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Abstract

The widely used multiobjective optimizer NSGA-II was re-
cently proven to have considerable difficulties in many-
objective optimization. In contrast, experimental results in
the literature show a good performance of the SMS-EMOA,
which can be seen as a steady-state NSGA-II that uses the
hypervolume contribution instead of the crowding distance
as the second selection criterion.
This paper conducts the first rigorous runtime analysis of
the SMS-EMOA for many-objective optimization. To this
aim, we first propose a many-objective counterpart, the m-
objective mOJZJ problem, of the bi-objective OJZJ bench-
mark, which is the first many-objective multimodal bench-
mark used in a mathematical runtime analysis. We prove that
SMS-EMOA computes the full Pareto front of this bench-
mark in an expected number of O(M2nk) iterations, where
n denotes the problem size (length of the bit-string repre-
sentation), k the gap size (a difficulty parameter of the prob-
lem), and M = (2n/m − 2k + 3)m/2 the size of the Pareto
front. This result together with the existing negative result on
the original NSGA-II shows that in principle, the general ap-
proach of the NSGA-II is suitable for many-objective opti-
mization, but the crowding distance as tie-breaker has defi-
ciencies.
We obtain three additional insights on the SMS-EMOA. Dif-
ferent from a recent result for the bi-objective OJZJ bench-
mark, the stochastic population update often does not help for
mOJZJ. It results in a 1/Θ(min{Mk1/2/2k/2, 1}) speed-
up, which is Θ(1) for large m such as m > k. On the pos-
itive side, we prove that heavy-tailed mutation still results
in a speed-up of order k0.5+k−β . Finally, we conduct the
first runtime analyses of the SMS-EMOA on the bi-objective
ONEMINMAX and LOTZ benchmarks and show that it has
a performance comparable to the GSEMO and the NSGA-II.

Introduction
The NSGA-II is the most widely-applied multiobjective evo-
lutionary algorithm (MOEA). Non-dominated sorting and
crowding distance are its two major features differentiating
it from basic MOEAs such as the GSEMO or the (µ + 1)
SIBEA. Zheng, Liu, and Doerr (2022) conducted the first
runtime analysis of the NSGA-II (see (Zheng and Doerr
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2023a) for the journal version). This work quickly inspired
many interesting follow-up results in bi-objective optimiza-
tion (Zheng and Doerr 2022; Bian and Qian 2022; Doerr
and Qu 2023a,b,c; Dang et al. 2023a,b; Cerf et al. 2023). In
contrast to these positive results for two objectives, Zheng
and Doerr (2023b) proved that for m ≥ 3 objectives the
NSGA-II needs at least exponential time (in expectation
and with high probability) to cover the full Pareto front of
the m-objective ONEMINMAX benchmark, a simple many-
objective version of the basic ONEMAX problem where all
search points are Pareto optimal. They claimed that the main
reason for this low efficiency is the independent computation
of the crowding distance in each objective.

A very recent work showed that the NSGA-III, a suc-
cessor algorithm of the NSGA-II aimed at better coping
with many objectives, can efficiently solve the 3-objective
ONEMINMAX problem (Wietheger and Doerr 2023). Since
apparently practitioners much prefer the NSGA-II (more
than 17,000 citations on Google scholar only in the last five
years) over the NSGA-III (5,035 citations since its publi-
cation in 2013), it remains an interesting question whether
there are variants of the NSGA-II which better cope with
many objectives.

With the SMS-EMOA, an interesting variant of the
NSGA-II was proposed by Beume, Naujoks, and Emmerich
(2007). This algorithm is a steady-state variant of the
NSGA-II (that is, in each iteration only a single offspring
is generated and possibly integrated into the population)
that further replaces the crowding distance as secondary se-
lection criterion with the classic hypervolume contribution.
Many empirical works (see the almost 2,000 papers cit-
ing (Beume, Naujoks, and Emmerich 2007)) confirmed the
good performance of the SMS-EMOA for many-objective
optimization. The first mathematical runtime analysis of the
SMS-EMOA was conducted very recently by Bian et al.
(2023), who proved that its expected runtime on the bi-
objective OJZJ problem is O(nk+1). They also proposed
a stochastic population update mechanism and proved that it
has the often superior runtime of O(nk+1 min{1, n/2k/4}).
Zheng et al. (2024) proved that the SMS-EMOA has an ex-
pected runtime ofO(n4) on the bi-objective DLTB problem.

Our Contributions: This paper conducts the first math-
ematical runtime analysis of the SMS-EMOA for more
than two objectives. We first define the mOJZJ benchmark,
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an m-objective counterpart of the bi-objective OJZJ prob-
lem (Zheng and Doerr 2023d), which is the problem ana-
lyzed in the first runtime analysis for the SMS-EMOA (Bian
et al. 2023). We note that the mOJZJ problem is the first
multimodal many-objective benchmark proposed for a the-
oretical analysis, to the best of our knowledge. We prove
that the SMS-EMOA covers the full Pareto front of this
benchmark in an expected number of O(M2nk) iterations,
where n is the problems size, k the gap size (a difficulty
parameter of the problem), m the number of objectives, and
M = (2n/m− 2k + 3)m/2 the size of the Pareto front.

