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Abstract

The recent advancements in Deep Reinforcement Learning
(DRL) have significantly enhanced the performance of adap-
tive Traffic Signal Control (TSC). However, DRL policies
are typically represented by neural networks, which are over-
parameterized black-box models. As a result, the learned
policies often lack interpretability, and cannot be deployed
directly in the real-world edge hardware due to resource con-
straints. In addition, the DRL methods often exhibit lim-
ited generalization performance, struggling to generalize the
learned policy to other geographical regions. These factors
limit the practical application of learning-based approaches.
To address these issues, we suggest the use of an inher-
ently interpretable program for representing the control pol-
icy. We present a new approach, Programmatic Interpretable
reinforcement learning for traffic signal control (π-Light),
designed to autonomously discover non-differentiable pro-
grams. Specifically, we define a Domain Specific Language
(DSL) and transformation rules for constructing programs,
and utilize Monte Carlo Tree Search (MCTS) to find the
optimal program in a discrete space. Extensive experiments
demonstrate that our method consistently outperforms base-
line approaches. Moreover, π-Light exhibits superior general-
ization capabilities compared to DRL, enabling training and
evaluation across intersections from different cities. Finally,
we analyze how the learned program policies can directly de-
ploy on edge devices with extremely limited resources.

Introduction
Traffic signal control plays a pivotal role in alleviating traf-
fic congestion. Efficiently managing traffic flow can reduce
commute times, further reducing carbon emissions. Thus,
optimizing control strategies to reduce the average travel
time holds significant importance. Traditional traffic signal
control methods are based on expert-defined rules, such as
fixed-time control (Miller 1963), SOTL (Cools, Gershen-
son, and D’Hooghe 2013), and SCATS (Lowrie 1990). Al-
though these rules offer a high degree of interpretability,
their reliance on expert knowledge limits their ability to
learn from data. In contrast, recent deep reinforcement learn-
ing emerges as a promising solution to TSC. In these DRL-
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based approaches, agents learn through continuous interac-
tions with the environment, achieving superior performance
over traditional ones. DRL methods can either be value-
based (Van der Pol and Oliehoek 2016; Wei et al. 2018;
Chen et al. 2020) or policy-based (Mousavi, Schukat, and
Howley 2017; Oroojlooy et al. 2020), and agents at different
intersections can collaborate (Wei et al. 2019) or communi-
cate (Yu et al. 2021) to improve overall performance.

Despite the significant strides made by Deep Reinforce-
ment Learning (DRL) methods in traffic signal control,
their reliance on neural networks introduces new challenges.
These challenges include a lack of interpretability, difficulty
in validation, and incompatibility with edge devices. As a
result, in the real world, the majority of traffic signal con-
trol methods still rely on traditional approaches (Tang et al.
2019). Even in developed countries (e.g., the United States),
the proportion of intelligent traffic signals remains below
5% (Tang et al. 2019). We posit that an effective TSC ap-
proach should encompass the following three characteristics
to find widespread application in real-world scenarios:

• Interpretability of policies: The formidable expressive
capacity of DNNs makes the policies inherently difficult
to interpret. Applying these black-box policies in high-
stakes decision-making scenarios could potentially lead
to unpredictable risks (Rudin 2019).

• Compatibility with edge device: Many edge devices
lack effective support for neural networks. Deploying
neural networks requires additional operations such as
quantization (Han, Mao, and Dally 2016) to meet hard-
ware constraints, which could inadvertently degrade per-
formance (Krishnamoorthi 2018).

