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Abstract

We examine machine learning models in a setup where in-
dividuals have the choice to share optional personal infor-
mation with a decision-making system, as seen in modern
insurance pricing models. Some users consent to their data
being used whereas others object and keep their data undis-
closed. In this work, we show that the decision not to share
data can be considered as information in itself that should
be protected to respect users’ privacy. This observation raises
the overlooked problem of how to ensure that users who pro-
tect their personal data do not suffer any disadvantages as a
result. To address this problem, we formalize protection re-
quirements for models which only use the information for
which active user consent was obtained. This excludes im-
plicit information contained in the decision to share data or
not. We offer the first solution to this problem by propos-
ing the notion of Protected User Consent (PUC), which we
prove to be loss-optimal under our protection requirement.
We observe that privacy and performance are not fundamen-
tally at odds with each other and that it is possible for a de-
cision maker to benefit from additional data while respecting
users’ consent. To learn PUC-compliant models, we devise a
model-agnostic data augmentation strategy with finite sample
convergence guarantees. Finally, we analyze the implications
of PUC on challenging real datasets, tasks, and models.

Introduction
While the day-to-day impact of automated data process-
ing is steadily growing, modern regulations such as the
European Union’s General Data Protection Regulation
(GDPR) (GDPR 2016) or the California Consumer Privacy
Act (CCPA) (OAG 2021) strive to give individuals more
control over their personal data. In light of these regulations,
we consider machine-learned classifiers in which individu-
als have the freedom to decide themselves on which data
they would like to provide to an automated decision system.

Such systems are increasingly being deployed (Henning
2022): As a running example, we consider a realistic use-
case of health insurance pricing: Suppose in an automated
pricing model all potential customers are asked to fill out an
application form where they enter certain base features, for
instance information such as their state of residence and age.
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Figure 1: Overview of the relevant stakeholders. We con-
sider a case where users can voluntarily provide information
on optional features or choose to leave them undisclosed.
The goals of sharers, non-sharers, and the decision maker
have to be reconciled.

To improve the pricing model, the insurance offers an ad-
ditional service, a “companion fitness app”, through which
additional health data about the customer’s physical condi-
tion are collected. The customers decide whether to use the
app or not; alternatively, customers can sign up for a pol-
icy without consenting to use the app. The health data that
customers share may however influence the premium of the
insurance policy they receive. We refer to data that provide
additional, non-mandatory information beyond the base fea-
tures as optional features. With fitness trackers and smart-
watches rapidly gaining popularity (Reeder and David 2016;
Zimmer et al. 2020; Statista 2023), such systems are already
being deployed in practice, e.g., by major health insurance
firms in Australia (Henning 2022).

The outlined scenario is challenging as there are three
groups of stakeholders whose interests need to be recon-
ciled: (1) The group of non-sharing individuals who do not
want to provide additional information, for instance due to
privacy concerns. We refer to them as non-sharers. For this
group, the decision maker does not want to or cannot force
them to provide the additional information for legal reasons.
Consequently, the non-sharers do not want the additional in-
formation to be considered in the decision making process;
in return, they are willing to sacrifice some accuracy, but
they do not want to face other systematic disadvantages. (2)
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On the other hand, individuals who voluntarily share data
(sharers) explicitly want the additional information to be
considered and want to obtain more accurate predictions.
(3) Finally, the decision makers themselves desire the most
accurate predictions with the lowest overall costs while re-
specting the users’ privacy and legal requirements.

Among these requirements, it is crucial to the non-sharers
to explicitly exclude the information contained in the de-
cision to share or not to share. To see this, we note that
smartwatch users are more likely to exercise in general than
non-wearers (DeMarco 2023) which usually create lower
costs for the insurance company as fitter customers take less
sick days on average. Thus, only through observing the de-
cision to share data, the insurance firm could make infer-
ences about a person’s fitness. This is problematic for two
reasons: First, the company would unethically infer private
data, that the non-sharers explicitly did not give consent to.
Prior work (Wachter and Mittelstadt 2019) has argued for
a “right to reasonable inferences”. This rules out inferences
from unrelated factors that are purely predictive and may
infringe privacy, as they open the door for discriminatory
and invasive decision-making (Mittelstadt et al. 2016). Sec-
ond, this would lead to non-sharers being assigned a higher
insurance premium than the estimate of the legacy model
which only considered their base features. Many countries
have laws that prohibit insurers from raising the base pre-
mium for users who do not share their data, as this is seen
as a coercive and unfair practice. For example, the US only
permits five factors to affect the premium, which are loca-
tion, age, tobacco use, plan category, and dependent cover-
age (US Government. U.S. Centers for Medicare & Medi-
caid Services. 2023). It is however possible for insurers –
and desired by many users – to award bonuses which re-
duce the premium based on participation in optional reward
and incentive programs (Madison, Schmidt, and Volpp 2013;
Henning 2022).

