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Abstract

Recent research has introduced several approaches to for-
mally verify the robustness of neural network models against
perturbations in their inputs, such as the ones that occur in
adversarial attacks. At the same time, this particular veri-
fication task is known to be computationally challenging.
More specifically, assessing the robustness of a neural net-
work against input perturbations can easily take several hours
of compute time per input vector, even when using state-of-
the-art verification approaches. In light of this, it becomes
challenging to select from a given set of neural network mod-
els the one that is best in terms of robust accuracy, i.e., the
fraction of instances for which the model is known to be ro-
bust against adversarial perturbations, especially when given
limited computing resources.
To tackle this problem, we propose a racing method specif-
ically adapted to the domain of robustness verification. This
racing method utilises ∆-values, which can be seen as an ef-
ficiently computable proxy for the distance of a given input to
a neural network model to the decision boundary. We present
statistical evidence indicating significant differences in the
empirical cumulative distribution of ∆-values for robust and
non-robust instances. Using this information, we show that
it is possible to reliably expose vulnerabilities in the model
with relatively few input iterations. Overall, when applied to
selecting the most robust network from sets of 31 MNIST
and 27 CIFAR-10 networks, our proposed method achieves
speedups of a factor of 108 and 42, respectively, in terms of
cumulative running time compared to standard local robust-
ness verification on the complete testing sets.

Introduction
Deep learning methods based on neural networks have
gained increasing prominence in safety-critical domains and
use contexts, such as unmanned mobile phone face recog-
nition systems or aircraft manoeuvre advisory systems; see,
e.g., Julian, Kochenderfer, and Owen (2019). At the same
time, neural networks are well known to be susceptible to
adversarial attacks, where a slight modification of the in-
put can lead to misclassification by the network (Szegedy
et al. 2014). These perturbations can be so subtle that they
remain imperceptible to human eyes, facilitating the need
for the development of methods to formally reason about
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the behaviour of a neural network. In this context, formal
verification methods have been developed that seek to as-
sess the robustness of a trained neural network with respect
to various input perturbations under specific norms, such as
the commonly used l∞-norm (Botoeva et al. 2020; Hen-
riksen and Lomuscio 2020; Bunel et al. 2018; Dvijotham
et al. 2018; Gehr et al. 2018; Wang et al. 2018a; Xiang,
Tran, and Johnson 2018; Ehlers 2017; Katz et al. 2017;
Tjeng, Xiao, and Tedrake 2019; Bastani et al. 2016; Paper-
not et al. 2016; Scheibler et al. 2015; Goodfellow, Shlens,
and Szegedy 2015). Notice that formal verification methods
can, in principle, verify a neural network model with respect
to any pre-defined property describing the input-output be-
haviour of the model. In this work, we focus exclusively on
verification with respect to adversarial input perturbations.

Generally, neural network verification is highly complex,
and even simple network properties have been shown to be
NP-complete problems (Katz et al. 2017). To solve these
problems, state-of-the-art verification algorithms rely on the
usage of sophisticated solvers, including mixed integer pro-
gramming and satisfiability modulo theories solvers, and of-
ten demand several hours of running time to solve a sin-
gle verification problem. This holds even for relatively small
networks, such as those trained on the MNIST dataset (see,
e.g., König, Hoos, and van Rijn 2022). Thus, much re-
cent work has been concerned with the development of
more efficient verification algorithms, e.g., by employing
the branch-and-bound method for solving the verification
problem (De Palma et al. 2021; Bunel et al. 2020; Wang
et al. 2018a; Bunel et al. 2018; Ehlers 2017) or by tighten-
ing bounds in the problem formulation using symbolic in-
terval propagation (Botoeva et al. 2020; Henriksen and Lo-
muscio 2020; Wang et al. 2018b, 2021) and abstraction (Bak
et al. 2020; Singh et al. 2019b; Zhang et al. 2018; Gehr et al.
2018; Singh et al. 2018) techniques. However, even in light
of recent developments, neural network verification remains
a challenging and expensive computational task, especially
as network complexity and dataset size increase.

