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Abstract

Partial observability and uncertainty are common problems
in sequential decision-making that particularly impede the
use of formal models such as Markov decision processes
(MDPs). However, in practice, agents may be able to em-
ploy costly sensors to measure their environment and re-
solve partial observability by gathering information. More-
over, imprecise transition functions can capture model uncer-
tainty. We combine these concepts and extend MDPs to ro-
bust active-measuring MDPs (RAM-MDPs). We present an
active-measure heuristic to solve RAM-MDPs efficiently and
show that model uncertainty can, counterintuitively, let agents
take fewer measurements. We propose a method to counteract
this behavior while only incurring a bounded additional cost.
We empirically compare our methods to several baselines and
show their superior scalability and performance.

Introduction
Markov decision processes (MDPs; Puterman 1994) are
a standard sequential decision-making model (Kormushev,
Calinon, and Caldwell 2013; Lei et al. 2020; Sunberg
and Kochenderfer 2022). However, in MDPs, the decision-
maker has full knowledge of the dynamics of the environ-
ment and its current state, which is often unrealistic. Well-
studied frameworks exist to relax these assumptions. To rep-
resent model uncertainty, robust MDPs (RMDPs; Nilim and
Ghaoui 2005) extend MDPs by replacing transition proba-
bilities with uncertainty sets. To represent state uncertainty,
partially observable MDPs (POMDPs; Kaelbling, Littman,
and Cassandra 1998) extend MDPs with an observation
function, which dictates how the agent gains information
while interacting with the environment.

Active-measure MDPs are a subset of the latter, where
agents have direct control over when and how they gather
information, which has an associated cost (Bellinger et al.
2021). For example, a drone may request information from a
motion capture system which has costs related to communi-
cation (Figure 1). Furthermore, this model can capture appli-
cations in predictive maintenance and healthcare, such as di-
agnostics (Jimenez-Roa et al. 2022; Yu et al. 2023). In these
applications, the cost or risk of gaining information needs to
be weighed against the value of obtaining more information.
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Figure 1: A motivating example. A drone has to plan a path
through a corridor where (wind) disturbances introduce un-
certainty in its position. An external Motion Capture (Mo-
Cap) system can provide the drone’s exact position, but this
uses some of its limited bandwidth. How should the risk of
a collision be weighed against the cost of using this system?

Settings with both model and state uncertainty can be ex-
pressed as robust POMDPs (RPOMDPs; Osogami 2015).
However, even though uncertain and partially observable
settings have been studied extensively on their own, research
on RPOMDPs has been limited in part due to their complex-
ity. Existing strategies for solving RPOMDPs are either ex-
act but computationally expensive (Osogami 2015; Rasouli
and Saghafian 2018), or only consider policies with limited
memory (Suilen et al. 2020; Cubuktepe et al. 2021).

Aiming to achieve better performance and scalability, this
paper focuses on a subset of RPOMDPs with active measur-
ing, which we formally define as robust active-measuring
MDPs (RAM-MDPs). We make the counter-intuitive obser-
vation that high model uncertainty may discourage measur-
ing in certain environments. For solving a specific subset of
RAM-MDPs, we adopt a heuristic called act-then-measure
(ATM; Krale, Simão, and Jansen 2023) for standard active-
measure environments in an uncertain setting. This heuris-
tic suggests partially ignoring future state uncertainty, which
drastically decreases policy computation times.

Next, we propose measurement leniency, a strategy to en-
courage measuring in settings with high model uncertainty.
This strategy allows the agent to make additional measure-
ments when this would yield better results under a less
pessimistic model. We formalize this idea and prove that
measurement-lenient policies have a bounded lost return as
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Figure 2: A visualization of agent-environment interactions
in RAM-MDPs.

compared to their fully robust counterpart.
We empirically compare both regular and measurement-

lenient variants of our algorithm on a number of environ-
ments. Against a number of baselines, we demonstrate (1)
the computational tractability of our method and (2) an in-
creased robustness of policies.

Contributions. The main contributions of this work are:
(1) defining RAM-MDPs to represent active measuring
in uncertain environments; (2) analyzing the influence of
model uncertainty on measuring behavior; (3) showing how
the act-then-measure heuristic can be used to efficiently
solve a subset of RAM-MDPs; and (4) defining the measure-
ment leniency strategy to get better performance in settings
with high model uncertainty.