We recall that the original NSGA-II needs at least ex-
ponential time to optimize the mONEMINMAX problem,
which is a special case of mOJZJ with gap size k = 1.
Since the SMS-EMOA employs non-dominated sorting, but
replaces the crowding distance in the original NSGA-II by
the hypervolume contribution, our result in a similar fash-
ion as the analysis of the NSGA-III in (Wietheger and Doerr
2023) suggests that the general approach of the NSGA-II is
suitable for many-objective optimization and that it is only
the crowding distance as tie-breaker which is not appropriate
for more than two objectives.

We then analyze whether the better performance of the
SMS-EMOA on the bi-objective OJZJ problem achieved
via a new stochastic population update (Bian et al. 2023)
extends to the m-objective mOJZJ problem. Unfortu-
nately, we shall observe that only a speed-up of order
1/Θ(min{Mk1/2/2k/2, 1}) is obtained, which is Θ(1)
when m is large, e.g., m > k.

On the positive side, we show that the advantage of heavy-
tailed mutation is preserved. We analyze the SMS-EMOA
with heavy-tailed mutation on the mOJZJ benchmark and
prove that a speed-up of order k0.5+k−β is achieved. This
is the same speed-up as observed for single-objective and
bi-objective JUMP problems (Doerr et al. 2017; Zheng and
Doerr 2023d). We note that this is the first theoretical work
to support the usefulness of heavy-tailed mutation in many-
objective optimization.

Finally, since so far the performance of the SMS-EMOA
was only analyzed on the bi-objective OJZJ problem (Bian
et al. 2023), we conduct mathematical runtime analyses
of the SMS-EMOA also on the two most prominent bi-
objective benchmarks ONEMINMAX and LOTZ. We prove
that the SMS-EMOA finds the Pareto fronts of these bench-
marks in an expected number of iterations of at most 2e(n+
1)n(lnn+1) for ONEMINMAX and at most 2en2(n+1) for
LOTZ. These are the same asymptotic runtimes (in terms
of fitness evaluations) as known for the GSEMO and the
NSGA-II.

Preliminaries
In many-objective optimization, one tries to find good so-
lutions for a problem containing several, but at least three
objectives. This work considers pseudo-Boolean maximiza-
tion, hence our problem is described by a function f =
(f1, . . . , fm) : {0, 1}n → Rm. Here m > 2 is the num-
ber of objectives and n ∈ N is called the problem size. As
in bi-objective optimization (that is, the case m = 2), usu-

ally not all solutions are comparable. We say that a solu-
tion x ∈ {0, 1}n dominates a solution y, denoted as x � y,
if fi(x) ≥ fi(y) for all i ∈ {1, . . . ,m}, and at least one
of these inequalities is strict. For a given many-objective
function f , we say that x ∈ {0, 1}n is a Pareto optimum
if and only if there is no y ∈ {0, 1}n that dominates x
w.r.t. f . The set of all Pareto optima is called Pareto set,
and the set of all function values of the Pareto optima is
called Pareto front. The goal for an MOEA is to find the
full Pareto front as much as possible, that is, to compute a
not too large set S of solutions such that f(S) equals or ap-
proximates well the Pareto front. As common in the math-
ematical runtime analysis of MOEAs, we call the runtime
of an algorithm the number of function evaluations until its
population P covers the full Pareto front, that is, f(P ) con-
tains the Pareto front. We refer to (Neumann and Witt 2010;
Auger and Doerr 2011; Jansen 2013; Zhou, Yu, and Qian
2019; Doerr and Neumann 2020) for general introductions
to the mathematical runtime analysis of evolutionary algo-
rithms, and to (Brockhoff 2011) for a discussion of runtime
analyses of MOEAs.

Mathematical Notations. For a, b ∈ N with a ≤ b, we
denote the set of integers in the interval [a, b] by [a..b] =
{a, a + 1, . . . , b}. For a point x ∈ {0, 1}n, let x[a..b] :=
(xa, xa+1, . . . , xb) and |x|1 be the number of ones in x.