• Robust generalization capability: In this paper, we de-
fine robust generalization capability as the ability to
apply a policy trained at one intersection to other re-
gions without the need for retraining. Gathering traffic
flow data for every intersection in a city proves cumber-
some and sometimes unfeasible, particularly for newly
constructed roads lacking sufficient traffic data. Conse-
quently, methods should not develop specific policies for
each intersection or district. Instead, they should entail
devising a generalized policy that learns from a small
set of intersection data and can be directly applied to all
other intersections.
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It is challenging for DRL methods in TSC to simultane-
ously satisfy the aforementioned three characteristics. While
rule-based methods might fulfill these criteria, their inabil-
ity to adaptively learn often leads to less than optimal re-
sults. In light of this, we propose employing learnable pro-
grams to represent the policy of traffic signals. To actual-
ize this proposition, we introduce π-Light for traffic signal
control, which combines the adaptive features of RL meth-
ods with the interpretability advantages of rule-based ap-
proaches. In π-Light, we employ a program as the policy
of the agent, and the learning process will autonomously
discover an effective program. A significant technical chal-
lenge in π-Light is that the space of the program permitted is
non-differentiable and can be vast due to its compositional
nature. To surmount this obstacle, we have defined an ef-
fective Domain Specific Language (DSL) that includes con-
structs such as “If” and “Else”, along with transformation
rules. Subsequently, we leverage Monte Carlo Tree Search
(MCTS) to explore the discrete program space, aiming to
identify a well-performing program with maximal rewards.
The main contributions of this work can be summarized as:

• We advocate for the representation of the agent’s policy
via a program, a strategy that substantially boosts the pol-
icy’s interpretability and facilitates straightforward de-
ployment on devices with resource constraints.

• To automatically discover programs, we defined the DSL
and introduced a program search framework based on
MCTS. This framework facilitates the exploration of
good programs within a discrete program space.

• Extensive experiments on real-world datasets substanti-
ate that π-Light outperforms DRL-based methods. More-
over, π-Light exhibits markedly superior generalization
capabilities in comparison to DRL, as it can transfer to
any regions not encountered during training. All related
code has been made accessible1 for future research.

Related Work
Traffic Signal Control
Conventional traffic signal control methods are manually
crafted by domain experts. For example, the fixed-time ap-
proach switches signal phases based on predefined time
intervals. MaxPressure (Varaiya 2013) method selects the
phase with the highest pressure as the next phase. However,
these methods are heavily dependent on specialist expertise
and lack the ability to learn from data. In contrast, DRL-
based methods learn from traffic flows in a trial-and-error
manner to optimize their policies. FRAP (Zheng et al. 2019)
effectively models the competition between phases. Attend-
Light (Oroojlooy et al. 2020) utilizes attention mechanisms
to handle heterogeneous intersections. MPLight (Chen et al.
2020) is designed for large-scale traffic signal control. CoL-
ight (Wei et al. 2019) and MaCAR (Yu et al. 2021) explicitly
consider neighbor interactions to achieve cooperation. Nev-
ertheless, these methods primarily focus on performance,
overlooking other aspects such as interpretability.

1https://github.com/firepd/PI-Light
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Figure 1: An illustration of the TSC problem.

Given the poor interpretability of DRL, DRSQ (Ault,
Hanna, and Sharon 2020) employs a manually defined poly-
nomial formula to represent the agent’s policy. During the
training process of DQN (Mnih et al. 2015), DRSQ utilizes
the Q-function of DQN to optimize the parameters of the for-
mula. However, due to the constraints imposed by the fixed
formula structure, the performance of DRSQ is inferior to
the DQN. Due to the slow learning speed of vanilla DRL,
MetaLight (Zang et al. 2020) and GeneraLight (Zhang et al.
2020) introduced meta-RL-based approaches, which learn
a well-generalized initialization from various TSC tasks to
quickly adapt the learned knowledge to different intersec-
tions or traffic flows. To enable the deployment of neural
policies on edge devices, certain efforts (Chauhan, Bansal,
and Sen 2020; Xing et al. 2022) have been made to de-
sign lightweight network architectures tailored for TSC. For
instance, TinyLight (Xing et al. 2022) prunes large super-
graphs to obtain small networks. Based on the analysis
above, it can be deduced that existing DRL-based work typi-
cally focuses on one or two aspects of TSC. Few studies can
address the challenges of interpretability, generalization, and
low resource requirements.