To summarize, we study machine learning models that
can handle optional features and meet legal requirements
and desiderata of three groups of stakeholders: the sharers,
the non-sharers, and the decision makers. We consider it es-
sential for these models to not make inferences based on the
unavailability of a feature value for the non-sharers, a con-
straint that we term Availability Inference Restriction (AIR).
Finally, we are interested in obtaining models with optimal
performance under this requirement.

Contribution. We address the problem of how to fairly
and privately predict outcomes for users who share optional
data and those who do not. We tackle this overlooked issue
by making the following contributions:

• Definition. We introduce models with Protected User
Consent (PUC), which are optimal under our protec-
tion requirement AIR. We derive performance guaran-
tees, which formally show that it is possible to reconcile
the decision maker’s interest in improved predictions and
the non-sharer’s privacy preferences.

• Algorithm. We propose a PUC-inducing data augmenta-
tion (PUCIDA) technique that can be applied to any type
of predictive architecture (e.g., tree or neural network)

and any convex loss function (e.g., mean squared error or
cross-entropy loss) to obtain such models

• Analysis. We prove that predictive models trained with
PUCIDA satisfy PUC asymptotically, and provide fi-
nite sample convergence results that demonstrate that
PUCIDA produces PUC-compliant models in practice.

• Empirical evaluation. We empirically show that with-
out enforcing PUC, the average absolute prediction out-
come (e.g., insurance quote) of users who do not share
data can be almost 20 % worse than justified by their base
data. We then evaluate our data augmentation technique
on various ML models and show that PUC is achieved
regardless of the model.

Related Work
In this Section, we review the most relevant streams of re-
lated work (see Appendix A.1 for additional references).

Classification with Missing Values. Classification mod-
els that can handle missing data have been studied previ-
ously with the goal of minimizing costs or increasing perfor-
mance (Zhang et al. 2005; Aleryani, Wang, and De La Igle-
sia 2020), obtaining uncertainty estimates (Kachuee et al.
2020), or fulfilling classical fairness notions (Zhang and
Long 2021; Jeong, Wang, and Calmon 2022; Wang and
Singh 2021; Fernando et al. 2021). However, the mech-
anisms underlying missingness is different in this work,
as missing values indicate explicit non-consent by the
user, leading to different implications. In a related line of
work, classification with noisy (Fogliato, Chouldechova,
and G’Sell 2020) or missing labels (Kilbertus et al. 2020;
Rateike et al. 2022) has been investigated, where the miss-
ingness is often a result of selection bias. The setting con-
sidered in this work is different in the sense that we are not
concerned with fulfilling a fairness notion with respect to a
sensitive attribute, but consider the interests of subjects that
have and have not provided optional information.

Data Minimization. The principle of Data Minimiza-
tion is anchored in the GDPR (GDPR 2016). Data Mini-
mization demands minimal data collection. Several works
are concerned with implementing (Goldsteen et al. 2021)
or auditing compliance with this principle (Rastegarpanah,
Gummadi, and Crovella 2021). Rastegarpanah et al. (Raste-
garpanah, Crovella, and Gummadi 2020) consider decision
systems that can handle optional features from a data min-
imization perspective where the decision maker decides
which features are collected for each individual. This prin-
ciple is distinct from the “right to be forgotten” (Biega et al.
2020), which enables individuals to submit requests to have
their data deleted. In response to these regulations, several
works consider the problem of updating an ML model with-
out the need of retraining the entire model (Wu, Dobriban,
and Davidson 2020; Ginart et al. 2019; Izzo et al. 2021; Go-
latkar, Achille, and Soatto 2020) or the effect of removals
on model explanations (Rong et al. 2022; Pawelczyk et al.
2023). Our work differs from these works as our goal is
to train a model where users decide themselves which data
they deem relevant through sharing one or many optional
features.
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Algorithmic Fairness. A multitude of formal fairness
definitions have been put forward in the literature (Verma
and Rubin 2018). Examples include statistical parity (Dwork
et al. 2012), predictive parity (Chouldechova 2017), equal-
ized odds, equality of opportunity (Hardt, Price, and Srebro
2016), and individual fairness (Dwork et al. 2012). How-
ever, they are still a topic of discussion, for instance, be-
cause these definitions are known to be incompatible (Klein-
berg, Mullainathan, and Raghavan 2016; Lipton, McAuley,
and Chouldechova 2018). Additionally, there are a several
definitions that rely on causal mechanisms to assess fair-
ness, e.g., counterfactual fairness (Kusner et al. 2017), and
the notion of unresolved discrimination (Kilbertus et al.
2017). While causal approaches to fairness might be prefer-
able, they require information about the causal structure of
the data generating process. Moreover, it has recently been
shown that causal definitions may lead to adverse conse-
quences, such as lower diversity (Nilforoshan et al. 2022).
We discuss how existing fairness definitions could possibly
be applied to the setting with optional features, but we find
that none of the fairness definitions aligns with our desider-
ata theoretically and experimentally (see Appendix A.2).