Neural network verification can be divided into local and
global verification (Sun et al. 2022). In this work, we fo-
cus on local robustness verification. Local robustness verifi-
cation typically considers a trained neural network, along
with a set of inputs and a verification property specifica-
tion. Similar to other performance metrics of a neural net-
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work model, such as accuracy, one can compute robust ac-
curacy by counting the fraction of inputs that are provably
robust with regard to the given property. However, this adds
significant overhead to the evaluation procedure, due to the
high computational demands raised by most formal verifica-
tion algorithms as explained earlier. Consequently, this over-
head grows substantially if multiple models are considered
and compared against each other in (robust) performance;
a scenario not only faced by practitioners but also typi-
cally encountered during Neural Architecture Search (NAS),
where the goal is to select a suitable model from a large
search space (see, e.g., Elsken, Metzen, and Hutter 2019).
In this context, adding robust accuracy as a selection crite-
rion would hardly be feasible due to the large computational
costs.

In this work, we seek to improve the efficiency of local
robustness verification from a previously unexplored, meta-
algorithmic point of view. Specifically, we propose a method
to efficiently evaluate and compare the robustness of differ-
ent neural network models (or variations of the same model)
against adversarial attacks. Moreover, we consider the prob-
lem of selecting the most robust model, i.e., the model with
the highest certified robust accuracy, from a given set of
trained neural networks whilst making the most efficient use
of the computational budget.

In summary, our proposed method employs a racing algo-
rithm in which the considered neural network models are
subjected to local robustness verification with respect to
adversarial attacks. After each input iteration, their perfor-
mance (in terms of robust accuracy) is measured and the ver-
ification procedure stops for a given network as soon as its
robust accuracy is lower than the robust accuracy obtained
by its competitors. Racing approaches are well studied and
have already been successfully employed in other, resource
intense domains, such as hyperparameter optimisation (Hut-
ter, Hoos, and Leyton-Brown 2011; Birattari et al. 2010).

Complementary to the racing approach, we propose a
novel sampling strategy based on the likelihood of a given
input instance being adversarially robust. Essentially, this
strategy prioritises input instances during the verification
procedure that are most likely to expose vulnerabilities of
the neural network model and, therefore, provide valuable
insights into its robustness after fewer input iterations of the
verification procedure and, hence, at a lower computational
cost. At the same time, it reduces the risk of selecting sub-
optimal models, which might show higher robust accuracy
than other candidate models after verifying some randomly
sampled input instances but might perform worse overall. In
fact, when using random sampling, the only way to mitigate
this risk would be to increase the number of input iterations
– with the associated costs involved.

To enable the proposed sampling strategy, we must define
or estimate the likelihood of a network input being adversar-
ially robust. In our case, this involves estimating their prox-
imity to the decision boundaries of the model, captured by
means of ∆-values, which will be explained in the follow-
ing. Using this strategy, we can bias the sampling towards
inputs for which adversarial attacks are most likely to occur.
Although the relation between adversarial examples and the

Algorithm 1: Racing approach for robust model selection

Input: Trained neural network models N = {N1, N2,
. . . , Nm}; Network input instances X = {x1, x2,
. . . , xn}; Verification algorithm VERIFY(Ni, xj) that
returns sat, unsat or unsolved;

Output: Model with highest robust accuracy: Nselected
1: C ← N
2: ui ← 0 with i = 1, 2, . . . , |N |
3: for all xj ∈ X do
4: for all Ni ∈ C do
5: if VERIFY(Ni, xj) is unsat then
6: ui ← ui + 1
7: end if
8: end for
9: C ← {Ni | i ∈ argmaxi{ui} }

10: end for
11: Randomly select one element Nselected from set C
12: Return Nselected

decision boundary of a neural network has been extensively
studied (Ding et al. 2020; Zhang et al. 2020; Croce, An-
driushchenko, and Hein 2019; He, Li, and Song 2018; Liu
et al. 2016), we are not aware of any existing work leverag-
ing these insights in the context of local robustness verifica-
tion procedures.