Interpretable Reinforcement Learning
Recently, a number of studies have been put forward to boost
the interpretability of RL (Glanois et al. 2021) by represent-
ing a policy using human-understandable languages. Several
works learn policies represented by decision trees (Ernst,
Geurts, and Wehenkel 2005; Bastani, Pu, and Solar-Lezama
2018; Silver et al. 2020) or programs (Verma et al. 2018,
2019; Landajuela et al. 2021). Due to the inherent com-
plexity of directly learning programs, a common approach
is learning a programmatic policy by imitating a pretrained
DRL expert. For instance, Verma et al. (2018, 2019) dis-
till DRL policies into programmatic policies. And Bastani,
Pu, and Solar-Lezama (2018) learns a decision tree policy
by imitating an expert neural policy for pong and cartpole
tasks. These imitation-based approaches may constrain the
program’s performance from surpassing the expert’s per-
formance. In contrast, our method is not dependent on a
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trained DRL, and we learn the program policy from scratch.
LEAPS (Trivedi et al. 2021) first learns a smooth program
embedding space, then samples continuous vectors within
this space, and obtains programs with a decoder. However,
their experiment environment is limited to a simple 2D grid
world. Qiu and Zhu (2022) and Paleja et al. (2022) propose
differentiable algorithms for optimizing tree-like programs.
Nevertheless, their program structures are not very flexible,
consisting only of if-else branches and lacking sequentially
executable programs.

Traffic Term Definitions
As shown in Figure 1, we use a standard 4-way intersection
to illustrate the terminologies. The intersection consists of
4 incoming roads and 4 outgoing roads. An incoming road
comprises multiple incoming lanes. Similarly, an outgoing
road contains multiple outgoing lanes.

A lane links consists of a pair of an incoming lane and
an outgoing lane. A movement refers to a vehicle flow that
starts from an incoming lane and ends at an outgoing road. A
movement may contain multiple lane links. A phase s corre-
sponds to two non-conflicting movements, and a phase con-
tinues for a time interval. Changing the current phase will
result in a 3-second yellow light. Lane pressure is defined as
the difference between the number of vehicles in incoming
lanes and outgoing lanes.

π-Light Method
This section presents π-Light. We first introduce the general
framework of our method. Then, we present the definition of
the DSL and the transformation rules of programs. Finally,
the MCTS algorithm for search programs is described.

Overview
The distinctive feature of π-Light is that the policies are ex-
pressed in high-level, domain specific languages. In order to
ensure the interpretability of the programs and make them
compact and canonical, a part of the program structure is
predefined. As shown in Algorithm 1. Inspired by MaxPres-
sure (Varaiya 2013), our program Ebase will first calculate
a priority value v for each lane link (the larger the value,
the higher the priority of the link). Then it will calculate the
sum of the priority values corresponding to each phase, and
select the phase with the highest priority as the next phase
(i.e., action). Therefore, the task can be simplified to find the
optimal program E that computes v for each lane link.

Scale to multiple intersections. A region may have mul-
tiple traffic signals to control that are located at different
intersections. Instead of separately learning a program for
each intersection, the found program policy Ebase is shared
among all the intersections.

Observation. We consider three types of features as in-
put observations for the program Ebase, which are relatively
easy to obtain by traffic sensors. (1) The number of vehicles
on each lane (VehicleCount). (2) The number of wait-
ing vehicles on each lane (WaitVehicleCount). (3) The
number of vehicles within x meters of the intersection on

Algorithm 1: Base program Ebase for TSC
Input: Observation of one intersection
Output: next phase (action)

1: for each phase s do
2: for each lane link (inlane, outlane) ∈ s do
3: v = 0
4: Execute E here
5: end for
6: p(s)← Sum over corresponding lane links’ v.
7: end for
8: next phase← argmax{p(s)|s ∈ S}

Program E := P

IT := if B then P

ITE := if B then P1 else P2

P := [(A|IT|ITE)1, (A|IT|ITE)2, ..., ] .

Figure 2: The domain specific language for constructing
our programs. IT is a module that contain if-then structure.
ITE is another module that includes if-then-else structure.
A vertical bar | indicates choice. An element of P can be
either A, IT, or ITE.

each lane (VehicleCloseCount(x)). Here, x is an inte-
ger parameter of the program.

