering S2 based on the angle or distance.

S3 = diversityF ilter(S2, β), (10)

where the parameter β determines the angular (angle-based)
or distance (distance-based) threshold.

In step 4, we compute counterfactuals from the remaining
candidates in S3. To this end, we perform a binary search
(Algorithm 1) for every c ∈ S3 to find the closest coun-
terfactual to x on the line segment between x and c. Our
algorithm finally returns:

C = binarySearch(S3,x). (11)

We give a short runtime analysis of our algorithm in the
following proposition.
Proposition 3. Consider a classification problem with k
features and N examples.
• Step 1 can be computed in time O(N · (k + logN)).
• Step 2 can be computed in time O(N · k).
• Let M be the number of points remaining after step 2. As-

suming that the distance can be computed in time O(k),
Step 3 can be computed in time O(M2 · k).

• Let TCl(k) be the runtime function of the classifier and let
Dmax be the maximum distance between the reference
point x and one of the remaining points. Step 4 can be
computed in time O(M · (k + TCl(k)) · log2 Dmax

γ ).

Proof. Please refer to the full version of this paper.

Let us note that many classifiers can classify examples in
linear time, that is, TCl(k) = O(k). The overall runtime is
then roughly quadratic with respect to the number of features
and the number of candidates remaining after step 2 and log-
linear in the number of all examples.
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Figure 3: Pictorial representation of steps 1-4 performed by our approach.

We implemented a first prototype of our algorithm. In-
stead of sorting and maintaining the points manually, we use
a k-d-tree. This is likely to increase runtime, but simplified
the implementation.

6 Experimental Analysis
In the previous sections we laid the theoretical foundations
for a framework to generate counterfactual explanations that
are robust to changes in the input. We also introduced an
approximation algorithm that uses diversity to generate ro-
bust counterfactual explanations while maintaining compu-
tational feasibility. We now evaluate the performance of
our approximation algorithm empirically. We compare our
method with DiCE, the de-facto standard approach to gener-
ate sets of diverse counterfactual explanations. We study the
robustness of the two methods along different metrics and
show that our approach outperforms DiCE in most cases.

Experimental Setup
Datasets. We consider five commonly used binary classi-
fication datasets: diabetes (Smith et al. 1988), no2 (Van-
schoren et al. 2013), credit (Dua and Graff 2017), spam-
base (Hopkins et al. 1999) and online news popularity (Fer-
nandes et al. 2015). Our selection includes both low- and
high-dimensionality data, which allows to evaluate the ap-
plicability of our approach in both scenarios. We split each
dataset into a training set and test set; more details about the
datasets can be found in the full version of this paper.

Models and algorithms. We train neural network classi-
fier with two hidden layers (20 and 10 neurons respectively)
for each dataset and use two algorithms to generate diverse
explanations: ours and DiCE2 (Mothilal, Sharma, and Tan
2020), which uses gradient-based optimisation to generate
sets of explanations under a loss function that optimises their
diversity and proximity to the input.

Hyperparameters. DiCE is run with default parameters
from the respective library. As for our approach, the follow-
ing configuration is used: number-based selection in Step 2
with α = 50 for diabetes and no2, and α = 1000 for the
remaining datasets; angle-based filter with β = 0.5 in Step
3 and γ = 0.1 in Step 4. More details on hyperparameter
selection can be found in the full version of this paper.

Protocol. Counterfactual explanations are generated fol-
lowing the same protocol. Given an input x a set of counter-
factual explanations is generated using one among the algo-

2Available at: https://github.com/interpretml/DiCE

rithms considered. Then, a Gaussian distribution centered at
x is sampled to obtain a new input x2 of the same class. This
input is then used to test the robustness of the counterfactual
explainers as follows. The same counterfactual explanation
algorithm is run on x2, the resulting set of counterfactual
explanations is evaluated along different metrics that we de-
scribe in the next section. We run this protocol three times
for each input x and collect average and standard deviation
for each of the metrics we consider. We use this protocol to
evaluate experimentally to which extent our approximation
can maintain the theoretical robustness guarantees of Eϵ

exh.
Hardware. All experiments were conducted on standard

PC running Ubuntu 20.04.6 LTS, with 15GB RAM and pro-
cessor Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz.

Evaluation Metrics
We evaluate results obtained using metrics that are specif-
ically designed to assess the proximity and diversity of the
explanations returned, as well as their robustness with re-
spect to minor changes in the input to be explained. For-
mally, given a distance metric dist : D × D → R+, a
factual input x and a set of diverse counterfactuals S =
{x′

1, . . . ,x
′
n}, we consider:

• k-distance (Mohammadi et al. 2021), defined as:

k-distance(x, S) =
1

|S|

|S|∑
j=1

dist(x,x′
j) (12)

to measure the distance of the diverse set of counterfac-
tuals from the factual input. Low values imply lower cost
of recourse.

• k-diversity (Mohammadi et al. 2021), defined as:

k-diversity(S) =
1(|S|
2

) |S|−1∑
j=1

|S|∑
l=j+1

dist(x′
j ,x

′
l) (13)

to measure the distance between counterfactual explana-
tions within S. Higher values indicate more diversity.