Setting: RAM-MDPs
In this section, we formally define RAM-MDPs as the com-
bination of the RMDP (Nilim and Ghaoui 2005) and active-
measure (Bellinger et al. 2021) frameworks:
Definition 1. A robust active-measure MDP (RAM-MDP)
is a tuple M=(S,R, γ, Ã=A×M,P, I, O,Ω, C), with
state space S, reward function R : S×A → R, and discount
factor γ. Ã is the set of actions, which consists of pairs of
control and measurement actions ã=⟨a,m⟩∈A×M . Control
actions affect the environment, while measurement actions
affect what information agents gain about their current state.
The dynamics are given by an uncertain transition function
P : S×A×S→I, which gives an interval from the interval
set [pmin, pmax] ∈ I (with 0≤pmin≤pmax≤1) for each transi-
tion. Like POMDPs, RAM-MDPs have an observation func-
tion O : S×M×Ω→R with Ω the observation space. Lastly,
the cost of measuring is given by C : M→R.

RAM-MDPs are a subset of RPOMDPs, with the ad-
ditional property that the action space is factorized into
control- and measuring actions, and O and P are in-
dependent of these respective action types. Furthermore,
RAM-MDPs collapse to RMDPs if all measurements have
cost 0 and a unique observation for all states, and to MDPs
if, in addition, pmin=pmax for all intervals in I, and P forms
a valid probability distribution for all state-action pairs.

Inspired by Nam, Fleming, and Brunskill (2021), we as-
sume that measurements are complete and noiseless. Intu-
itively, this means agents only have two measurement op-
tions: they either take a measurement that returns full state
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Figure 3: For initial belief b over s0 and s1 in this RPOMDP,
the expected return is minimized if, for the next belief b′,
probabilities of being in state s− and s+ are equal. The cor-
responding values of p− and p+ depend on b(s0) and b(s1),
thus, the worst-case transition function is belief-dependent.

information, or they take no measurement. In this case, the
observation set has the form Ω: S∪{⊥}, and the obser-
vation function is deterministic, with O : S×M→Ω, such
that ∀s : O(⊥|s, 0)=1 and O(s|s, 1)=1. Lastly, we assume
C(0)=0 and denote C(1)=c.

Agent-environment interactions for RAM-MDPs can be
viewed as a two-player game between the agent and ‘na-
ture,’ as visualized in Figure 2. Starting from an initial
state s0, for each timestep t the agent chooses an ac-
tion pair ãt=⟨at,mt⟩ to execute according to some pol-
icy π. Based on the chosen action pair, the current state,
and the agent’s current belief, nature picks a valid prob-
ability function P (·|st, ãt) from the uncertainty set, i.e.,
subject to the constraint that ∀s′ : P (s′|st, ãt)∈P(st, at, s

′)
and

∑
s′∈S P (s′|st, ãt)=1. Then, the environment tran-

sitions to a new state st+1∼P (·|st, at), and returns a
scalarized reward r̃t=R(st, at)−C(mt) and observation
ot∼O(·|st+1,mt) to the agent. The goal of the agent is to
compute a policy π with the highest expected discounted
scalarized return. We assume these policies are belief-based,
that is, π : b → Ã for a belief b ∈ ∆(S) over states.

To make this problem more tractable, we make a few
assumptions. Our description of the agent-environment in-
teractions already assumes full observability for nature, as
well as a dynamic (Nilim and Ghaoui 2005) and (s, a)-
rectangular (Wiesemann, Kuhn, and Rustem 2013) system.
These assumptions mean that the transition probabilities
picked by nature may be different at each timestep and are
independent of other transition probabilities, which are both
common assumptions in RPOMDP literature. Next, we as-
sume nature is adversarial, meaning it chooses transition
functions to minimize the expected discounted scalarized
return of the agent. As for RPOMDPs, these assumptions
mean worst-case transition probabilities are generally belief-
dependent, as shown by the RPOMDP in Figure 3. Thus, the
worst-case transition- and value functions, PR and VR, are
both belief-dependent. We first introduce b′R(b, ã) as the ex-
pected distribution over states in the next step when taking
action pair ã∈Ã in belief b:

b′R(s
′|b, ã) =

∑
s∈S

b(s)PR(s
′|s, b, ã). (1)
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Figure 4: Environments A-B (top) and LUCKY-
UNLUCKY (bottom).