Strategic Classification. In an even broader context, this
work also relates to the field of strategic classification (Hardt
et al. 2016). However, it is worth noting that in strategic
classification research, the focus primarily revolves around
users strategically manipulating their features for optimal
outcomes, which may also involve information withholding
(Krishnaswamy et al. 2021). In contrast to our work, privacy
concerns are neglected in this research stream. As far as we
are aware, there are no prior works on the specific problem
of balancing the interests of all three groups of stakeholders
(the non-sharers, sharers, and the decision makers).

Problem Formulation
Formalization and Notation
In this work, each data instance contains a realization of a
number of base features b ∈ X b, where X b ⊆ Rn is the
space of the base features. Furthermore, let there be some
optional information z ∈ X z , where X z ⊆ R is the value
space of the optional feature.1 It is the users’ choice to de-
cide if they want to disclose z to the system, which results
in an availability variable a ∈ {0, 1}. Accordingly, only
imputed samples z∗ = {z if a=1, else N/A} are observed,
where a value of N/A indicates that a user did not reveal the
optional information, e.g., did not use the companion app.
In summary, the data observations are tuples x = (b, a, z∗)
that reside in X = X b×{0, 1}× (X z ∪{N/A}). Each train-
ing sample comes with a label y ∈ Y . Further, there is a
data generating distribution p with support X × Y and we
have access to an i.i.d. training sample (x, y) ∼ p. Figure 2
shows such a data sample. We denote the random variables
for the respective quantities by B, A, Z, Z∗, Y . The label is
probabilistically determined through the base features B and
the hidden feature Z but the sharing decision does not influ-

1We extend our definitions to integrate multiple optional fea-
tures a later section.

base features b opt. feat. z∗ a label y

state plan fitness scoreavail. treatment costs

New South Wales basic 87 % 1 3k$
Queensland gold N/A 0 17k$

New South Wales basic 92 % 1 5k$
New South Wales basic N/A 0 64k$

Victoria premium 56 % 1 22k$

Figure 2: Samples for the insurance use-case. We have two
base features b and one optional feature z∗, which either
takes an observed value z, or it takes a value of N/A if un-
observed. The variable a ∈ {0, 1} indicates the availability
of the feature. The goal is to predict the label y.

ence the true label for a given B, Z, such that Y ⊥⊥ A|B, Z.

In many applications, the goal is to find a function f :
X → Y that models the observed data. In particular, f :
X → [0, 1] may predict a probability of a positive outcome
or f : X → R may return a numerical score. The test
data for which the model will be used come from the same
distribution p, though with the label y unobserved, and we
suppose that the information provided is always correct. We
consider a convex loss function L : Y ×Y → R, e.g., mean-
squared-error (MSE) or binary cross entropy (BCE), for
which we minimize the expected loss for a sample from the
data distribution. For instance, using the common MSE loss
L(f(x), y) = (f(x)− y)2, an optimal predictor is given by
f∗
L(x) = argminf(x) Ep(Y |x)

[
(f(x)− Y )2

]
= E[Y |x],

the conditional expectation. However, this notion can be
generalized to other loss functions: An optimal predictor
f∗
L(x) for the loss function L fulfills ∀x:

f∗
L(x) = FL

p [Y |x] := argmin
f(x)

Ep(Y |x) [L(f(x), Y )] . (1)

We use FL[Y |x] to denote a generalized expected value that
minimizes the expected loss conditioned on x. To ease our
derivations, we suppose this minimum to be unique and fi-
nite. Intuitively, it represents the best guess of Y given x. For
the MSE-Loss, FL is equivalent to the expectation operator
E. In the following statements, the reader may thus mentally
replace FL with an expectation E without further ramifica-
tions in order to get the high level intuition. Finally, we in-
troduce two key terms, namely, base feature model and full
feature model. The former refers to a model trained on the
base features only, while the latter refers to a model trained
on all features where some strategy is used to replace un-
available feature values. Typically these strategies are called
imputation and replace unavailable values by zeros, a fea-
ture’s mean or median (Emmanuel et al. 2021).

Desiderata
Our goal is to learn models f : X → Y that comply with
the desideratum of Availability Inference Restriction, which
we briefly introduced in Section , to protect the interests of
the non-sharers. Under this constraint, the model should pro-
vide the best predictive performance to reflect the need of
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the sharers and the decision maker for most accurate predic-
tions.

Desideratum 1: Availability Inference Restriction. We
start by considering the intricate case of individuals who
do not want to share optional information. In this case, the
model should compute the prediction based on the infor-
mation the user gave their consent to. In particular, (a) the
model should only use the base features and (b) should not
use information that could be derived from the unavailabil-
ity of the optional features to compute the prediction to avoid
violating the user’s consent.