To our knowledge, the work presented here is the first to
investigate techniques to increase the efficiency of adversari-
ally robust model selection for neural networks. Specifically,
it tackles the problem of selecting the most robust neural
network model from a given set of models, whilst reduc-
ing the amount of compute time needed to obtain robust-
ness certificates for the given input instances. To this end,
we propose an efficient model selection method based on
a novel heuristic that reliably quantifies the likelihood of a
network being adversarially robust with respect to a given
input. Concretely, we introduce ∆-values, which serve as a
proxy for the distance from an input instance to the deci-
sion boundaries of a neural network model, and we present
statistical evidence indicating significant differences in the
empirical cumulative distribution of these ∆-values for ro-
bust and non-robust instances.

We considered two sets of models, each containing a
large and diverse number of neural networks trained on the
MNIST and CIFAR-10 datasets, respectively. For these sets,
we demonstrate that our proposed model selection method
reduces the cumulative running time required for selecting
the most robust neural network model by a factor of 108 for
the considered set of MNIST networks and a factor of 42
for the considered set of CIFAR networks when compared
against (selection based on) exhaustive evaluation, where
each model is verified with respect to all available input in-
stances during the verification procedure.

Adversarially Robust Model Selection
The work presented here considers the selection of adversar-
ially robust neural network models. More specifically, in the
evaluation phase of several different neural network models,
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a model is to be determined that achieves the highest robust
accuracy with respect to adversarial attacks.

Our proposed method has two main components: a racing
approach and a sampling strategy based on a sorting mech-
anism for the input instances on which the network is ver-
ified. We considered two variants of the racing approach.
The first one is a naı̈ve racing approach in which the best-
performing candidate models are selected at every input iter-
ation, whereas the second one represents an adaptation of the
F-Race algorithm (Birattari et al. 2010), which gathers sta-
tistical evidence against some candidate models before they
are discarded. Both variants of the racing approach as well
as our proposed sorting mechanism will be further explained
in the following.

Naı̈ve Racing Approach
Generally, the idea of a racing approach is to evaluate a finite
set of candidate models while allocating the computational
resources among them in a systematic way (see, e.g., Maron
and Moore 1993). To do so, the racing approach verifies
step-by-step each candidate model in the given set, where in
this context, a step corresponds to an input instance on which
the neural network models are verified. At each step, all the
remaining candidate models are verified, possibly in paral-
lel, and candidate models are discarded once they are out-
performed by others, i.e., once one or more networks have
obtained a higher robust accuracy.

An overview of this approach, which we refer to as the
naı̈ve racing approach for the remainder of this paper, can
be found in Algorithm 1. After each iteration over the input
instances, it identifies the model with the highest robust ac-
curacy (determined based on ui which represents the num-
ber of unsat instances for network Ni) and updates the set
of candidate models C accordingly. Notice that the selec-
tion criterion on line 9 can by virtue of the arg max opera-
tor return a set of multiple networks. Moreover, ui increases
whenever a network Ni is found to be robust, i.e., unsat,
w.r.t. to a given input. On the other hand, an instance that
is misclassified by the model would be considered as sat.
The algorithm stops once all input instances have been pro-
cessed, and the final output is the model with the highest
determined robust accuracy.

F-Race
An important aspect of the model selection problem out-
lined above is that it can be viewed as a stochastic prob-
lem. In fact, although the process of formally verifying the
behaviour of a neural network model with respect to cer-
tain input instances is deterministic (i.e., multiple runs on
the same input instance will always lead to the same result),
its outcome depends on the particular instance to which it
is applied. Concurrently, the specific instance being verified
can be regarded as having been sampled from an underly-
ing probability distribution, which may be unknown. For the
naı̈ve racing approach, this could lead to models being pre-
maturely discarded after a few input iterations, even if that
model would achieve the highest robust accuracy overall,
i.e., if it was verified with respect to all available input in-
stances.

To address this stochasticity, Birattari et al. (2010) pro-
posed F-Race, a widely known, state-of-the-art racing algo-
rithm. F-Race can be considered an extension of the naı̈ve
racing approach, where the naı̈ve selection criterion (line 9
in Algorithm 1) is replaced with a statistical test. Concretely,
after each iteration over the input instances, F-Race per-
forms a statistical test, typically, the non-parametric Fried-
man test, to determine if there are significant differences in
the number of unsat instances per neural network model.
If the null hypothesis is rejected or, in other words, signif-
icant differences exist, F-Race applies post-tests to identify
the models which are performing statistically significantly
worse than the best, and updates C accordingly. The algo-
rithm stops when all input instances have been processed,
and the final output is the model with the highest robust ac-
curacy.