Using this notation, we define PR as follows:
PR(s

′|s, b, ⟨a,m⟩) = arg inf
PR∈P(s,a,·)

VR
(
b′R(b, ⟨a,m⟩)

)
, (2)

where we note that the minimization affects both VR directly,
as well as b′R. With this, VR is given as follows:

VR(b) = max
ã=⟨a,m⟩∈Ã

∑
s∈S

b(s)
(
R(s, a)− C(m)

+ γ
∑
s′∈s

PR
(
s′|s, b, ã

)
VR

(
b′R(b, ã)

))
.

(3)

RAM-MDP Properties
In this section, we highlight and discuss a number of inter-
esting properties of RAM-MDPs.

The worst-case transition function is measurement-
dependent. Equation (2) defines a worst-case transition
function that depends on the complete action pair ã=⟨a,m⟩
rather than only on the control action a. Thus, even though
the uncertain transition function is independent of what mea-
surement is chosen, the worst-case transition function is not.

As an example of why this dependency holds, consider
the A-B RAM-MDP (Figure 4 top). This environment has
three states: an initial state s0, and two next states s− and
s+ with different optimal actions a and b. However, the re-
ward for taking the optimal action in s− is lower than that in
s+. We are interested in finding the worst p when we mea-
sure in s0 and when we do not. When measuring, s− has a
lower expected value than s+, meaning the worst-case tran-
sition has p=1. When not measuring, however, this deter-
ministic transition means the agent can safely pick action a
and receive a reward of 0.8. Instead, if p is chosen closer to
0.5, the expected return of taking action a decreases, which
gives worse expected returns overall. Thus, the worst-case
transition function depends on the chosen measuring action.

Intuitively, we find that for fully observable transitions
(such as when measuring), the worst-case is simply given
by maximizing worst-case outcomes. However, for partially
observable transitions (such as when not measuring), an un-
predictable outcome is often worse since this requires con-
sidering all possible outcomes for the next action.

Algorithm 1: ROBUST ATM PLANNER

Pre-compute PRMDP and QRMDP
Initialise b0(s) = δ(s, s0)
while episode not completed do

Pick control action at ▷ Equation (4)
Pick corresponding measuring action mt ▷ Equation (6)
Execute ãt = ⟨at,mt⟩
Receive reward r̃t and observation ot
Determine next worst-case belief bt+1 ▷ Equation (1)

return
∑

t γ
tr̃t

High uncertainty can discourage measuring. The as-
sumption that nature is adversarial (and thus chooses worst-
case outcomes) is common for RMDPs. However, in par-
tially observable settings, nature does not only influence fu-
ture predictions (via PR) but (importantly) also predictions
of past interactions (via bR), and thus the current belief. This
may lead to overly conservative beliefs, especially if uncer-
tainty is high.

As an example of overly conservative behavior in-
duced by such beliefs, consider the LUCKY-UNLUCKY
RAM-MDP (Figure 4 bottom). As before, this environment
has three states s0, s+, and s−, where we interpret the lat-
ter two as a lucky and unlucky state. In both, taking ‘safe’
action b leads to a neutral reward, while taking ‘risky’ ac-
tion a gives an infinite positive reward in s+ and an infinite
negative reward in s−. We are interested in measuring be-
havior at different uncertainty intervals, as specified by pmax.
We notice the expected returns for s− are strictly lower than
those of s+, meaning an adversarial nature always chooses
the highest possible probability p, regardless of whether the
agent chooses to measure. First, we assume pmax=1. This
means the transition is deterministic, in which case measur-
ing gives no additional information but still incurs a measur-
ing cost and is thus sub-optimal. Next, we assume pmax<1.
In this case, it is optimal to measure since this means spend-
ing a (finite) measuring cost to possibly achieve an infinite
reward. Counterintuitively, we find that high model uncer-
tainty may lead to optimal policies taking fewer measure-
ments than if model uncertainty is lower, even if measuring
would alleviate this uncertainty. This property occurs even
for finite returns and non-zero probabilities, as shown in Ap-
pendix B (Krale et al. 2023).