The m-Objective JUMP Function
As mentioned earlier, the NSGA-II was proven to have
enormous difficulties in optimizing many-objective prob-
lems (Zheng and Doerr 2023b). In that paper, the m-
objective counterpart mONEMINMAX of the bi-objective
ONEMINMAX benchmark was proposed and analyzed.
Since the first runtime work of the SMS-EMOA so far (Bian
et al. 2023) analyzed the bi-objective jump problem OJZJ,
whose special case with gap size k = 1 is (essentially) the
ONEMINMAX problem, we shall propose and work with an
m-objective version of OJZJ as well. Again, its special case
k = 1 will be (essentially) equal to the mONEMINMAX
problem. With this, our results are comparable both the ones
in (Zheng and Doerr 2023b) and (Bian et al. 2023).

mOJZJ
We first recall the definition of the mONEMINMAX prob-
lem. For the ease of presentation, we only consider even
numbersm of objectives here. In themONEMINMAX prob-
lem, the bit string (of length n) is divided into m/2 blocks
of equal length 2n/m. On each of these, a bi-objective
ONEMINMAX problem is defined. We note that this gen-
eral block construction goes back to the seminal paper of
(Laumanns, Thiele, and Zitzler 2004).
Definition 1 (Zheng and Doerr (2023b)). Letm be the num-
ber of objectives and be even, and the problem size n be
a multiple of m/2. Let n′ = 2n/m ∈ N. For any x =
(x1, . . . , xn), the m-objective function mONEMINMAX f :
{0, 1}n → Rm is defined by

fi(x) =

{
ONEMAX(x̄[ i−1

2 n′+1.. i+1
2 n′]), if i is odd

ONEMAX(x[ i−2
2 n′+1.. i2n

′]), else,
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where x̄ = (1−x1, . . . , 1−xn) and the function ONEMAX :

{0, 1}n′ → R is defined by

ONEMAX(y) =
n′∑
i=1

yi

for any y ∈ {0, 1}n′ .
In order to include mONEMINMAX as a special case of

mOJZJ, we define the m-objective OJZJ in a similar man-
ner, that is, we divide the n bit positions into m/2 blocks
and define a OJZJ problem in each block.
Definition 2. Let m be the number of objectives and be
even, and the problem size n be a multiple of m/2. Let
n′ = 2n/m ∈ N and k ∈ [1..n′]. For any x = (x1, . . . , xn),
the m-objective function mOJZJk f : {0, 1}n → Rm is de-
fined by

fi(x) =

{
JUMPn′,k(x[ i−1

2 n′+1.. i+1
2 n′]), if i is odd

JUMPn′,k(x̄[ i−2
2 n′+1.. i2n

′]), else,

where x̄ = (1−x1, . . . , 1−xn) and the function JUMPn′,k :

{0, 1}n′ → R is defined by

JUMPn′,k(y) =

{
k + |y|1, if |y|1 ≤ n− k or y = 1n

′

n− |y|1, else

for any y ∈ {0, 1}n′ .
We note that the function JUMPn′,k used in the definition

above is the famous JUMP benchmark. It was first defined
by Droste, Jansen, and Wegener (2002) and has quickly be-
come the most employed multimodal benchmark in the the-
ory of randomized search heuristics, leading to many fun-
damental results on how these algorithms cope with local
optima (Jansen and Wegener 2002; Dang et al. 2018; Doerr
2021; Benbaki, Benomar, and Doerr 2021; Hevia Fajardo
and Sudholt 2022; Rajabi and Witt 2022; Witt 2023; Doerr
et al. 2024).

Obviously, mONEMINMAX and mOJZJn,1−1 are equiv-
alent problems, and mOJZJ is the previously defined OJZJ
problem when m = 2.

Characteristics
We now give more details on this mOJZJ function. Let
Bi := [(i− 1)n′+ 1..in′], i ∈ [1..m/2], be the i-th block in
the partition of n bit positions. From Definition 2, we know
that the bit values in the block Bi only influence the objec-
tives f2i−1 and f2i. Figure 1 plots the objective values of
f2i−1 and f2i relative to the number of ones in this block.
Obviously, mOJZJ is multimodal with respect to the defini-
tion of multimodality of multiobjective problems in (Zheng
and Doerr 2023d).

It is not difficult to see that the Pareto set is S∗ = {x ∈
{0, 1}n | |xBi

|1 ∈ [k..n−k]∪{0, n}, i ∈ [1..m/2]}. Hence,
the Pareto front is

F ∗ := {(a1, n
′ + 2k − a1, . . . , am/2, n

′ + 2k − am/2)

| a1, . . . , am/2 ∈ [2k..n′] ∪ {k, n′ + k}}
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Figure 1: The objective values of f2i−1 and f2i in mOJZJ
w.r.t. |xBi

|1, the number of ones in the block Bi.

and the Pareto front size is M := |F ∗| = (n′− 2k+ 3)m/2.
We recall at this point that we defined the runtime of an

MOEA as the time to cover the full Pareto front F ∗, that is,
the first time to reach a population P with F ∗ ⊆ f(P ).

Note that for k > 1, not all points are Pareto optimal
and not all sets of mutually non-dominated points are the
subsets of the Pareto front. However, we have the following
result showing that the maximum number of mutually non-
dominated points is at most the size of the Pareto front. Due
to the limited space, all mathematical proofs could only be
sketched or had to be omitted completely. They can be found
in the preprint (Zheng and Doerr 2023c).