As a lane link consists of an incoming lane and
an outgoing lane, and E calculates the value (v) for
each lane link. E will receive the observation infor-
mation of the corresponding incoming lane and out-
going lane. These include InLaneVehicleCount,
InLaneWaitVehicleCount, and InLaneVehicle-
CloseCount(x) for the corresponding incoming lane, all
of which are scalar values. As well as information for the
outgoing lane (e.g., OutLaneVehicleCount).

Reward. The ultimate goal of TSC is to minimize the av-
erage travel time for all vehicles (Wei et al. 2021) within a
finite time frame. Nevertheless, in a multi-intersection en-
vironment, existing DRL-based methods (Chen et al. 2020;
Oroojlooy et al. 2020) still adopt a local metric as the re-
ward for training agents (e.g., negative pressure on the local
intersection). It is a compromise since the travel time isn’t a
direct function of local observation and action, hence cannot
be directly optimized. However, our approach allows for the
use of a global metric, because we do not use local obser-
vation to optimize the program. In practice, we utilize the
reciprocal of average vehicle travel time as reward r. Agents
at different intersections can achieve coordination based on
this reward, due to a program is shared across intersections.

Programming Languages for Policies
In this subsection, we formally define our DSL that con-
structs programs. As shown in Figure 2. The DSL consists
of control flows (e.g., if-then and if-then-else), condition B
and instruction A. P is a sequentially executed program. P
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Empty Program

InLaneVehicleCount ... InLaneVehicleCloseCount(x) OutLaneVehicleCount

InLaneVehicleCount
OutLaneVehicleCount

if InLaneVehicleCount >     :
                 InLaneV.CloseCount(x)... ... ...InLaneVehicleCount

Figure 3: An illustration of program transformation graph.

B := o ≤ c1 | o1 > c2

A := v += o
∣∣v += c1 · o∣∣v −= o
∣∣v −= c2 · o

Figure 4: Definition of condition B and instruction A.
The symbol o stands for any available feature, i.e.,
InLaneVehicleCount. c is a program parameter.

consists of one or more modules, each of which can be A,
IT, or ITE. In contrast to the fixed program templates used
in prior work (Verma et al. 2018), this DSL enables a flexible
structure. It exhibits recursiveness, wherein the DSL permits
the presence of ITE modules within its own branches.

Then, we give the formal definitions of condition B and
instruction A in Figure 4. A condition B will return a
boolean value. An instruction A is a minimal executable unit
in E. For example, v +=InLaneWaitVehicleCount
will increase v by the number of waiting vehicles. (This is
intuitive, since the higher the number of waiting vehicles,
the higher the priority of this incoming lane.)

Given that our primary focus is on interpretability, we
do not take into account interactions between features. Fur-
thermore, some interactions may lack practical significance
(e.g., InLaneVehicleCount× InLaneWaitVehic-
leCount), and hence, have been omitted by us.

Transformation Rules
Starting with an empty program, we can construct a com-
plex program by iteratively applying transformation rules.
This process is depicted in Figure 3. Please note that in our
transformation graph, the program at each node is complete
and permissible according to the grammar of the DSL.

1. Add a parameter to a parameter-less A. For example,
v += o1 → v += c1 · o1.

2. Add an instruction to P . For example, [A] → [A,A′],
[ITE]→ [ITE, A′].

3. Modify A to become a branching instruction of IT mod-
ule. For instance, A→ if B′ then [A] .

4. Modify A to become a branching instruction of ITE
module. For instance, A→ if B′ then [A] else [A′].

In the above rules, A′ and B′ is newly added instruction and
condition, both of which are randomly generated.

Monte Carlo Tree Search
Monte Carlo tree search (Coulom 2006) is an algorithm for
searching optimal decisions within large discrete spaces rep-
resented by a search tree. MCTS has been proven to be an
effective algorithm in many fields, such as AlphaGo (Silver
et al. 2017) and AlphaTensor (Fawzi et al. 2022).