The described behavior is the result of optimal robust
policies (over-) optimizing for the worst case while not con-
sidering other possible outcomes. This behavior makes sense
in contexts where the environment must be considered ad-
versarial, such as in security settings. However, if policies
are required to perform well on all possible models, such as
when uncertainty represents confidence intervals, this over-
optimization is unwanted behavior. Moreover, if observa-
tions have additional value not captured by the model, such
as to improve the model itself, we would want our policies
to take measurements more leniently. We will introduce a
method to encourage such leniency later in this paper.
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Act-Then-Measure in RAM-MDPs
In this section, we describe a method for finding ap-
proximate solutions for RAM-MDPs in a computationally
tractable manner. In particular, we extend the ATM heuristic
(Krale, Simão, and Jansen 2023) to an uncertain setting.

The robust act-then-measure (RATM) heuristic:
(1) chooses control-actions assuming that all (state)
uncertainty will be resolved in the next states (after one
time-step); and (2) chooses measuring-actions and up-
dates beliefs assuming that all (state) uncertainty will
be resolved after the next states (after two time-steps).

Since measurement actions only affect future state uncer-
tainty, the first point of the heuristic allows us to pick con-
trol actions independently from measuring actions. Thus,
our high-level strategy is given by Algorithm 1. The remain-
der of this section will explain in detail how to perform each
step in this algorithm.

Choosing Control Actions
Similar to the QMDP heuristic (Littman, Cassandra, and
Kaelbling 1995), the RATM heuristic means that returns of
control actions can be approximated by those of the under-
lying RMDP:

QRATM(b, a) =
∑
s∈S

b(s)QRMDP(s, a) ≈ QR(b, a), (4)

where QRATM denotes the approximate expected value when
following the RATM heuristic, and QRMDP and QR denote
optimal expected values for the RAM-MDP and its underly-
ing RMDP, respectively. Generally, QRMDP can be efficiently
pre-computed, allowing for faster policy computations than
methods that fully consider partial observability.

Computing Measuring Value
Next, we need a method to pick measurement actions. With
noiseless and complete measurements, we define the ro-
bust measuring value MVRATM as the difference in expected
value between measuring and non-measuring actions:

MVRATM(b, a) = QRATM(b, ⟨a, 1⟩)−QRATM(b, ⟨a, 0⟩). (5)

Measuring is optimal for positive measuring values only,
which yields the following measuring condition:

mRATM(b, a) =

{
1 if MVRATM(b, a) ≥ 0;

0 otherwise,
(6)

To compute MVRATM, we need expressions for
QRATM(b, ⟨a, 1⟩) and QRATM(b, ⟨a, 0⟩). We note that
the RATM heuristic means that for both, Equation (4) can
be applied to all beliefs after the next one. Thus, the Q-value
when measuring is given as:

QRATM(b, ⟨a, 1⟩) = R(b, a)− c+ γ
∑
s

b(s)[∑
s′

PR(s
′|s, ⟨a, 1⟩, b)max

a
QRMDP(s

′, a)
]
,

(7)

with R(b, a)=
∑

s b(s)R(s, a). Here, we decide the next ac-
tions for each state separately, which we can only do if we
take a measurement. When not measuring, we must instead
pick an optimal action considering all possible next states:

QRATM(b, ⟨a, 0⟩) = R(b, a) + γ
∑
s

b(s)[
max

a

∑
s′

PR(s
′|s, ⟨a, 0⟩, b)QRMDP(s

′, a)
]
.

(8)

Combining both equations, we write the robust measuring
value of Equation (5) as follows:

MVRATM(b, a) = −c+max
a′∈A

γ
∑
s∈S

b(s)[
QRMDP(s, a)−

∑
s′∈S

PR(s
′|s, ⟨a, 0⟩, b)QRMDP(s

′, a′)
]
.

(9)
We notice that this equation contains only belief-
independent and thus pre-computable quantities, with the
exception of the transition function PR. This function is
equal to PRMDP when measuring and otherwise given as:

PR(s
′|s, ⟨a, 0⟩, b) =max

ab∈A
min

P (·|s,a)∈P(s,a,·)

∑
s

b(s)

[ ∑
s′∈S

P (s′|s, a)QRMDP(s
′, ab)

]
.