Since we are interested in the fraction of instances that are
unsat, we used Cochran’s Q test to determine if there are sig-
nificant differences among the unsat counts for each of the
networks. Notice that Cochran’s Q is identical to the Fried-
man test but applicable when the responses are binary. When
only two candidate networks remain, we used the McNemar
test (without continuity correction), which can be seen as
a special case of Cochran’s Q test (Tate and Brown 1970).
Any significant Cochran’s Q (or McNemar) statistic is fol-
lowed by Dunn’s post-hoc test with a significance threshold
of p= 0.05, and networks are selected if they have a signif-
icantly higher certified robust accuracy than their competi-
tors.

Sorting Mechanism
In addition, we propose a sampling strategy based on a
mechanism that sorts the considered input instances accord-
ing to their likelihood of being adversarially robust. The key
idea behind this mechanism is that by exposing a neural net-
work model to inputs that are least likely to be adversari-
ally robust, we can more quickly gather insights into its vul-
nerability or, similarly, its robustness. In other words, if we
initially verify a neural network model on its most “chal-
lenging” input instances, i.e., instances on which it is most
likely not robust, but obtain robustness guarantees for these
instances, we can at least heuristically assume the model to
also be robust with respect to the remaining instances.

To enable this sorting mechanism, we must define or es-
timate the likelihood of a neural network model input be-
ing adversarially robust. In our case, this involves estimat-
ing their distance from the decision boundaries of the model,
captured by means of network outputs. Intuitively, if an input
lies very close to the boundary between two classes, it can
be assumed that small perturbations, such as those applied
to adversarial examples, have a higher chance to change the
prediction made by the model.

In this work, we estimate the distance to an adjacent
class boundary as the difference between the neural net-
work output corresponding to the most likely class and
that corresponding to the second-most likely class, and
we refer to this difference as ∆. Formally, we define
∆ := max({y1, y2, . . . , yn}) − max({y1, y2, . . . , yn} \
max({y1, y2, . . . , yn})), where yn refers to the network out-
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(b) CIFAR (β-CROWN, ϵ = 0.008)

Figure 1: Empirical cumulative probability distribution of normalised ∆-values for sat, unsat and unsolved instances for the
considered MNIST and CIFAR networks, respectively. Notably, the plot shows a statistically significant difference between the
empirical distribution functions of ∆-values for sat and unsat instances. Specifically, for both MNIST and CIFAR networks,
sat instances generally have smaller ∆-values than unsat instances. Statistical significance is determined by means of a Kol-
mogorov–Smirnov test with a significance threshold of 0.05.

put for a given class n. Based on the resulting ∆-values, we
can, for each neural network model individually, sort the in-
put instances in an non-decreasing order, where the smaller
the value of ∆, the closer we assume an instance to lie to an
adjacent class boundary.

Experimental Setup
We compiled two sets of neural network models: one set
consisting of 31 neural networks trained on the MNIST
dataset and one set containing 27 neural networks trained
on the CIFAR-10 dataset. All networks were taken from the
repository of the ERAN verification system (Müller et al.
2021; Singh et al. 2019a,b; Singh and Gehr 2019; Singh
et al. 2018) and greatly vary in terms of architecture, train-
ing method as well as robust accuracy. Details of the consid-
ered networks can be found in the supplementary material.
We verified each network for local robustness with respect
to the first 100 instances in the test set of the MNIST and
CIFAR-10 datasets, respectively.

To verify the MNIST networks, we used the state-of-
the-art complete CPU-based verification algorithm VeriNet
(Henriksen and Lomuscio 2020) with a perturbation radius
of ϵ = 0.04, which lies well within the range of com-
monly chosen values for ϵ when verifying networks trained
on MNIST (Wu et al. 2022; Botoeva et al. 2020; Wang et al.
2018a). Verification queries ran with a time budget of 3600
seconds on a cluster of machines equipped with Intel Xeon
E5-2683 CPUs with 32 cores, 40 MB cache size and 94 GB
RAM, running CentOS Linux 7.