For (a), this requires that the predictor does not use the
information as an explicit input, i.e., the predictor should
behave as if it only used base features b via some function
g : X b → Y : f|a=0

(b, a, z∗) = g(b). For (b), although a=0
is not an explicit input to g, a sufficiently complex function
may still be implicitly adapting to the group a = 0 and thus
incorporate information that the user did not give their con-
sent to. We would like to make sure that the predictions of
g cannot use more information than contained in the over-
all conditional distribution, given the base features b. This
overadaption can be prevented by constraining the model’s
loss on the population of non-sharers to match the loss of the
optimal base model f∗

L on this population. The reasoning be-
hind this rationale is that all models that would beat the per-
formance of this model must implicitly use some additional
side knowledge about this group that was not provided by
the users.

Definition 1 (Availability Inference Restriction). For in-
dividuals that choose not to provide the optional feature
(a=0), only the provided data b is used to compute the
outcome in the decision process, i.e., f|a=0

(b, a, z∗)=g(b),
where g : X b → Y is a base feature model. Further, we
require

E [L (g(B), Y )|A = 0] ≥ E [L (f∗
L(B), Y )|A = 0] . (2)

This definition summarizes our intuition that the informa-
tion encoded through the unavailability of feature informa-
tion should neither be used explicitly (a) nor implicitly (b).
We show how this constraint can analogously be derived
from information-theoretic considerations in Appendix B.3.

Desideratum 2: Optimality. Our Definition 1 restricts
the information that the predictor can use when the optional
information is unavailable. To meet the interests of the deci-
sion maker and the sharers, we also want to find models with
optimal performance, i.e., lowest loss, under this constraint.

Protecting User Consent
We are therefore looking for an optimal model within the
class of predictors that comply with Availability Inference
Restriction. In this Section, we derive a novel notion called
Protected User Consent (PUC) that fulfills this purpose.

One-Dimensional PUC
The next result encodes an intuitive notion of protection for
the users that do not want to share data on the optional fea-
tures (a=0): Their prediction under f is then constrained to

the best estimate for a user with the same base characteris-
tics, no matter if additional data was provided. Contrarily,
when additional information through the optional feature is
provided, the predictor returns the best estimate using the
available optional information:
Theorem 1 (1D-PUC). Let f : X → Y ⊆ R be a full fea-
ture model (i.e., including optional features). Among all pre-
dictors compatible with the Availability Inference Restric-
tion, a model f with minimal loss is given by:

f∗
PUC (b, a, z∗) =

{
FL[Y |b], if a = 0

FL[Y |b, A = 1, Z∗ = z∗] if a = 1.

We defer all proofs in this work to Appendix D. PUC
is different from existing notions of group fairness, that do
not fulfill the two desiderata in general (see Appendix A.2
for a discussion). Under the mentioned requirements, there
is no model that can outperform f∗

PUC. We stress that 1D-
PUC-compliant models have performance guarantees. These
models match or improve upon an optimal base feature
model f∗

L(B) = FL [Y |b]. This model can be seen as an up-
per bound for practical models obtained after model selec-
tion. Therefore, models that can beat its performance may
offer improvements even after extensive hyper-parameter
tuning and model selection, a property which we refer to as
Predictive Non-Degradation (PND): a model f fulfills PND
if its loss is smaller than that of the base feature model:

E[L (Y, f∗
L(B))] ≥ E[L (Y, f(B, A, Z∗))]. (3)

We prove the following result:
Corollary 1 (Predictive Non-Degradation of f∗

PUC). For any
density p, a PUC-compliant model f∗

PUC fulfills Predictive
Non-Degradation, i.e., it has a loss upper-bounded by the
optimal base feature model f∗

L.
This is a remarkable result as it testifies that the decision

maker can benefit from additional information in terms of
loss, while protecting the privacy of users. This highlights
that the interests of the different stakeholders are not contra-
dictory and models that benefit all stakeholders do exist.

PUC under Strategic Considerations and
Monotonicity Constraints
We have initially considered the case where the users desire
the highest possible accuracy under data usage restrictions.
However, in some cases such as our initial insurance exam-
ple, the motivation to receive a lower premium might be a
more important concern to some users than receiving an ac-
curate prediction or their privacy concerns. If all users have
full information (i.e., they see premiums with and without
their optional data) and act strategically by sharing the value
of z only if it would decrease their premiums, we obtain the
following result.
Theorem 2 (Optimality of f∗

PUC under strategic actions). Let
p′(B, Z, Y ) be any prior density on base features, true op-
tional features and labels and let f(b, a = 0, z) = FL[Y |b],
i.e., the decision maker uses the base feature model when
no optional data is available. Further suppose that users
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strategically choose to share the optional feature z only if
f(b, a = 1, z) ≤ f(b, a = 0,N/A). Under these condi-
tions, the model f∗

PUC (Theorem 1) has minimal loss among
all predictors.