(10)

This equation can be tractably solved by a (non-convex)
mixed integer program (MIP). However, since this problem
needs to be solved at every step, we find these computations
take up the majority of the (online) runtime in our experi-
ments. With all quantities defined, we have fully described
all steps in Algorithm 1. Alternatively, we may define this
algorithm as a policy:

πRATM(b) = ⟨max
a∈A

QR
(
b, a

)
,mRATM

(
b,max

a∈A
QR(b, a)

)
⟩.
(11)

Measurement Leniency
As outlined previously, robust policies can exhibit (overly)
conservative measuring behavior in RAM-MDPs, particu-
larly if model uncertainty is high. In this section, we pro-
pose measurement leniency to counteract this behavior. Intu-
itively, measurement leniency means that agents choose con-
trol actions to optimize for the worst case, but may take extra
measurements according to less pessimistic metrics, such as
average expected returns. Since the cost of extra measure-
ments is bounded and predictable, measurement leniency
might give sufficient robustness guarantees for many real-
life applications while allowing less conservative behavior.
We formally define measurement leniency as follows:

Definition 2. Let π be any policy. A corresponding
measurement-lenient policy is any policy πML such that:

(1) ∀b, π(b) = ⟨a, 1⟩ =⇒ πML(b) = ⟨a, 1⟩, and
(2) ∀b, π(b) = ⟨a, 0⟩ =⇒ πML(b) = ⟨a,m⟩.
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Figure 5: A RAM-MDP where the measuring value of MML
for a measurement-lenient policy is sub-optimal. Assuming
an adversarial nature, the optimal control action in the states
s+ and s− is b, meaning measuring in s0 is sub-optimal.
However, choosing a MML with p+>0.5 would yield a pos-
itive measuring value.

Using this definition, we define an optimal measurement-
lenient policy as one that maximizes the expected discounted
scalarized return in some (less conservative) environment
MML. For example, if a probability distribution over tran-
sition functions is known, MML could represent the most
likely outcomes. We formalize this as follows:

Definition 3. Let π be a policy for an RAM-MDP M,
and ΠML the corresponding set of measurement-lenient
policies. Further, let MML be any active-measure model
with the same state- and action space as M. The optimal
measurement-lenient policy π∗

ML with respect to MML is
given as:

π∗
ML = arg max

πML∈ΠML
EπML,MML

∑
t

γtr̃t (12)

Computing Measurement-lenient Policies
By construction, control actions of measurement-lenient
policies are equal to those in their base policies. For any be-
lief b, we may thus assume a control action aR(b) is given.

In order to make optimal measuring choices, we need to
keep track of the current belief according to the dynamics of
both M and MML. For the latter, we denote bML as the cur-
rent belief and b′ML(bML, ã) as the belief after taking action
ã in belief bML. However, as shown in Figure 5, simply us-
ing this belief to compute generic measuring value for MML
does not yield the correct behavior since this does not take
into account that future control actions will be based on M
instead. To account for this, we first define the Q-value func-
tion for following a measurement-lenient policy in MML:

QML(bML, b, ⟨a,m⟩) = R(bML, a)− C(m)

+γ max
m′∈M

QML

(
b′ML(bML, ã), b

′
R(b, ã), ⟨aR(b

′
R(b, a)),m

′⟩
)

(13)
For complete and noiseless measurements, we express the
measuring value for measurement-lenient policies as:

MVML(bML, b, a)=QML(bML, b, ⟨a, 1⟩)−QML(bML, b, ⟨a, 0⟩)
(14)

We first note that after a measurement b′R and b′ML are always
equal to the observation that has been made. Thus, the Q-

value when measuring can be expressed as follows:

QML(bML, b, ⟨a, 1⟩) = R(bML, a)− c

+ γ
∑
s∈S

b′ML(s|bML, ã) max
m′∈M

QML(s, s, ⟨aR(s),m
′⟩)

(15)
Unfortunately, there is no trivial way to simplify our expres-
sion for non-measuring actions without making further as-
sumptions about the policy choosing control actions. For the
general case where the fully robust policy is unknown, we
thus propose to approximate our Q-values using the robust
act-then-measure heuristic, as defined in the previous sec-
tion. We restate the relevant part as follows:

Measurement-lenient approximation: Choose
measurement-lenient measuring actions assuming all
(state) uncertainty will be resolved after the next state.