To verify the more challenging CIFAR networks, we used
β-CROWN, a state-of-the-art complete GPU-accelerated

verification method (Wang et al. 2021). For these networks,
we verified local robustness with ϵ = 0.008, a value in line
with commonly chosen values of ϵ for networks trained on
CIFAR (see, e.g., Müller et al. 2022). Again, all verification
queries ran with a time budget of 3600 seconds on machines
equipped with NVIDIA GeForce GTX 1080 Ti GPUs with
11 GB video memory. Overall, the verification of the CIFAR
networks used in our study consumed 558 hours in GPU
time, whereas the verification of the MNIST networks de-
manded a total of 1380 CPU hours.

We note that, although the verification algorithms pre-
sented above are complete, they were sometimes unable to
solve an instance due to time or memory limitations; we re-
port such instances as unsolved.

Empirical Results
In the following, we will compare our proposed selection
method against the F-Race approach, the naı̈ve racing ap-
proach as well as selection based on exhaustive evaluation.
The latter represents the conceptually simplest baseline for
selecting the most robust model from a given set of neural
network models. Using this approach, each model is veri-
fied with respect to all available input instances during the
verification procedure. At each input iteration, the candidate
model with the highest certified robust accuracy is selected
as the incumbent; i.e., the model that would be returned if
the process were terminated at the given iteration. Differ-
ently from the racing approaches, the exhaustive evaluation
approach does not eliminate any candidate models during
the selection process; therefore, when run to completion, it
will always achieve a regret of zero.
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Figure 2: Number of candidate models as determined by each method after every input iteration. For the three methods that
do not use the sorting mechanism, the line represents the average number of candidate models over 200 random input orders,
each with different random seeds, along with along with the respective 95% confidence intervals. Clearly, naı̈ve racing, coupled
with our proposed sorting mechanism, reduces the number of candidates after substantially fewer input iterations than other
methods. Notice that selection based on exhaustive evaluation does not eliminate models from the set of candidates, which,
therefore, does not decrease in size.

We evaluated each method in terms of cumulative running
time and regret. The former describes the total running time
consumed by the verification algorithm until all given input
instances have been processed and the most robust model
has been determined. Regret, in the context of model selec-
tion, describes the difference between the performance of
the selected model and the performance of the best model
that could have been chosen based on complete and perfect
knowledge. In other words, it represents the loss incurred by
selecting a sub-optimal model.

Formally, the regret R is defined as follows. Suppose we
have a set of candidate models C = {C1, C2, . . . , Cn}, and
we want to select one model from this set based on certi-
fied robust accuracy. Let Cbest be the best model in the set,
i.e., the model with the highest certified robust accuracy ra .
Then, R := ra(Cbest)− ra(Cselected), where ra(Cbest) repre-
sents the robust accuracy of the best model and ra(Cselected)
the robust accuracy of the selected model.

Local Robustness at the Decision Boundary
First of all, we investigated the relationship between the lo-
cal robustness of a neural network model and the estimated
distance of an input instance from the decision boundary
of the model. More specifically, we examined the empiri-
cal cumulative probability distribution of ∆-values across
all considered models, giving rise to 3100 individual verifi-
cation problem instances for MNIST and 2800 for CIFAR.
Remember that ∆-values serve as a proxy for the distance
of an instance from the closest adjacent class boundary. We
normalised these values per network under consideration.

The empirical cumulative distribution of the ∆-values is
visualised in Figure 1. Notice that some instances could not
be verified due to timeouts or memory limitations; we show
these instances as unsolved. The plots clearly show that sat
instances, i.e., instances for which an adversarial example
could be found, tend to have a smaller ∆-value than those
that are unsat, i.e., robust. The difference in distributions
is determined as statistically significant by means of a Kol-
mogorov–Smirnov test with a standard significance thresh-
old of 0.05.