In π-Light, the search tree is similar to the transformation
graph shown in Figure 3. A node in the search tree represents
a program, and an edge corresponds to a transformation rule.
Recall that our objective is to find an optimal program that
maximizes the reward. MCTS iteratively performs the fol-
lowing three steps, which will ultimately guide the search
toward promising solutions for TSC.

1. Selection. Starting from the root node, we continuously
select a child node based on a selection strategy, i.e., Up-
per Confidence bounds applied for Trees (UCT) (Kocsis
and Szepesvári 2006) :

UCT = r(j) + C
√
(ln[N(k)]/N(j))

where r(j) is the estimated reward of a child node j. C is
a hyper-parameter that balances exploration and exploita-
tion. N(k) is the number of times the parent node k has
been visited. N(j) is the number of times the child node
j has been visited. The UCT encourages visiting nodes
with high rewards or nodes that are less visited.

2. Expansion. Expand the current node by applying avail-
able transformation rules to create child nodes. Specif-
ically, we begin by randomly selecting an entity within
the program (i.e., an A or P ), and then randomly apply
a transformation rule to expand the entity, resulting in a
new program. Since each program is complete and exe-
cutable, we can evaluate the expanded node directly.

3. Backpropagation. The reward r is backpropagated from
the evaluated node to the root node. The update of a
node’s reward follows r(k) ← max(r(j), r(k)). We use
the max operation because we are seeking the program
with the best performance, rather than average perfor-
mance. In addition, we update all nodes’ visit counts.

Policy Evaluation. To evaluate a program, we employ
it as a control policy for a TSC environment. We run one
episode of the environment, and obtain the reward (i.e., the
reciprocal of average vehicle travel time) for a program.

Constant Optimization. Some programs may have pa-
rameters (e.g., c and x) that need to be optimized. Since
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Methods Hangzhou1 Hangzhou2 Manhattan

Travel Time Throughput Travel Time Throughput Travel Time Throughput

FixedTime 282.68±2.01 27.59±0.04 135.89±1.94 23.23±0.03 1062.33±16.75 16.78±0.52
MaxPressure 121.23±3.07 31.19±0.09 138.72±1.75 23.10±0.05 315.83±10.99 43.09±0.14

SOTL 250.58±3.66 28.69±0.06 136.74±2.02 23.21±0.05 984.52±17.15 19.56±1.10

CoLight - - - - 1713.36±33.92 2.20±0.72
FRAP 114.84±7.48 31.24±0.12 124.74±2.48 23.23±0.05 531.90±361.58 33.26±12.48

MPLight 119.58±43.37 30.96±0.96 122.55±1.75 23.24*±0.06 195.61±4.76 44.92±0.10
EcoLight 189.52±9.56 29.95±0.24 135.41±2.21 23.16±0.24 1014.61±33.11 17.65±0.90
TinyLight 102.87*±2.98 31.36*±0.05 121.00*±0.85 23.25±0.04 322.01±168.10 40.55±6.55

π-Light 90.50±0.98 31.48±0.04 118.57±1.15 23.25±0.04 204.27*±0.47 44.81*±0.10

Methods Atlanta Jinan Los Angeles

Travel Time Throughput Travel Time Throughput Travel Time Throughput

FixedTime 297.13±3.19 49.26±0.53 457.21±2.12 86.27±0.17 682.55±2.59 17.76±0.27
MaxPressure 261.01±4.20 59.44±1.51 340.13±1.69 94.76±0.19 588.24±22.79 23.84±1.57

SOTL 416.88±8.13 8.46 ±2.22 424.67 ±2.44 90.02±0.22 624.19±29.48 21.81±3.99

CoLight - - 856.53±451.3 57.96±30.08 - -
FRAP 255.62±19.30 64.42±8.01 309.58±9.74 95.84±0.69 719.70±94.50 12.70±7.86

MPLight 248.48*±9.88 67.03*±4.41 295.23*±4.13 96.37*±0.13 577.96±81.35 23.63±6.96
EcoLight 306.12±24.09 47.14±8.18 379.60±5.63 92.43±0.38 650.52±11.07 19.98±0.73
TinyLight 253.99±8.08 62.16±3.77 310.62±3.68 95.79±0.39 489.93*±19.76 31.29*±2.73