Using this approximation, we can simplify our equations
by replacing future Q-values with those of the fully observ-
able variant of the environment. We denote this Q-value as
QCRMDP and rewrite Equation (13) as follows:

QML(bML, b, ⟨a,m⟩) ≈ R(bML, a)− C(m)

+ γ
∑
s′∈S

QCRMDP

(
s′, aR

(
b′R(b, ⟨a,m⟩)

)) (16)

We note that this expression does not require solving an op-
timization problem, meaning it can be computed quickly.
With this, we approximate Equation (14) as follows:

MVML(bC , b, a) ≈ −C(m) + γ max
ab∈A

∑
s∈S

bML(s)[
max
a∈A

QCRMDP(s
′, a)−QCRMDP(s

′, aR(b
′
R(b, a)))

]
(17)

For measurement-lenient policies, the measuring condition
requires the measuring value of both MML and M to be
non-negative, which gives:

mML(bML, b, a) =


1 if MVML(bML, a) ≥ 0

or MVR(b, a) ≥ 0

0 otherwise.
(18)

Regret of Measurement-lenient Policies
One obvious downside of using measurement-lenient poli-
cies is that their worst-case performance is generally lower.
However, we can show that their performance loss, as com-
pared to their base policy, is bounded. Intuitively, this bound
follows from the fact that measurement-lenient policies only
take extra measurements, which decrease the total expected
returns by (at most) c per step. We state this more formally:
Theorem 1. Given an RAM-MDP M with complete and
noiseless measurements and policy π. For any correspond-
ing measurement-lenient policy πML, the following holds

∀b : V (π, b)− V (πML, b) ≤
∞∑

n=0

γnc (19)

We prove this theorem in Appendix B (Krale et al. 2023).
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Figure 6: Mean number of measurements in A-B environment against measuring cost. Dotted lines show optimal behavior.
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Figure 7: Mean number of measurements in LUCKY-UNLUCKY environment against pmax. Dotted lines show optimal behavior.

Empirical Analysis
This section presents an empirical analysis of the behav-
ior and performance of the proposed methods. We run ex-
periments on (1) the A-B and LUCKY-UNLUCKY environ-
ments (Figure 4); and (2) two larger custom environments
called SNAKEMAZE and DRONE that we describe in more
detail below. We test the following algorithms:
• RATM: the robust planning algorithm following the

RATM heuristic, as described in Algorithm 1.
• MLATM: the measurement-lenient variant of RATM,

considering three choices of MML: an optimistic, a
pessimistic, and an average, denoted MLATM-opt,
MLATM-pes, and MLATM-avg, respectively. We pro-
vide full definitions in Appendix A (Krale et al. 2023).

• ATM: as a baseline, we use the ATM planner (Krale,
Simão, and Jansen 2023). We test two variants, denoted
by ATM-avg and ATM-pes, which plan on the average-
case environment and on the environment with transition
function PRMDP.

We provide code at doi.org/10.5281/zenodo.10406844.

Behavior Evaluation
We start with two small-scale experiments to determine (1) if
our algorithms consider the effect of measuring on the tran-
sition function; and (2) how these algorithms change mea-
suring behavior for different sizes of uncertainty intervals.
For this, we run all algorithms on both the A-B and LUCKY-
UNLUCKY environments (Figure 4) and compare the algo-
rithms with optimal behavior (depicted by dotted lines in the
results), as calculated in Appendix A (Krale et al. 2023).

Figure 6 shows that ATM-avg and ATM-pes do not mea-
sure optimally in the A-B environment, which shows that
they do not incorporate the effect of measuring on the transi-
tion function. In contrast, RATM measures optimally in this
environment, while all measurement-lenient variants take
more measurements than optimal1. Figure 7 shows that all
algorithms except ATM-avg measure optimally when uncer-
tainty is low, while the measurement-lenient variants make
(sub-optimal) measurements for high uncertainty.

1Surpisingly, some algorithms show non-deterministic measur-

0.5 0.60.5

0.4

Figure 8: A 2×5 visualization of the SNAKEMAZE environ-
ment. An agent traverses a snaking maze from the blue ini-
tial stat to the green goal state. It moves via safe (grey) and
risky (yellow) actions with different stochastic effects.

Performance Evaluation
Next, we test the performance of our algorithms on a cus-
tom environment called SNAKEMAZE, which is designed to
require conservative behavior. As the visualization in Fig-
ure 8 shows, the agent has to traverse a snaking maze, re-
ceiving a reward of 1 for reaching the goal state and a small
penalty for each prior step. To do so, the agent can choose
a safe or risky action for each cardinal direction. Safe ac-
tions have a 0.5 chance to move the agent one or two steps
in the given direction, while risky actions have a 0.6 chance
to move three steps but a 0.4 chance to not move at all. Thus,
risky actions move the agent further on average, but even a
little uncertainty in the transition probabilities changes this.