Lemma 3. Let k ≤ n′/2 and P be a set of solutions such
that any two are not weakly dominated (w.r.t.mOJZJ). Then
|P | ≤M .

For ease of reading of the proof sketches in the following
sections, we call a Pareto optimum x an inner Pareto opti-
mum if for all blocksBi = [(i−1)n′+1..in′], i ∈ [1..m/2],
we have xBi

/∈ {0n′ , 1n′}. We call u = (u1, n
′ + 2k −

u1, . . . , um/2, n
′ + 2k − um/2) and v = (v1, n

′ + 2k −
v1, . . . , vm/2, n

′ + 2k − vm/2) neighbors if there exists
i ∈ [1..m/2] such that ui − vi = 1 and uj = vj for all
j 6= i.

The SMS-EMOA Can Optimize mOJZJ
As discussed before, the original NSGA-II with non-
dominated sorting and crowding distance needs at least
exponential runtime to cover the full Pareto front of
mONEMINMAX, m ≥ 3, (Zheng and Doerr 2023b), which
is a special case of mOJZJ. In this section, we analyze the
runtime of the SMS-EMOA on this problem and show that
it does not encounter such problems.

Algorithm Description
The SMS-EMOA is a steady-state variant (that is, the off-
spring size is smaller than the parent size) of the NSGA-II.
Like the NSGA-II, the SMS-EMOA works with a popula-
tion of fixed size µ. However, in each iteration, only one
offspring x′ is generated from the parent population Pt.
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Algorithm 1: SMS-EMOA

1: Initialize P0 by generating µ solutions uniformly at ran-
dom from {0, 1}n

2: for t = 0, 1, 2, . . . , do
3: Select a solution x uniformly at random from Pt
4: Generate x′ by flipping each bit of x independently

with probability 1/n
5: Use fast-non-dominated-sort() (Deb et al. 2002) to

partition Rt = Pt ∪ {x′} into F1, . . . , Fi∗
6: Calculate ∆r(z, Fi∗) for all z ∈ Fi∗ and find D =

arg minz∈Fi∗ ∆r(z, Fi∗)
7: Uniformly at random pick z′ ∈ D and set Pt+1 =
Rt \ {z′}

8: end for

From the µ + 1 individuals in the combined parent and off-
spring population Rt = Pt ∪ {x′}, a single individual is re-
moved. To this aim, the SMS-EMOA like the NSGA-II uses
non-dominated sorting, that is, it partitions Rt into fronts
F1, . . . , Fi∗ , where Fi contains all non-dominated individu-
als in Rt \ (

⋃i−1
j=1 Fj). Different from the original NSGA-II

that now uses the crowding distance as the secondary cri-
terion for the removal of individuals, the SMS-EMOA re-
moves the individual with the smallest hypervolume contri-
bution in the critical front (which here always is the last front
Fi∗ ).

The hypervolume of a set S of individuals w.r.t. a refer-
ence point r in the objective space is defined as

HVr(S) = L

( ⋃
u∈S
{h ∈ Rm | r ≤ h ≤ f(u)}

)
,

where L is the Lebesgue measure. The hypervolume contri-
bution of an individual x ∈ Fi∗ is calculated via

∆r(x, Fi∗) := HVr(Fi∗)−HVr(Fi∗ \ {x}).
Algorithm 1 gives the pseudocode of the SMS-EMOA.

Runtime of SMS-EMOA
We now analyze the runtime of the SMS-EMOA, that is,
the time until its population covers the full Pareto front of
mOJZJ. We start by proving the following result ensuring
that certain individuals survive in the population or are re-
placed by at least as good individuals. We formulate this re-
sult in manner more general than what we need since we
expect this general version to be useful in other analyses of
the SMS-EMOA.

The key to the proof is that (i) if there is a point with a
rank larger than one, then all solutions with rank one (that
is, in F1) will survive, and (ii) if F1 contains two or more
solutions with same function value, then only such a solu-
tion can be removed from F1. If the population size is large
enough, by the pigeon-hole principle, one of these two cases
comes true.
Lemma 4. Consider any m-objective optimization prob-
lem. Let M ∈ N be such that any set S of pairwise non-
dominated solutions having different objective values sat-
isfies |S| ≤ M . Consider solving this problem via the

SMS-EMOA with population size µ ≥ M and using a ref-
erence point r such that HVr({x}) > 0 for any individual
x ∈ {0, 1}n.

Then the following is true. If at some time t the combined
parent and offspring population Rt of the SMS-EMOA con-
tains some solution x (and thus in particular if x ∈ Pt), then
at any later time s > t the parent population Ps contains a
solution y such that y � x.

In particular, if Rt contains a Pareto optimum x, then all
future generations contain a solution y with f(y) = f(x).