At the same time, Figure 1 shows that there exist in-
stances, which are found to be sat despite having a rela-
tively large ∆-value, i.e., a ∆-value close to the end of the
(normalised) range of values. Upon further investigation, we
found that for MNIST, such instances occurred for 12 out of
the 31 neural network models we considered and for 15 out
of the 27 CIFAR networks. Notice that for these models, no
instance was found to be robust, which indicates that large
∆-values can occur also for sat instances if a neural net-
work model generally suffers from poor robustness. How-
ever, this observation does not affect the performance of our
proposed selection method, as models which are non-robust
with respect to any input instance would be discarded from
the set of candidate models early in the selection process
regardless of their ∆-value and, hence, the sorting of input
instances. Notice that when removing these neural network
models from the set, the difference in ∆-values between sat
and unsat instances grows even larger; more details can be
found in the supplementary material.
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Figure 3: Regret achieved by the considered methods, where regret describes the difference between the performance of the
selected model and the performance of the best model that could have been chosen given all available information. For methods
not using the sorting mechanism, the regret was averaged over 200 random input orders, each with different random seeds,
and is shown with a 95% confidence interval. The plots show that naı̈ve racing, coupled with our proposed sorting mechanism,
achieves optimal regret with fewer input iterations than other methods.

Evaluation of Our Proposed Selection Method
We evaluated our proposed selection method, naı̈ve racing
coupled with the sorting mechanism, in terms of cumula-
tive running time and regret, and compared its performance
against the following three baselines: (i) F-Race, (ii) naı̈ve
racing without a sorting mechanism and (iii) selection based
on exhaustive evaluation. For methods that do not employ
the sorting mechanism (i.e., all baselines), we repeated the
selection process 200 times, where each time the order of
the input instances was based on a different random seed.
We report the average running time over all runs, along with
the respective 95% confidence intervals.

Figure 2a displays the size of the set of candidate net-
works trained on the MNIST dataset throughout the selec-
tion process. It shows that our proposed selection method re-
duces the number of candidate models after fewer iterations
compared to each considered baseline. At the same time, for
the exhaustive evaluation approach, the number of consid-
ered models remains constant, resulting in a larger number
of queries that need to be performed at every input iteration.

As the number of candidate models reduces very quickly,
it could be assumed that the aggressive nature of our se-
lection method might lead to a sub-optimal outcome of
the model selection process. We investigated this potential
trade-off and show the results in Figure 3a. As can be seen,
every method reached an optimal regret, indicating that the
significant speed-up does not necessarily compromise on the
quality of the selection process. However, we note that some
of the MNIST networks were found to be fully robust. These
are, consequently, always selected by any of the selection
methods, even those that are more aggressive. Lastly, notice

that F-Race eliminates candidate models based on statistical
evidence, which can lead to models being selected that are
less robust than others but where this difference is not found
to be statistically significant at the given iteration.

We also tested our method on networks trained on the
more challenging CIFAR dataset. Neural networks trained
on this dataset are generally more difficult to verify than
those trained on the MNIST dataset (Li et al. 2020). Fig-
ure 2b shows the size of the set of candidate CIFAR net-
works throughout the selection process. Again, we found
that our proposed selection method eliminates candidate
models after fewer iterations compared to other methods.
Concurrently, the difference between the naı̈ve racing ap-
proach with and without the sorting mechanism is much
smaller than the difference observed on MNIST networks.

However, Figure 3b shows the advantage of the sorting
mechanism: the naı̈ve racing approach using the sorting
mechanism very quickly converges towards an optimal re-
gret, while other methods either require substantially more
iterations or do not reach the optimum at all. In fact, on
this set of models, the naı̈ve racing approach without the
sorting mechanism always resulted in a sub-optimal model
choice. Overall, these results clearly demonstrate that our
new method can effectively select the most robust model,
and does so in a more efficient way than F-Race, which dis-
cards models only after it obtained statistical significance
between the robust accuracy of the candidate models.