π-Light 231.22±2.55 70.41±0.72 275.06±0.54 97.03±0.11 437.42 ±12.76 36.14±0.99

Table 1: The performance of all methods on six real-world road networks. The second best methods are denoted with *.
CoLight is designed for homogeneous multi-intersection environments, therefore, some results are left blank.

the program is non-differentiable, we are unable to com-
pute gradients for these parameters. Following previous
work (Verma et al. 2018), we use Bayesian optimiza-
tion (Snoek, Larochelle, and Adams 2012) to optimize the
parameters of the program aiming to maximize the reward.
The number of optimization steps is between 4 and 10, de-
pending on the number of parameters. For example, for a
program with one parameter, we optimize it 4 times.

Program Constraints. A concise program is easier to in-
terpret than a complex one. To make the program easy to un-
derstand, we impose the following constraints on the trans-
formation process of the programs. (1) The sequence length
of P cannot exceed 6, thus it can only have at most 6 ele-
ments. (2) The depth of program E cannot exceed 2. Both
the IT module and the ITE module will increase the pro-
gram depth by 1.

Experiments
Datasets and Simulators
To simulate realistic traffic flow, following previous
works (Chen et al. 2020; Xing et al. 2022), we utilize the
open-source CityFlow (Zhang et al. 2019) as our simulator.
We consider six road networks from five different real-world
cities, including two 1× 1 road networks of Hangzhou, one
16× 3 road network of Manhattan, one 5× 1 road network
of Atlanta, one 4 × 3 road network of Jinan, and one 4 × 1
road network of Los Angeles. Please note that in the road

networks of Atlanta and Los Angeles, intersections are het-
erogeneous, while intersections in the other road networks
are homogeneous.

The traffic flows record the origin location, birth time t,
and destination of each vehicle. Both the road networks and
real-world flow data were obtained from open-source repos-
itories 2. To measure the robustness of various methods to
noise, for each environment, we generated nine additional
traffic flows by randomly shifting the initial t of all vehicles
using a noise ∈ [−60s, 60s]. Consequently, we need to con-
duct 10 independent experiments on each environment, and
we report the mean performance and standard deviation.

Baselines
We select three rule-based baselines FixedTime (Miller
1963), SOTL (Cools, Gershenson, and D’Hooghe 2013),
and MaxPressure (Varaiya 2013) as baselines for compar-
ison. Furthermore, we adopt three state-of-the-art DRL-
based methods CoLight (Wei et al. 2019), FRAP (Zheng
et al. 2019) and MPLight (Chen et al. 2020) that do not con-
sider real-world deployment. Additionally, we included two
DRL-based methods EcoLight (Chauhan, Bansal, and Sen
2020) and TinyLight (Xing et al. 2022) that take real-world
deployment into account by utilizing lightweight network
architectures to reduce hardware load.

To measure the effectiveness of each method in TSC.

2https://github.com/DaRL-LibSignal/LibSignal
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Listing 1: Program learned from Hangzhou2
v += InLaneWaitVehicleCount
v += InLaneVehicleCloseCount(150)
if (OutLaneVehicleCount>12):

v -= OutLaneVehicleCount

Listing 2: Program learned from Manhattan
if (InLaneVehicleCount>10):

v += InLaneWaitVehicleCount
else:

v += InLaneVehicleCloseCount(200)
v -= OutLaneVehicleCloseCount(11)

We employ the average travel time of vehicles on the road
network (Travel Time) and the number of vehicles passing
through per minute (Throughput) as the evaluation metrics.
A smaller average travel time is preferable, and a higher
Throughput is better. These two metrics are widely adopted
in previous studies (Chen et al. 2020; Xing et al. 2022).