Recall that an inner Pareto optimum is a Pareto optimum
with xBi

/∈ {0n′ , 1n′} for all blocks Bi = [(i − 1)n′ +
1..in′], i ∈ [1..m/2], as defined before. While it is very
likely that at least one initial solution is an inner Pareto opti-
mum, this does not happen with probability one, and hence
in the following lemma we estimate the time until the pop-
ulation contains an inner Pareto optimum. Since this time
usually is much smaller than the time to generate all remain-
ing Pareto optima, we do not care that this is estimate could
easily be improved.

The key to the proof is to note that changing a block xBi to
a bit-string with between k and n′−k ones is relatively easy.
By Lemma 4, an individual with this fi value will remain
in the population. Hence a total of at most m such block
changes (applied to the right individual) suffice to obtain an
inner Pareto optimum.

Lemma 5. Let k ≤ n′/2. Consider using SMS-EMOA with
µ ≥M to optimize the mOJZJ problem. Then after at most
eµ(mk)k(1+lnm) iterations in expectation, the population
(and also the populations afterwards) contains at least one
inner Pareto optimum.

In the next lemma, we consider the stage of covering all
inner Pareto front points once at least one such point is in
the population. The key to the proof is that as long as we
have not yet discovered the full inner Pareto front, there al-
ways exists a missing Pareto front point that is a neighbor
of a point that is already covered by the population. Hence
choosing the right parent and flipping the right single bit suf-
fices to cover the desired point on the Pareto front.

Lemma 6. Let k ≤ n′/2. Consider using SMS-EMOA with
µ ≥ M to optimize the mOJZJ problem. Assume that the
current population contains at least one inner Pareto opti-
mum. Then after at most enµM iterations in expectation, all
inner Pareto front points are covered.

The last stage is to cover the remaining Pareto front
points. The following lemma shows the runtime. The key of
the proof is that we can divide the Pareto front into several
levels and any individual in the i-th level can be generated
from a point in the (i − 1)-th level by flipping the right k
bits.

Lemma 7. Let k ≤ n′/2. Consider using SMS-EMOA with
µ ≥ M to optimize the mOJZJ problem. Assume that
the current population covers all inner Pareto front points.
Then after at most eMµnk iterations in expectation, the full
Pareto front is covered.

Summing up the runtime of all stages from Lemmas 5
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to 7, we have the following theorem for the runtime of the
full coverage of the Pareto front.

Theorem 8. Let k ≤ n′/2. Consider using SMS-EMOA
with µ ≥ M to optimize the mOJZJ problem. Then after
at most eµ(mk)k(1 + lnm) + eµMn + eµMnk iterations
(µ+ eµ(mk)k(1 + lnm) + eµMn+ eµMnk function eval-
uations) in expectation, the full Pareto front is covered.

Since k ≤ n′/2 = n/m and M ≥ 2m/2, we easily see
that both runtime expressions are O(µMnk), even when al-
lowing k, m and µ to depend on n.

Runtime of the GSEMO on mOJZJ
Since our arguments above can easily be extended to ana-
lyze the runtime of the GSEMO on the mOJZJ, we quickly
do so for reasons of completeness. The GSEMO is a multi-
objective counterpart of the (1 + 1) EA. The initial popu-
lation consists of a single randomly generated solution. In
each iteration, a solution is uniformly at random picked from
the population to generate an offspring via standard bit-wise
mutation. If this offspring is not dominated by any solution
in the population, it is added to the population and all solu-
tions weakly dominated by it are removed. It is not difficult
to see that all solutions in the population of the GSEMO are
mutually non-dominated. Hence, the population size of the
GSEMO is at most M by Lemma 3.

When analyzing the runtime of the GSEMO on mOJZJ,
the main difference is that SMS-EMOA requires a statement
like Lemma 4 to ensure that previous progress is not lost via
unlucky selection decisions. For the GSEMO, this property
follows immediately from the selection mechanism, which
keeps all non-dominated solutions. Together with the upper
bound M of the population size, we obtain the following
theorem.

Theorem 9. Let k ≤ n′/2. Consider using the GSEMO to
optimize the mOJZJ problem. Then after an expected num-
ber of at most eM(mk)k(1 + lnm) + eM2n + eM2nk it-
erations (or 1 + eM(mk)k(1 + lnm) + eM2n + eM2nk

fitness evaluations), the full Pareto front is covered.

Reduced Impact of Stochastic Population
Update

Bian, Zhou, Li, and Qian (2023) proposed a stochastic pop-
ulation update mechanism for the SMS-EMOA and proved
that, somewhat unexpectedly given the state of the art, it can
lead to significant performance gains. More precisely, it was
proven that the classic SMS-EMOA with reasonable popula-
tion size µ = Θ(n) solves the bi-objective OJZJ problem in
an expected number of O(nk+2) ∩ Ω(nk+1) function eval-
uations, whereas for the SMS-EMOA with stochastic popu-
lation update, O(nk+2 min{1, 2−k/4n}) suffice. Hence, for
k = ω(log n), a super-polynomial speed-up was shown.