This result underlines that PUC models remain optimal
if the decision maker cannot increase the premiums be-
yond the predictions of the current base model for the non-
sharers. This is reasonable in many cases, where legal con-
straints mandate that the decision maker cannot implicitly
force users to share data by inflating the base premium, as
outlined in the introduction. The sharing decision can also
be automated for the users by simply dropping the optional
feature if it does not lead to a decrease in premiums. This
would result in the aforementioned bonus systems, where
sharing more data cannot increase the premium. We show
that among the class of models with such a monotonicity
constraint, the outlined PUC-model with automatic sharing
decisions is still optimal under the same conditions as in
Theorem 2 in Appendix D.5.

r-dimensional PUC
Next, we generalize our notion such that r features can
be provided optionally. For example, the insurance firm
might also accept voluntary results from prior medical ex-
aminations or diagnostic tests. Therefore, let there now
be r optional features such that z∈X z

1 × · · · × X z
r and

a∈{0, 1}r, where X z
i are the respective supports of each

optional feature. By I⊆[r]= {1, . . . , r}, we denote an
index set that contains all feature indices present, i.e.,
I(a)= {i | ai = 1, i = 1, . . . , r}. When we index vectors
with this set, e.g., ZI , we refer to the subvector that only
contains the indices in I.

Definition 2 (Protected User Consent, PUC). Let f : X →
Y ⊆ R be a full feature model. The model f∗

PUC that fulfills
Protected User Consent is given by

f∗
PUC (b,a, z∗) =

FL
(B,A,Z∗)∼p

[
Y
∣∣∣B = b,AI(a) = 1,ZI(a) = z∗

I(a)

]
,

where AI(a) = 1 means that each element that is set to 1 in
a needs to be one in A as well.

For a single feature (r=1), the index set can either be
I=∅ or I= {1} and the definition corresponds to 1D-PUC.
The conditional expectation with AI(a)=1 effectively con-
strains the features in I to be available, but marginalizes over
samples with or without further information.

Implementing Protected User Consent
In this section, we derive a model-agnostic approach called
PUC-inducing data augmentation (PUCIDA) to achieve
protected user consent. By using theoretical analysis, we es-
tablish that PUCIDA will result in exact protected user con-
sent. Furthermore, we establish performance guarantees that
provide an upper bound on the deviation between practical,
finite sample-based PUC-compliant models and their theo-
retical infinite sample limits.

state plan score costs
NSW basic 87 % 3k$

+⃝ NSW basic N/A 3k$
NSW basic 92 % 5k$

+⃝ NSW basic N/A 5k$
NSW basic N/A 64k$

Figure 3: Explaining PUCIDA. Our data augmentation pro-
cedure expands each instance with optional information into
two samples: The original instance and a synthetic sam-
ple ( +⃝). The synthetic samples retain the base features and
the labels, but the information on the optional features is
dropped (fitness score −→ N/A). The model sees samples
with the same base features with a missing value and will
thus base its decision only on the base features. In this exam-
ple, given the base features (“NSW”, basic) and no optional
statements, the model would estimate the costs to be 24k$,
which is the dataset average conditioned on these values.

PUCIDA: PUC-inducing Data Augmentation
Intuitively, we want to prevent the model from making infer-
ence from a feature’s missingness patterns. The core insight
is to leverage synthetic samples that make the distribution of
the labels given missingness equal to the overall label dis-
tribution. Thereby, we prevent the derivation of predictive
information from the missingness itself (see Table 3).

For a single optional feature, extensively enumerating all
samples as in the table is possible while for multiple fea-
tures this may be intractable. Therefore, we do not list all
samples but propose a stochastic, multifeature variant of
the algorithm: (1) Instead of drawing samples with uniform
probability from the distribution p, we use non-normalized
weights w:

w(x) = w(b,a, z∗) = 2|I(a)|. (4)

This step corresponds to the expansion of an instance into
2|I(a)| synthetic ones; e.g., a sample with a single optional
feature is assigned a weight of two (cf. Figure 3). Train-
ing instances are drawn with a probability proportional to
these weights. This results in data instances with optional
information being more frequently sampled. (2) We require
a sample modification where optional features are randomly
dropped from the samples. For each sampled item, we drop
each available optional feature with probability p=0.5:

qi ∼ Bern(0.5), i = 1, . . . , r; a = q⊙ a; (5)
z∗
i = {z∗

i if ai=1, else N/A} , i = 1, . . . , r. (6)

(3) We train the predictive model on the modified samples
(x, y)= ((b,a, z∗), y) ∼ p derived through this procedure.