Following Osogami (2012), we parameterize uncertainty
with a confidence level α ∈ (0, 1]. We define our uncer-
tainty such that any transition probability is at most a fac-
tor 1/α larger than for some base transition function P , i.e.,
∀s, s′∈S, a∈A : P(s, a, s′)=[0, 1/αP (s′|s, a)]. Thus, α=1
represents no model uncertainty, while uncertainty increases
as α approaches 0. Since finding the exact worst-case transi-
tion function for a RAM-MDP is intractable, we instead test
our algorithms on the worst-case transition function assum-
ing full observability, i.e., using the transition function of the
underlying RMDP. This means that measurement-dependent
worst-case transitions (as in the A-B environment) never
occur, and we expect ATM-pes (which optimizes for the
RMDP environment) to outperform the other algorithms.

Figure 9 (left) shows the scalarized returns of the algo-
rithms in the 10×10 SNAKEMAZE environment at different

ing behavior. We explain this in Appendix A (Krale et al. 2023).
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Figure 9: Returns and number of measurements in the SNAKEMAZE environment, with c=0.01. Uncertainty is parameterized
by confidence level α and decreases left-to-right. Lines show the mean of 50 runs, with 95% confidence intervals shaded.
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Figure 10: Returns and number of measurements in the SNAKEMAZE environment, with c = 0.01. Algorithms plan at uncer-
tainty parametrized by αp = 0.6, but real dynamics is parametrized by α. Thus, real uncertainty decreases left-to-right, while
planning uncertainty is given by the dotted line. Lines show the mean of 50 runs, with 95% confidence intervals shaded.

confidence levels α. We see that ATM-avg is outperformed
by all other algorithms, while for α<0.7 MLATM-avg and
MLATM-opt perform slightly worse than the more conser-
vative algorithms. This difference is caused by their different
measuring behavior, as shown on the right.

Next, we are interested in how the algorithms perform if
uncertainty is misspecified, i.e., if the algorithms plan with a
different uncertainty than that of the real environment. To
test this, we let the algorithms plan on the SNAKEMAZE
environment with uncertainty parameterized by αp=0.6,
while we deploy the algorithms on the environment with
α∈[0.55, 1]. Figure 10 (left) shows the scalarized returns of
the different algorithms. We now see the advantage of mea-
surement leniency: although MLATM-avg and MLATM-opt
still perform slightly worse for large uncertainty, they out-
perform the more conservative algorithms for α>0.7. This
can be explained by the algorithms taking more measure-
ments (as shown on the right), which allows them to take
advantage of the more favorable environment.

Scalability Evaluation
Lastly, to show that our algorithms scale to larger environ-
ments, we run all algorithms on a custom DRONE environ-
ment inspired by the example of Figure 1. A full explana-
tion of this environment is given in Appendix A (Krale et al.
2023). The environment is a simplified and discretized mo-
tion model on a 2D grid, with |S|=39, 204 states, |A|=25
actions, and up to 25 successor states per state-action pair.
The goal of the agent is to reach a set of goal states with-
out hitting any walls. Like before, we parameterize uncer-
tainty using confidence levels and approximate the worst-
case transition function by that of the underlying RMDP.

Figure 11 shows both the scalarized (left) and non-

scalarized (right) returns of the algorithms at different con-
fidence levels α. Similar to the results on SNAKEMAZE,
ATM-avg performs worse than the other algorithms, while
ATM-pes slightly outperforms all (control) robust algo-
rithms in terms of scalarized returns. However, our (par-
tially) robust algorithms outperform both ATM-avg and
ATM-pes in terms of non-scalarized returns (i.e. returns ig-
noring measuring costs). Thus, our algorithms reach the goal
states more often but take more measurements to do so. For
misspecified uncertainty, as shown in Figure 12, we find
similar results. All algorithms except ATM-avg obtain sim-
ilar scalarized returns, while our algorithms outperform the
baselines in terms of non-scalarized returns.