Lastly, we studied in more detail the efficiency of our
method compared to the baselines we considered, in terms
of regret achieved for a specific time budget. This is visu-
alised in Figure 4a for MNIST networks and Figure 4b for
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Figure 4: Regret as a function of cumulative running time for each of the considered methods. Running time represents wall-
clock time on the machine on which the experiments were carried out. For methods not using the sorting mechanism, the regret
was averaged over 200 random input orders, each with different random seeds, and is shown with a 95% confidence interval. The
plots show that naı̈ve racing, coupled with our proposed sorting mechanism, achieves optimal regret while using substantially
less compute time than other methods. Each line ends once a specific method has processed all given input instances.

CIFAR networks. Notably, these plots reveal that for both
sets of models, our method selects the best-performing, i.e.,
most robust model while demanding less compute time than
any of the considered baselines, especially selection based
on exhaustive evaluation. In fact, for MNIST networks, the
cumulative running required to complete the selection pro-
cess is reduced by several orders of magnitude, i.e., a 108-
fold speedup factor, when compared to selecting based on
exhaustive evaluation (1380.93 vs 12.83 hours). Further-
more, for CIFAR networks, our selection method achieved
a 41-fold speedup compared to the exhaustive evaluation
approach (558.44 vs 13.18 hours). Generally, this decrease
in cumulative running time occurs because our selection
method iteratively eliminates models from the set of can-
didates, subsequently reducing the number of verification
queries in the following iterations, as previously explained.
We note that the number of verification queries directly de-
pends on the number of models, which decreases throughout
the selection process.

These results highlight that our proposed selection
method is well-suited for scenarios in which computing re-
sources are limited, as it is likely to select, within any given
amount of running time, models that are more robust than
those determined by the baselines considered in our study.

Conclusions and Future Work
In this study, we have, for the first time, demonstrated the
effectiveness of advanced model selection techniques in the
context of neural network verification. Specifically, we stud-
ied the problem of selecting the most robust neural network
model from a given set of models whilst reducing the com-

pute time needed to obtain robustness certificates for the
given input instances.

To enable our proposed selection method, we introduced
a novel sorting mechanism based on the likelihood of an
input instance being robust with respect to adversarial in-
put perturbations. This likelihood is captured by means of
∆-values, and we present statistical evidence indicating sig-
nificant differences in the empirical cumulative distribution
of these values for robust and non-robust instances. Overall,
our method advises on the allocation of computing resources
required to perform local robustness verification towards ad-
versarially robust models and can, in principle, be used in
combination with any verification system.

We empirically evaluated our method on two diverse sets
of 31 and 27 neural networks, trained on the MNIST and
CIFAR-10 datasets, respectively. Our results clearly show
that our proposed model selection method significantly re-
duces the cumulative running time required to select the
most robust neural network model from these sets. Specif-
ically, compared to the exhaustive evaluation approach, our
method achieved a speedup factor of 108 for the set of
MNIST networks and a speedup factor of 42 for the set of
CIFAR networks while still selecting the most robust model.