Theoretical Analysis
We summarize PUCIDA in pseudo-code in Appendix D.8
and provide the following theorem to demonstrate that
PUCIDA leads to PUC-compliant models.
Theorem 3. The loss-minimal model f (b,a, z∗) =
FL
p [Y |b,A = a,Z∗ = z∗] on the modified distribution p
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fulfills Protected User Consent with respect to p, i.e.,

FL
p [Y |B = b,A = a,Z∗ = z∗] =

FL
p

[
Y
∣∣∣B=b,AI(a)=1,ZI(a)=z∗

I(a)

]
= f∗

PUC (b,a, z∗) .

This result is remarkable in its generality as it enables
PUC-compliant models using standard optimization proce-
dures by modifying the distribution of the data; i.e., PUCIDA
can be combined with any existing model and training
pipeline. Next, ‘we’ study the theoretical convergence be-
havior for PUCIDA on finite samples. To this end, we define
the PUC-Gap as the expected squared deviation from PUC:

PUC-Gap2(f,p) = (7)

E(B,A,Z∗)∼p

[(
f(B,A,Z∗)− f∗

PUC(B,A,Z∗)
)2]

.

We will restrict ourselves to L ≡ MSE and thus FL ≡ E,
and study a baseline conditional expectation estimator µ̂
which averages the labels conditional on all observations
with the same features x. For brevity, we refer to Ap-
pendix D.7 (Eqn. 51) for a formal definition of this estima-
tor. Since we usually cannot compute the exact expectation
from Theorem 3, we are interested in the number of samples
required from p to obtain a fixed average estimation error
for which we establish the following result.

Theorem 4 (Finite Sample Convergence). Let X = X b ×
(X z ∪ {N/A}) be finite feature space and let Y ⊆ R be
the label space. All conditional expectations µ(x):=Ep [y|x]
and the conditional variances σ2(x):=Varp [y|x] exist and
are finite. Then there exists a baseline non-parametric re-
gressor µ̂ : X 7→ R from a finite number of N independent,
identically distributed observations (xi, yi)i=1...N from p
with a convergence rate of O(N−1); more specifically

PUC-Gap2(µ̂,p) = EX∼p

[
(µ̂(X)− µ(X))

2
]

≤ 2r|X |2(σ2
max + µ2

max)

N
+O

(
1

N2

)
,

with σ2
max:=maxx∈X σ2(x) and µ2

max:=maxx∈X µ2(x).

In conjunction with Theorem 3, this result provides a
bound on the expected gap to perfect protected user consent
that is dependent of the sample size, which decreases with
a rate of O

(
N−1

)
. Several remarks are in place: We obtain

a multiplicative constant which depends on the number of
optional features r and the size of the feature space |X |. The
square of this quantity enters the result because the number
of samples available to estimate each conditional mean is not
independent, as they need to sum up to N . For large feature
spaces, however, they are almost independent and we expect
the constant to scale almost linearly in |X |. The growth of 2r
is attributed to the re-sampling strategy which might assign
a very low probability to certain inputs, which may only be
well approximated with a high number of samples. As the
number of optional features is typically limited in realistic
use-cases it will be well outgrown by N . Note that more
powerful model (e.g., Tree based model + PUCIDA) usually
outperform this baseline.

data base model Full feature model PUCIDA

diab.(C) 33.84% ±2.47 31.44% ±2.19 34.01% ±1.71
compas (C) 44.47% ±0.37 41.47% ±1.09 44.54% ±0.54

adult (C) 13.37% ±0.07 12.84% ±0.28 13.41% ±0.12

water (C∗) 10.65% ±1.64 10.00% ±1.58 10.97% ±1.21
colic (C∗) 13.81% ±0.82 11.34% ±0.46 15.05% ±0.68

income (R) 109.56 ±1.00 109.11 ±1.29 110.73 ±1.29
calif. (R) 15.79 ±0.10 15.16 ±0.28 16.18 ±0.06

insurance (R) 283.47 ±0.53 279.78 ±0.42 285.31 ±0.39

Table 1: Availability Inference Restriction is violated by
full feature models (Random Forests). As expected, the full
feature models always have lower losses than the base-
models, indicating that Availability Inference Restriction is
violated while PUCIDA fullfils Availability Inference Re-
striction. We report misclassification error rates for classifi-
cation models and MSE loss (× 100) for regression models.

Practical considerations. For smaller datasets, an alter-
native approach to random sampling is to use all possible
samples to approximate the distribution p by a method we
call “exhaustive augmentation”. This involves enumerating
all possible variations of the original samples, including any
optional features, to form a larger dataset D′. The model is
then trained on this expanded dataset.

Experimental Evaluation
Here, we empirically validate the effectiveness of our meth-
ods using eight real-world datasets and one synthetic dataset.
In particular, we highlight that (a) full feature models violate
the Availability Inference Restriction and make it harder for
non-sharers to obtain the positive outcome, (b) PUCIDA re-
sults in PUC-compliant models as suggested by our theory,
and that (c) the reduction in terms of model performance
due to using PUC are moderate relative to deploying a full
feature model.