• in order to compare the robustness of generated counter-
factuals, we use the average and maximum set distance
as defined in equations (4) and (5)

In all our experiments we use the L1 and L2 distances to
measure dist, as commonly done in the literature (Wachter,
Mittelstadt, and Russell 2017; Mohammadi et al. 2021;
Dutta et al. 2022; Jiang et al. 2023).
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diabetes no2 news
ours (L1) DiCE (L1) ours (L1) DiCE (L1) ours (L1) DiCE (L1)

validity 100% 100% 100% 100% 100% 100%
k-distance 1.13 ± 0.43 1.83 ± 0.35 0.62 ±0.23 1.26 ± 0.22 2.70 ± 0.97 3.59 ± 0.78
k-diversity 1.39 ± 0.46 1.32 ± 0.19 0.78 ± 0.28 0.87 ± 0.16 3.45 ± 1.24 1.91 ± 0.93

set-distancedΣ 0.21 ± 0.20 0.33 ±0.1 0.16 ± 0.12 0.87 ± 0.16 0.88 ± 0.78 1.73 ± 0.72
set-distancedmax 0.51 ± 0.44 0.66 ± 0.25 0.33 ± 0.24 0.47 ± 0.24 1.94 ± 1.41 2.59 ± 1.00

Time (s) 0.02 ± 0.00 72.66 ± 32.57 0.02 ± 0.01 130.78 ± 13.95 0.30 ± 0.08 338.89 ± 11.59

Table 1: Comparison between DiCE and our method (angle-based) on 50 instances for β = 0.5 and γ = 0.1.

diabetes no2 news
ours (L1) DiCE (L1) ours (L1) DiCE (L1) ours (L1) DiCE (L1)

validity 100% 100% 100% 100% 100% 100%
k-distance 1.38 ± 0.29 1.83 ± 0.35 0.87 ± 0.20 1.26 ± 0.22 3.53 ± 0.90 3.59 ± 0.78
k-diversity 1.71 ± 0.3 1.32 ± 0.19 1.11 ± 0.24 0.87 ± 0.16 4.35 ± 1.17 1.91 ± 0.93

set-distancedΣ 0.22 ± 0.24 0.33 ±0.1 0.15 ± 0.16 0.87 ± 0.16 0.79 ± 0.97 1.73 ± 0.72
set-distancedmax 0.63 ± 0.56 0.66 ± 0.25 0.39 ± 0.35 0.47 ± 0.24 2.14 ± 1.87 2.59 ± 1.00

Time (s) 0.01 ± 0.00 72.66 ± 32.57 0.01 ± 0.00 130.78 ± 13.95 0.28 ± 0.01 338.89 ± 11.59

Table 2: Comparison between DiCE and our method (angle-based) on 50 instances for β = 0.5 and no minimisation.

Evaluating Robustness
This experiment is designed to show that our approach is
able to generate sets of diverse explanations that are more
robust. For each dataset, we select 20 additional instances
from the test set and generate counterfactual explanations
as described earlier in this section. The number of diverse
counterfactuals for each input and each method is limited to
a maximum of 5 to limit the cognitive load on the user. Due
to space constraints we report results for 3 datasets (with L1

distance). Additional results can be found in the full version.
Table 1 reports the results obtained for the overall best pa-

rameterisation β = 0.5 and γ = 0.1 under angle-based fil-
tering. Our approach consistently outperforms DiCE on sev-
eral of the metrics considered across all the datasets. The dis-
tance between the two sets of counterfactuals generated by
our algorithm for the original input and its perturbed version
is always smaller than that of DiCE, demonstrating that our
approach is successful at improving the robustness of the ex-
planations it generates. As far as diversity is concerned, the
results produced by the two approaches are comparable for
diabetes and no2 (see full version for no2). DiCE generates
more diverse explanations for credit and spam, whereas our
approach dominates in the news dataset. Overall we can ob-
serve that when DiCE achieves better diversity, it often sac-
rifices proximity; our approach instead always obtains better
proximity, revealing a possible tension between the two met-
rics. Indeed, we hypothesise the diversity of our counterfac-
tuals is affected by the minimisation of Step 4, which brings
counterfactuals closer together thus leading to a decrease in
k-diversity. Finally, we note that the time taken by DiCE to
generate solutions is always significantly larger, reaching a
two order of magnitude difference in the news dataset.

The Effect of Minimisation
To test the impact that minimisation may have on the di-
versity of counterfactuals generated by our method, we con-

ducted another set of experiments where no minimisation is
performed. We report the results obtained in Table 2, again
using β = 0.5 and angle-based filtering for better compar-
ison. Overall, we observe that this configuration results in
higher degrees of diversity when compared to the previous
experiments. This appears to confirm our intuition that min-
imising distance reduces the diversity of the set returned.
Removing minimisation results in higher k-distance from
the original input; however, our approach still outperforms
DiCE across all datasets. Overall, the robustness of our
counterfactual explanations does not appear to be compro-
mised as our approach always returns explanations that are
more robust than DiCE’s; however we observe a slight in-
crease in both robustness-related metrics, indicating a possi-
ble connection between k-diversity and robustness. Finally,
we note that also in this case the runtime performance of our
algorithm is superior to DiCE’s across all datasets.

7 Conclusions
In this paper we studied the robustness of counterfactual ex-
planations with respect to minor changes in the input they
were generated for. We discussed several limitations of cur-
rent algorithms for generating counterfactual explanations
and presented a novel framework to generate explanation
with interesting robustness guarantees. While theoretically
interesting, the number of counterfactuals that need to be re-
ported can be infinite. Therefore, we introduced an approx-
imation scheme that uses diversity to find a compact rep-
resentation of the candidate counterfactuals and presented
an empirical evaluation of the robustness of our approxima-
tion. Our results show that the resulting method improves
the state-of-the-art in generating robust counterfactual ex-
planations, while also showing great advantages in terms of
computational performance. Future work will focus on de-
vising tighter approximation schemes to further strengthen
the robustness guarantees our framework can offer.
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