In future work, we plan to apply our method to other veri-
fication tasks (e.g., robustness verification under bias field
perturbations), network architectures and datasets, and to
perform a systematic analysis of the relationship between ∆-
values and the robustness of neural network models. In ad-
dition, we are interested in the precise relationship between
the ∆-value and the distance to the nearest decision bound-
ary.
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2010. F-Race and Iterated F-Race: An Overview. In Bartz-
Beielstein, T.; Chiarandini, M.; Paquete, L.; and Preuss, M.,
eds., Experimental Methods for the Analysis of Optimization
Algorithms, 311–336. Springer.
Botoeva, E.; Kouvaros, P.; Kronqvist, J.; Lomuscio, A.; and
Misener, R. 2020. Efficient Verification of ReLU-based
Neural Networks via Dependency Analysis. In Proceed-
ings of the 34th AAAI Conference on Artificial Intelligence
(AAAI-20), 3291–3299.
Bunel, R.; Lu, J.; Turkaslan, I.; Torr, P. H. S.; Kohli, P.; and
Kumar, M. P. 2020. Branch and Bound for Piecewise Linear
Neural Network Verification. Journal of Machine Learning
Research, 21: 42:1–42:39.
Bunel, R.; Turkaslan, I.; Torr, P.; Kohli, P.; and Mudigonda,
P. K. 2018. A Unified View of Piecewise Linear Neural Net-
work Verification. In Advances in Neural Information Pro-
cessing Systems 31 (NeurIPS 2018), 1–10.
Croce, F.; Andriushchenko, M.; and Hein, M. 2019. Prov-
able Robustness of ReLU networks via Maximization of
Linear Regions. In Chaudhuri, K.; and Sugiyama, M., eds.,
Proceedings of the 22nd International Conference on Artifi-
cial Intelligence and Statistics (AISTATS 2019), volume 89
of Proceedings of Machine Learning Research, 2057–2066.
De Palma, A.; Bunel, R.; Desmaison, A.; Dvijotham, K.;
Kohli, P.; Torr, P. H. S.; and Kumar, M. P. 2021. Improved
Branch and Bound for Neural Network Verification via La-
grangian Decomposition. arXiv preprint arXiv:2104.06718.
Ding, G. W.; Sharma, Y.; Lui, K. Y. C.; and Huang, R. 2020.
MMA Training: Direct Input Space Margin Maximization
through Adversarial Training. In Proceedings of the 8th In-
ternational Conference on Learning Representations (ICLR
2020), 2057–2066.
Dvijotham, K.; Stanforth, R.; Gowal, S.; Mann, T. A.; and
Kohli, P. 2018. A Dual Approach to Scalable Verification of
Deep Networks. In Proceedings of the 38th Conference on
Uncertainty in Artificial Intelligence (UAI 2018), 550–559.
Ehlers, R. 2017. Formal Verification of Piece-Wise Linear
Feed-Forward Neural Networks. In Proceedings of the 15th
International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA 2017), 269–286.

Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural archi-
tecture search: A survey. The Journal of Machine Learning
Research, 20(1): 1997–2017.
Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. 2018. AI2: Safety and Ro-
bustness Certification of Neural Networks with Abstract In-
terpretation. In Proceedings of the 39th IEEE Symposium on
Security and Privacy (IEEE S&P 2018), 3–18.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In Proceedings
of the 3rd International Conference on Learning Represen-
tations (ICLR 2015), 1–11.
He, W.; Li, B.; and Song, D. 2018. Decision Boundary Anal-
ysis of Adversarial Examples. In Proceedings of the 6th In-
ternational Conference on Learning Representations (ICLR
2018), 1–15.
Henriksen, P.; and Lomuscio, A. 2020. Efficient Neural Net-
work Verification via Adaptive Refinement and Adversarial
Search. In Proceedings of the 24th European Conference on
Artificial Intelligence (ECAI 2020), 2513–2520.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential Model-Based Optimization for General Algorithm
Configuration. In Proceedings of the 5th International Con-
ference on Learning and Intelligent Optimization (LION 5),
507–523.
Julian, K. D.; Kochenderfer, M. J.; and Owen, M. P. 2019.
Deep Neural Network Compression for Aircraft Collision
Avoidance Systems. Journal of Guidance, Control, and Dy-
namics, 42(3): 598–608.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In Proceedings of the
29th International Conference on Computer Aided Verifica-
tion (CAV 2017), 97–117.
König, M.; Hoos, H. H.; and van Rijn, J. N. 2022. Speeding
up neural network robustness verification via algorithm con-
figuration and an optimised mixed integer linear program-
ming solver portfolio. Machine Learning, 111(12): 4565–
4584.
Li, L.; Qi, X.; Xie, T.; and Li, B. 2020. Sok: Certi-
fied robustness for deep neural networks. arXiv preprint
arXiv:2009.04131.
Liu, W.; Wen, Y.; Yu, Z.; and Yang, M. 2016. Large-Margin
Softmax Loss for Convolutional Neural Networks. In Bal-
can, M.; and Weinberger, K. Q., eds., Proceedings of the
33nd International Conference on Machine Learning (ICML
2016), volume 48, 507–516.
Maron, O.; and Moore, A. 1993. Hoeffding races: Acceler-
ating model selection search for classification and function
approximation. Advances in Neural Information Processing
Systems 6 (NeurIPS 1993).
Müller, C.; Serre, F.; Singh, G.; Püschel, M.; and Vechev,
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