Common datasets. We use eight real-world datasets
commonly found in the related literature. For classification
(C), the Diabetes (diab) and the horse colic dataset (colic)
study the prediction of diseases, the COMPAS dataset is
concerned with estimating likelihood of recidivism and UCI
Adult income dataset requires to predict whether individuals
have an income of over 50k$. The water treatment dataset
(water) predicts the operational state of a facility. We also
study the regression tasks (R) of house price estimation in
California (calif), income prediction (income), and inferring
information from insurance claims (insurance) to link to our
initial example. Details about preprocessing, dataset sources
and model hyperparameters are provided in Appendix F.2.

Availability. The colic and the water dataset come with
inherent missing values that we use (indicated through ∗).
For six more datasets we introduce availability dependent
on a feature’s value. We compute the probability of feature
unavailability p(Ai = 0|zi) by applying a sigmoid function
centered at the feature mean and sample the availability a
from the respective conditional distribution. We additionally
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Full feature model PUCIDA

task data optional Base feature model pred. change pred. change

C diab. Glucose 60.27% 45.19% -15.08% ±2.01 61.20% 0.93% ±0.93
C compas #priors 51.19% 32.86% -18.33% ±0.89 51.34% 0.15% ±0.59
C adult edu-num 13.86% 11.44% -2.42% ±0.07 13.92% 0.06% ±0.05

C∗ water oxygen. dem. 87.10% 84.52% -2.58% ±2.81 87.42% 0.32% ±1.58
C∗ colic abdom. app. 6.39% 1.24% -5.15% ±0.92 7.01% 0.62% ±1.64

R income WKHP 100.0% 81.2% -18.8% ±0.61 101.2% 1.2% ±0.19
R calif. m income 100.0% 94.4% -5.6% ±0.67 103.8% 3.8% ±0.42
R insurance experience 100.0% 94.8% -5.2% ±0.09 100.1% 0.1% ±0.05

Table 2: Measuring the average predictions for non-sharers. For classification tasks we report the positive outcomes (in %), and
for regression tasks, we report relative predictions to the base feature model (set to 100 %). The non-sharers face disadvantages
for not providing the voluntary information and are assigned less favorable prediction outcomes by the full feature models. This
discrepancy vanishes when PUCIDA is applied.
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Figure 4: PUCIDA is model-agnostic. The PUC-gaps are
close to zero when applying our technique across a variety
of common models on the simulated dataset.
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Figure 5: Convergence rate of models under PUCIDA. The
estimate of PUC converges to the true value at a rate of
O( 1

N ) for the baseline estimator µ̂ and other commonly used
models.

study these datasets in the setting of strategic withholding.

Evaluating PUCIDA
Availability Inference Restriction is violated by full fea-
ture models. First, we demonstrate the effect that full fea-
ture models have on Availability Inference Restriction. We
follow common practices and use zero-imputation to deal
with unavailable feature values (Emmanuel et al. 2021).
Then, we train a Random Forest model on all features of the
dataset where we have introduced stochastic availability into
one feature (see previous paragraph). We also train a base
feature model that fully drops the optional feature from the

dataset. We consider the subset of individuals with unavail-
able feature values (i.e., a=0) and report the average loss
and absolute prediction of the positive class for both models
in Table 2. We observe that the full feature models use the
information contained in the missingness to obtain a lower
loss. This can reduce the chance of obtaining the positive
outcome from the full feature model compared to the base
feature model by significant margin of up to 18 % for non-
sharers. Hence, these results impressively show how the full
feature model implicitly infers information from missing-
ness and thereby violates protection requirements. This stays
the same when applying established fairness constraints on
the models (see Appendix F.1). In contrast, when applying
PUC using PUCIDA this gap vanishes or is significantly re-
duced. We show that the same effect can be observed inde-
pendently of the imputation techniques, the model class, and
the model hyperparameters in Appendix F.3.

Evaluating the Theoretical Bounds
PUCIDA guarantees Predictive Non-Degradation. Usu-
ally model performance degrades when training models
with additional constraints (e.g., see Corbett-Davies et al.
(2017)). To measure model performance, we use the mis-
classification rate for classification tasks (ROC-AUC scores
lead to qualitatively similar results, see Appendix F.4) and
the MSE for regression tasks. The results in Table 3a confirm
that PUCIDA (using exhaustive augmentation) improves
over the base feature model, suggesting that PUCIDA mod-
els benefits from using optional information. This is the case
even under under strategic actions where users only provide
data if it improves their outcome, and aligns with our the-
oretical result in Corollary 1. Under non-strategic actions,
the performance figures show the same characteristics (Ap-
pendix F.4). As expected, PUC-compliant models fare mod-
erately worse than full feature models which have no protec-
tion requirements.