In this section, we extend the analysis of (Bian et al. 2023)
to m objectives. Unfortunately, we will observe that the
larger population sizes necessary here reduce the impact of
the stochastic population update. As in (Bian et al. 2023), we
have no proven tight lower bounds for the SMS-EMOA with
stochastic population update, but our upper-bound proofs

suggest that the reduced effect of the stochastic population
update on the runtime guarantee is real, that is, the impact
on the true runtime is diminishing with the larger population
sizes necessary in the many-objective setting.

Stochastic Population Update
The rough idea of the stochastic selection proposed by Bian
et al. (2023) is that a random half of the individuals survive
into the next generation regardless of their quality. The in-
dividual to be discarded is chosen from the remaining indi-
viduals according to non-dominated sorting and hypervol-
ume contribution as in the classic SMS-EMOA. This ap-
proach resembles the random mixing of two acceptance op-
erators in the Move Acceptance Hyper-Heuristic studied re-
cently (Lehre and Özcan 2013; Lissovoi, Oliveto, and War-
wicker 2023; Doerr et al. 2023).

More precisely, after generating the offspring x′, the
SMS-EMOA with stochastic selection chooses from Pt ∪
{x′} a set R′ of b(µ + 1)/2c solutions randomly with re-
placement. The individual z′ to be removed from Pt ∪ {x′}
is then determined via non-dominated sorting and hypervol-
ume contribution applied to R′ only. We note that with this
mechanism, even the worst solution enters the next genera-
tion with probability at least 1/2.

Runtime
To analyze the runtime of the SMS-EMOA with stochas-
tic population update, we first derive and formulate sepa-
rately two insights on the survival of solutions. The follow-
ing Lemmas 10 is an elementary consequence of the algo-
rithm definition, whereas Lemma 11 builds on Lemma 4.
Lemma 10. Consider using the SMS-EMOA with stochastic
population update to optimize the mOJZJ problem. For any
iteration t and x ∈ Rt, we have that there is a y with f(y) =
f(x) in Pt+1 with probability at least 1/2.
Lemma 11. Consider using the SMS-EMOA with stochastic
population update and with µ ≥ 2(M + 1) to optimize the
mOJZJ problem. If at some time t the combined parent and
offspring population Rt of the SMS-EMOA contains some
solution x, then at any later time s > t the parent population
Ps contains a solution y such that y � x.

Since the proofs of Lemmas 5 and 6 for the classic
SMS-EMOA mostly relied on elementary properties of
standard bit-wise mutation and on the survival guarantee
of Lemma 4, we can now use the survival guarantee of
Lemma 11 to obtain analogous results for the SMS-EMOA
with stochastic selection (at the price of requiring essentially
twice the population size). This yields the following esti-
mates for the time to obtain at least one inner Pareto op-
timum and the time to cover all inner Pareto front points
starting from a population with at least one inner Pareto op-
timum.
Lemma 12. Let k ≤ n′/2. Consider using the SMS-EMOA
with stochastic population update and with µ ≥ 2(M + 1)
to optimize the mOJZJ problem. Then
• after at most eµ(mk)k(1 + lnm) iterations in expec-

tation, the population (and also the populations after-
wards) contains at least one inner Pareto optimum;
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• after another at most enµM iterations in expectation, all
inner Pareto front points are covered.

Now we consider the runtime for the full coverage of
the Pareto front after all inner Pareto front points are cov-
ered. Similar to the proof of Lemma 7 for the original
SMS-EMOA, we partition the Pareto front points intom/2+
1 levels based on the number of extreme blocks they contain.
The difference here is that we consider the effect of the gap
points, similar to Bian et al. (2023).

Lemma 13. Let k ≤ n′/2. Consider using the SMS-EMOA
with stochastic population update and with µ ≥ 2(M + 1)
to optimize the mOJZJ problem. Assume that the current
population covers all inner Pareto front points. Then after at
most O(min{µk

1/2

2k/2 , 1}Mµnk) iterations in expectation, the
full Pareto front is covered.

Combining Lemmas 12 and 13, we have the runtime of
the SMS-EMOA with stochastic population update in the
following theorem.

Theorem 14. Let k ≤ n′/2. Consider using SMS-EMOA
with µ ≥ 2(M + 1) and stochastic population update to op-
timize themOJZJ problem. Then after at most eµ(mk)k(1+

lnm) + enµM +O(min{µk
1/2

2k/2 , 1}Mµnk) iterations in ex-
pectation, the full Pareto front is covered.

Comparing the runtime guarantees or Theorem 8 (classic
SMS-EMOA) and Theorem 14 (SMS-EMOA with stochas-
tic selection), we see that stochastic selection can at most
lead to a speed-up by a factor of order 2k/2/µk1/2. Now µ
is at least Ω(M) = Ω((2n/m−2k+3)m/2). Consequently,
the advantage of stochastic selection is rapidly decreasing
with growing numbers of objectives and vanishes, e.g., when
m ≥ k.