Interestingly, we do not find a difference between robust
and measurement-lenient algorithms in this environment. To
understand why, we first consider the SNAKEMAZE environ-
ment. Here, we notice that (1) an optimal agent only mea-
sures to know whether or not it can move down a row; and
(2) worst-case outcomes are those that move the agent less
far. Combined, this means higher uncertainty leads to less
frequent measuring. In contrast, in the DRONE environment,
the worst-case outcomes are generally those that bring the
agent closer to a wall. Thus, for high uncertainty, agents
already take more frequent measurements to prevent colli-
sions, meaning measurement leniency has less impact.

Discussion
Finally, we provide a summary of our findings.

R(C)ATM considers the effect of measuring. RATM
performs optimally in the A-B environment, which is only
possible when considering the effect of measuring. The
control-robust variants only perform sub-optimally by tak-
ing more measurements, as expected.
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Figure 11: Scalarized and non-scalarized returns in the DRONE environment, with c=0.01. Uncertainty is parameterized by
confidence level α and decreases left-to-right. Lines show the mean of 100 runs, with 95% confidence intervals shaded.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α (real)

0.00

0.25

0.50

Sc
al

ar
iz

ed
re

tu
rn

ATM-avg
ATM-pes
RATM

MLATM-pes
MLATM-avg
MLATM-opt

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α (real)

0.0

0.5

1.0

N
on

-s
ca

la
ri

ze
d

re
tu

rn

ATM-avg
ATM-pes
RATM

MLATM-pes
MLATM-avg
MLATM-opt

Figure 12: Scalarized and non-scalarized returns in the DRONE environment, with c = 0.01. Algorithms plan at uncertainty
parametrized by αp = 0.5, but real dynamics is parametrized by α. Thus, real uncertainty decreases left-to-right, while planning
uncertainty is given by the dotted line. Lines show the mean of 50 runs, with 95% confidence intervals shaded.

R(C)ATM outscales previous methods. RATM remains
tractable and performs relatively well on the DRONE envi-
ronment, which is not solvable by prior robust methods.

Measurement leniency can prevent conservative mea-
suring. Our experiments in the LUCKY-UNLUCKY and
SNAKEMAZE environment show measurement leniency in-
centivizes measuring in some uncertain settings. However,
our experiments in the DRONE environment show this is not
always the case. Thus, effectively using our methods may
require looking at the structure of the model.

Related Work
Active-measure MDPs, with noiseless and complete mea-
surements, were introduced independently by Nam, Flem-
ing, and Brunskill (2021) and Bellinger et al. (2021), who
both focussed on RL applications. Krale, Simão, and Jansen
(2023) introduced the ATM heuristic, which finds a tradeoff
between performance and scalability. Similar frameworks
include those of Doshi-Velez, Pineau, and Roy (2012), who
consider a setting where measurements return the optimal
action, and Mate et al. (2020), who consider active mea-
suring in a multi-armed bandit setting. Active measuring
has also been considered in settings where measuring cost
and rewards are not combined, but measuring costs are con-
strained (Ghasemi and Topcu 2019) or minimized (Bulychev
et al. 2012). Lastly, some prior work considers setting with
only measuring actions, where gathering information is the
only goal. (Bernardino et al. 2022; Araya-López et al. 2011).

Although RAM-MDPs have not been studied previously,
the more general framework of RPOMDPs has. Osogami
(2015) and Cubuktepe et al. (2021) describe methods for

solving adversarial RPOMDPs, using value iteration and
finite state controllers, respectively. However, the former
method scales poorly to large environments, while the lat-
ter only produces policies with small memory. Next, Ra-
souli and Saghafian (2018) gives an in-depth analysis of
RPOMDPs with different assumptions, and Bovy (2023) de-
scribes how to represent uncertain beliefs without assuming
adversariality. However, their methods are intractable for the
sizes of environments considered here.

Conclusion
We introduced RAM-MDPs as a framework to represent
active measuring environments with model uncertainty. To
solve a specific subset of RAM-MDPs, we re-defined the
act-then-measure heuristic for generic active-measure envi-
ronments for uncertain settings. Next, we proposed mea-
surement leniency to deal with overly conservative measur-
ing behavior. We empirically evaluate both generic and mea-
surement lenient variants of our algorithm, showing they are
tractable and outperform non-robust baselines.

Future work will focus on making RATM more scalable,
for example, by finding a way to approximately solve Equa-
tion (10), the current computational bottleneck. Moreover,
we will explore more general (robust) active-measure envi-
ronments with partial or noisy measurements.
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