We now compare two different PUCIDA variants on mul-
tiple optional features: the first strategy ensures a fixed
dataset size, i.e., the number of samples is equivalent to the
original dataset size. The second strategy, which uses ex-
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task data opt. feature base model PUCIDA Full feature model

C diab. Glucose 29.30% ±0.62 26.61% ±0.56 23.41% ±0.69
C compas #priors 42.89% ±0.10 40.85% ±0.15 36.67% ±0.36
C adult edu-num 16.05% ±0.03 15.94% ±0.05 14.86% ±0.06

R income WKHP 85.07 ±0.17 80.22 ±0.15 73.25 ±0.16
R calif. m income 15.62 ±0.14 14.79 ±0.08 13.40 ±0.03
R insurance experience 262.43 ±0.21 254.35 ±0.39 236.92 ±0.42

(a) One dimensional case, strategic withholding. Metrics: C: (1-Acc)×100, R: MSE×100

Fair models Full feature model

task data (# opt.) Base feature model PUCIDA (f) PUCIDA (e) (×) zero-imputed

C diab. (2) 29.74 ±2.92 26.23 ±4.42 25.58 ±3.69 2.2 24.16 ±4.18
C compas (5) 40.83 ±0.56 37.65 ±0.23 37.21 ±0.71 7.6 36.86 ±1.20
C adult (5) 17.98 ±0.37 15.35 ±0.36 15.27 ±0.25 7.9 15.15 ±0.33

R income (3) 52.40 ±0.92 49.47 ±1.71 51.21 ±0.86 3.4 46.15 ±1.60
R calif. (4) 6.64 ±0.79 6.83 ±0.32 6.36 ±0.08 5.1 5.69 ±0.22
R insurance (3) 271.72 ±4.14 242.99 ±4.47 260.77 ±2.74 3.2 232.59 ±2.39

(b) r-dimensional case. Metrics: C: (1-Acc)×100, R: MSE×100

Table 3: PUC-compliant models leverage optional information to improve predictive performance relative to base feature mod-
els This is in line with Corollary 1. In the bottom table, two strategies are considered to achieve PUC: fixed-size (f) and
exhaustive (e) PUCIDA. When using exhaustive PUCIDA, the predictive performance is always better than the performance of
the base feature model, and often similar to the performance of the full feature models.

haustive data augmentation, leads to an increased dataset
size. The factor by which the dataset size is increased is in-
dicated by (×) along with the results in Table 3b. We ob-
serve that competitive results can often be obtained without
any dataset increase; fixed-size PUCIDA even outperforms
the exhaustive variant on the larger income and the insur-
ance dataset, whereas the exhaustive augmentation leads to
a more reliable performance increase. We study the perfor-
mance for sharers in Table 6 (Appendix) and find that it re-
mains on par with the full feature model. Overall, our results
demonstrate that optional information can be leveraged in
a conscious way through PUC-inducing data augmentation
without suffering from prohibitive performance decrease for
the decision maker and the sharers.

Convergence of PUCIDA. Finally, we study the conver-
gence behavior of PUCIDA. As a measure of approxima-
tion quality, we use the PUC-Gap2 defined in Equation (7),
which measures the squared deviation from perfect PUC.
As this notion requires the knowledge of the ground truth
distribution, we use a synthetic dataset for this experiment.
The dataset consists of eight binary features (five base, three
optional). All features in this dataset are sampled indepen-
dently. Labels are induced via a logistic distribution, and
availability of the optional information depends on the la-
bel. For experiments on a second synthetic dataset with five
continuous features (two base, three optional) and more de-
tails, see Appendix F.5.

First, we observe that PUCIDA is model agnostic, i.e., it
works with a variety of state-of-the-art models leading to
negligible PUC-gaps (see Figure 4). Second, we verify that
the PUC-Gaps converge to zero at the rate of O( 1

N ) as the

sample size increases (Figure 5), confirming what we de-
rived in Theorem 4. While common models (e.g., Random-
Forest, MLP) have a lower error than the baseline estima-
tor µ̂ the models approach the baseline estimator with larger
datasets and the gap closes at the suggested rate.

Conclusion and Future Work
In this work, we studied machine learning predictions where
users have the option to disclose optional information. To
comply with legal regulations and respect user consent, we
introduced the notion of Protected User Consent (PUC)
that strikes a balance between the interests of sharers, non-
sharers, and decision-makers. We demonstrated that lever-
aging optional information from consenting users through
PUC results in superior performance compared to models
that disregard the optional information entirely.

Our work gives raise to several follow-up questions. It
would be interesting to study possible long-term effects of
PUC and how PUC incentivizes improvements. Further-
more, we have only considered users that act entirely strate-
gic or on privacy grounds. Modeling heterogeneous users,
who might be willing to accept a certain increase in costs in
return for their privacy could be a meaningful extension.

Additional Material
An extended version of this work including technical appen-
dices is available online2. We also publish our code as an
open-source project3.

2https://arxiv.org/abs/2210.13954
3https://github.com/tleemann/protectedconsent
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