Heavy-Tailed Mutation Helps
In the previous section, we saw that the advantages of a
stochastic population update do not well generalize from bi-
objective optimization to many-objective optimization. We
now regard another design choice that so far was only an-
alyzed in bi-objective optimization, namely a heavy-tailed
mutation operator. We shall prove that the kΩ(k) factor
speed-up observed in bi-objective optimization extends to
many objectives.

Heavy-Tailed Mutation
Different from the standard bit-wise mutation operator,
which flips each bit independently with probability 1/n,
the heavy-tailed mutation operator proposed in (Doerr et al.
2017) flips each bit independently with probability α/n,
where α follows a power-law distribution with parameter β.
The number α is sampled anew in each application of the
heavy-tailed mutation operator. The underlying power-law
is defined as follows.

Definition 15. Let n ∈ N and β > 1. We say α follows a
power-law distribution with (negative) exponent β if for all

i ∈ [1..n/2], we have Pr[α = i] =
(∑n/2

j=1 k
−β
)−1

i−β .

The power-law feature extends to the heavy-tailed mu-
tation operator in the sense that it generates an offspring
with Hamming distance j from the parent with probability
Ω(j−β). This facilitates larger jumps in the search space,
and thus escaping from a local optimum.

The heavy-tailed mutation operator has resulted in asymp-
totic performance gains by a factor of kΩ(k) for the
(1 + 1) EA optimizing single-objective (classic and gener-
alized) JUMP functions with gap size k (Doerr et al. 2017;
Bambury, Bultel, and Doerr 2021). For the bi-objective
OJZJ benchmark, again a speed-up of kΩ(k) was proven
when optimized via the GSEMO (Zheng and Doerr 2023d)
and the NSGA-II (Doerr and Qu 2023a). Several other
positive theoretical results exist for this heavy-tailed mu-
tation, or more generally, other heavy-tailed parameter
choices (Friedrich, Quinzan, and Wagner 2018; Wu, Qian,
and Tang 2018; Quinzan et al. 2021; Corus, Oliveto, and
Yazdani 2021; Dang et al. 2022; Antipov, Buzdalov, and
Doerr 2022; Doerr, Ghannane, and Ibn Brahim 2022; Doerr
and Rajabi 2023).

Prior to this work, no theoretical analysis of the heavy-
tailed mutation operator in many-objective optimization ex-
isted.

Runtime
We now analyze the runtime of the SMS-EMOA using the
heavy-tailed mutation operator instead of bit-wise mutation,
the standard choice for this algorithm.

Since the heavy-tailed mutation does not change the sur-
vival selection of the original SMS-EMOA, we immediately
have the following result on the survival of the individuals.

Corollary 16. The assertion of Lemma 4 extends to the
SMS-EMOA with heavy-tailed mutation.

With proof ideas similar to those in Lemma 5 to 7, but
noticing the different probabilities of generating solutions
with a specific Hamming distance, we obtain the following
runtime guarantee.

Theorem 17. Let k ≤ n′/2 and β > 1. Consider us-
ing SMS-EMOA with µ ≥ M and with heavy-tailed mu-
tation to optimize the mOJZJ problem. Then after at most
O(Mµkβ−0.5−knk) iterations or function evaluations in ex-
pectation, the full Pareto front is covered.

Compared to the runtime guarantee of Theorem 8 for the
original SMS-EMOA, the guarantee of Theorem 17 above
for the SMS-EMOA with heavy-tailed mutation is by a fac-
tor of asymptotically kk+0.5−β stronger.

The SMS-EMOA Also Performs Well for
Bi-objective Optimization

The above sections discussed the runtime of the
SMS-EMOA for many objectives, and showed that it
performs well for many objectives, which is different from
the original NSGA-II. Since the only theory paper (Bian
et al. 2023) on the SMS-EMOA merely considers its
performance on the bi-objective OJZJ problem, to broaden
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our understanding of this algorithm we now analyze its run-
time for the two most prominent bi-objective benchmarks
ONEMINMAX and LOTZ.

ONEMINMAX and LOTZ
The ONEMINMAX benchmark introduced by Giel
and Lehre (2010) (and also the COUNTINGONES-
COUNTINGZEROES benchmark proposed by Laumanns
et al. (2002)) are bi-objective counterparts of the famous
single-objective ONEMAX benchmark. Likewise, the
LOTZ benchmark defined by Laumanns, Thiele, and
Zitzler (2004) (also the weighted version WLPTNO of
Qian, Yu, and Zhou (2013)) are bi-objective counterparts of
the classic single-objective LEADINGONES benchmark.