Experimental Setup
All experiments are conducted using Python on a computer
with an Intel i5 13600KF CPU and an NVIDIA RTX 3050
GPU (Xi et al. 2023; Gu et al. 2021). The DRL-based
baselines were implemented by PyTorch. All baselines are
trained with sufficient number of episodes (i.e., 128) until
convergence. Please note that though π-Light required more
episodes (e.g., 450) due to parameter optimization, its wall
clock time is less than that of the baselines. For instance, in
the Jinan environment, π-Light requires 0.47 hours for a sin-
gle run, while MPLight requires 0.92 hours, and TinyLight
takes 3.2 hours. In addition, the hyper-parameter C of the
MCTS algorithm is set to 0.5 across all experiments.

Experimental Results
The results of all methods on multiple environments are dis-
played in Table 1. We draw the following conclusions. When
the training and evaluation environments are the same, rule-
based methods are generally not as effective as learning-
based methods. π-Light exhibits the best performance, sur-
passing all baselines in five environments. Even in some en-
vironments (i.e., Manhattan) where π-Light does not achieve
the best score, it still ranks as the second best. In areas with
complex road networks (e.g., Atlanta and Los Angeles), our
method’s performance exceeds the second-ranked baseline
by a lot. For example, in the Los Angeles environment, the
average travel time of TinyLight is 52 seconds longer than
ours. It’s noteworthy that our policies are mainly composed
of symbolic languages, but their performance exceeds that
of expressive neural policies.

Interpretability of π-Light
Listing 1 and Listing 2 illustrate the best programs found by
π-Light for Hangzhou and Manhattan environments, respec-
tively. These programs are easy to understand and verify by
humans compared to a DRL policy. For instance, the pro-
gram from Hangzhou can be interpreted as: the priority v of

a lane link is equal to the number of waiting vehicles on the
incoming lane plus the number of vehicles within 150 meters
on the incoming lane. If the count of vehicles on the outgo-
ing lane is greater than 12, v will be reduced by the count
of vehicles on the outgoing lane. This characteristic makes
them well-suited for safety-critical TSC (Du et al. 2023).

Generalization Performance
To further validate the generalization performance of π-
Light and all baselines, we trained all approaches in the
source environment and then evaluated them in the target
environment. To enhance the contrast, we also report Max-
Pressure, a rule-based method that requires no training.

As shown in Table 2, it can be observed that DRL
performs poorly in different regions. Even transferred to
neighboring intersections within the same region (i.e.,
Hangzhou1→Hangzhou2), TinyLight’s performance still
drops a lot. When transferred to intersections in different
cities (i.e., Hangzhou2→Jinan), the performance of FRAP
and MPLight significantly deteriorates, falling even below
that of rule-based MaxPressure. In comparison to other
DRL-based methods, EcoLight demonstrates better gener-
alization performance, likely due to its simple network ar-
chitecture that reduces its susceptibility to overfitting.

Last but not least, the generalization capability of π-Light
surpasses DRL-based methods by a substantial margin.
Whether in the same region (e.g., Hangzhou1→Hangzhou2)
or different countries (e.g., Hangzhou2→Manhattan), the
performance of π-Light remains consistently stable. This
is likely attributed to the fact that the programs learned by
π-Light are not overly parameterized models. Concise pro-
grams inherently act as a form of regularization, thus result-
ing in superior generalization ability. Note that unlike pre-
vious meta-RL-based methods (Zang et al. 2020), π-Light
does not require further training in the target environment.
Therefore, we can conclude that π-Light trained at one inter-
section can transfer to other intersections without retraining.

Resource Consumption
Following prior work (Xing et al. 2022), we selected
floating-point operations (FLOPs) and memory consump-
tion (parameter size) as metrics to evaluate resource con-
sumption. These two metrics were chosen because they can
be quantified and are independent of the microcontroller
(MCU) operating environment.

Since an MCU is deployed at a single intersection, we
consider the memory consumption of one policy. In real-
world scenarios, a microcontroller needs to make a decision
within a limited time, so we calculated the FLOPs required
by a policy to make a single decision. We calculated the
floating-point operations and memory consumption for each
policy according to TinyLight (Xing et al. 2022), and the
results are presented in Figure 5.

We notice that the resource requirements of the π-Light
policy are slightly higher than MaxPressure’s. As the pol-
icy is represented in the form of a program, such pro-
grams can be readily translated into a deployment language
(e.g., C language) and directly deployed onto embedded de-
vices (Saha et al. 2023). This enables our policy to be de-
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Methods Hangzhou1→Hangzhou2 Hangzhou2→Jinan Hangzhou2→Los Angeles

Travel Time Throughput Travel Time Throughput Travel Time Throughput

MaxPressure 138.72±1.75 23.10±0.05 340.13*±1.69 94.76*±0.19 588.24*±22.79 23.84*±1.57
FRAP 173.75±146.11 22.48±2.25 863.99±524.35 61.04±36.02 860.70±29.59 2.73±2.75

MPLight 145.37±73.13 22.91±0.94 1241.03±346.95 9.26±25.87 865.16±12.61 2.30±0.95
EcoLight 134.60*±0.92 23.15*±0.03 404.43±25.08 92.08±1.97 739.19±81.49 11.66±7.48
TinyLight 703.15±316.77 14.27±4.54 - - - -

π-Light 119.71±1.28 23.25±0.04 278.24±5.10 96.98±0.16 478.45±33.10 30.14±5.83

Methods Manhattan→Hangzhou2 Hangzhou2→Manhattan Hangzhou2→Atlanta

Travel Time Throughput Travel Time Throughput Travel Time Throughput

MaxPressure 138.72±1.75 23.10±0.05 315.83*±10.99 43.09*±0.14 261.01*±4.20 59.44*±1.51
FRAP 658.66±548.66 16.07±7.51 1593.38±463.58 5.91±13.00 362.41±79.07 26.23±26.38

MPLight 453.89±521.87 18.70±7.20 1781.96±1.87 0.78±0.04 328.49±72.26 40.22±25.63
EcoLight 135.80*±1.97 23.23*±0.05 892.72±236.38 24.22±9.18 386.03±52.96 18.53±17.55

π-Light 120.80±1.80 23.24±0.05 209.07±1.34 44.76±0.10 240.40±2.99 67.16±1.54

Table 2: Generalization performance. The environments on the left and right sides of the arrow correspond to the training and
evaluation environments, respectively. Hangzhou1 and Hangzhou2 are single-intersection environments, while the others are
multi-intersection environments. “-” indicates some methods cannot be transferred, because the action dimensions (number of
phases) differ between two environments.

Figure 5: Consumption of computational and storage re-
sources. MPLight is based on FRAP, therefore they have the
same resource consumption.

ployed on various low-end microcontrollers, such as the 16-
bit MSP430G2553 (16 MHz, 512B SRAM)3 or the 8-bit AT-
mega328P (8MHz, 2KB RAM) 4. On the other hand, neu-
ral networks may require additional quantization steps (Han,
Mao, and Dally 2016), due to MCUs often being based on
16-bit or 8-bit architectures. This further compromises the
performance of DRL-based methods.

We normalize and rank the performance of all methods
based on Table 1, and we also rank the resource consump-
tion for all methods. The comparison results are shown in
Figure 6. Notably, our approach is situated on the Pareto
frontier and stands as the sole learning-based method.

3https://www.ti.com/product/MSP430G2553
4https://www.microchip.com/en-us/product/ATmega328P

Resource Efficiency Rank

Figure 6: Comparison of performance vs. resource efficiency
of all methods. The lower rank is better.

Conclusion

In this paper, we introduce π-Light which aims to simul-
taneously address three critical challenges in Traffic Sig-
nal Control (TSC): interpretability, generalization capabil-
ity (i.e., robustness to environmental changes), and low re-
source consumption. In π-Light, policies are represented by
interpretable programs. We define the domain specific lan-
guage and transformation rules to construct these programs.
MCTS is employed to search for optimal program structures
within the non-differentiable program space, while Bayesian
optimization is utilized to fine-tune program parameters. Ex-
tensive experiments on multiple road networks with real-
world traffic demands confirmed the strong performance and
generalization capabilities of π-Light. Moreover, the policy
of π-Light can be easily deployed on edge devices.
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