For ONEMINMAX, the two objectives count the num-
ber of ones and zeros in a given bit-string, respectively. For
LOTZ, the first objective is the number of contiguous ones
starting from the first bit position, and the second objective
is the number of contiguous zeros starting from the last bit
position. Both benchmarks with their simple and clear struc-
ture facilitate the fundamental theoretical understanding of
MOEAs. We note that there are other benchmarks used in
the mathematical analysis of MOEAs (see, e.g. Horoba and
Neumann 2008; Brockhoff et al. 2009; Qian, Tang, and
Zhou 2016; Li et al. 2016; Dang et al. 2023b), but clearly
ONEMINMAX and LOTZ are the most prominent ones.

Here are the formal definitions of ONEMINMAX and
LOTZ.
Definition 18 (Giel and Lehre (2010)). Let n ∈ N be the
problem size. The ONEMINMAX function : {0, 1}n → R is
defined by

ONEMINMAX(x) =

(
n∑
i=1

(1− xi),
n∑
i=1

xi

)
for any x = (x1, . . . , xn) ∈ {0, 1}n.
Definition 19 (Laumanns, Thiele, and Zitzler (2004)). Let
n ∈ N be the problem size. The LOTZ function : {0, 1}n →
R is defined by

LOTZ(x) =

 n∑
i=1

i∏
j=1

xj ,

n∑
i=1

n∏
j=i

(1− xj)


for any x = (x1, . . . , xn) ∈ {0, 1}n.

Runtime
We now analyze the runtime of the SMS-EMOA on the
ONEMINMAX and LOTZ benchmarks. Note that the Pareto
front, and more generally the size of any set of pairwise non-
dominated solutions, for ONEMINMAX and LOTZ have
sizes at most n + 1. Hence we can use Lemma 4 with
M = n+ 1.

Theorem 20 below gives an upper bound for the runtime
of SMS-EMOA on ONEMINMAX. This bound (in terms of
fitness evaluations) is of the same asymptotic order as the
runtime guarantee for the NSGA-II (Zheng, Liu, and Doerr
2022). Knowing from Lemma 4 that we cannot lose Pareto
points, the proof of our results consists of adding the waiting

times for finding a new Pareto point from an already existing
neighboring one.

Theorem 20. Consider using the SMS-EMOA with µ ≥
n + 1 to optimize the ONEMINMAX problem with prob-
lem size n. Then after at most 2eµn(lnn+ 1) iterations (or
µ + 2eµn(lnn + 1) fitness evaluations) in expectation, the
full Pareto front is covered.

Our runtime guarantee for LOTZ, see Theorem 21 below,
again coincides with the guarantee for the NSGA-II (Zheng,
Liu, and Doerr 2022). In the proof, the process is divided
into two stages. The first stage is to cover a Pareto front point
for the first time and the second stage is to cover the full
Pareto front starting from one covered Pareto front point.
For the first stage, we pessimistically consider the time to
reach 1n. For the second stage, we consider the time to gen-
erate 1i0n−i, i = n − 1, . . . , 0 one after the other. In both
stages, we heavily rely on Lemma 4 asserting that important
progress is not lost, which allows to add waiting times of
successive progress events.

Theorem 21. Consider using the SMS-EMOA with µ ≥
n + 1 to optimize the LOTZ problem with problem size n.
Then after at most 2eµn2 iterations (or fitness evaluations)
in expectation, the full Pareto front is covered.

Note that the runtimes of the GSEMO on ONEMINMAX
and LOTZ areO(n2 lnn) andO(n3), respectively (Giel and
Lehre 2010; Laumanns, Thiele, and Zitzler 2004). Hence,
they agree with our bounds for the SMS-EMOA when using
the most interesting population size µ = Θ(n).

Conclusion
Motivated by the observed difficulty of the NSGA-II for
many objectives, this paper resorted to the SMS-EMOA, a
variant of the steady-state NSGA-II, and proved that, dif-
ferent from the NSGA-II, it efficiently solves the mOJZJ
problem. Noting that the SMS-EMOA also employs non-
dominated sorting, but replaces the crowding distance with
the hypervolume, this result together with the one of Wi-
etheger and Doerr (2023) supports the conclusion that non-
dominated sorting is a good building block for MOEAs, but
the crowding distance has deficiencies for more than two ob-
jectives.

We also showed that the stochastic population update pro-
posed in (Bian et al. 2023) for the bi-objective SMS-EMOA
becomes less effective for many objectives. All these re-
sults in a very rigorous manner support the general knowl-
edge that multi-objective optimization becomes increasingly
harder with growing numbers of objectives.

On the positive side, we showed that the advantages of
heavy-tailed mutation, previously observed in single- and bi-
objective optimization, remain when increasing the number
of objectives.

Given that our first result shows advantages of the
SMS-EMOA and there is only one previous work perform-
ing rigorous runtime analyses for this algorithm, we ex-
tended our knowledge in this direction by proving compet-
itive runtime guarantees for this algorithm on the two most
prominent bi-objective benchmarks.
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