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Abstract

The maximum vertex-weighted clique problem (MVWCP)
and the maximum edge-weighted clique problem (MEWCP)
are two natural extensions of the fundamental maximum
clique problem. In this paper, we systematically study
MEWCP and make the following major contributions: (1) We
show that MEWCP is NP-hard even when the minimum de-
gree of the graph is n − 2, in contrast to MVWCP which is
polynomial-time solvable when the minimum degree of the
graph is at least n − 3. This result distinguishes the com-
plexity of the two problems for the first time. (2) To ad-
dress MEWCP, we develop an efficient branch-and-bound al-
gorithm called MEWCat with both practical and theoretical
performance guarantees. In practice, MEWCat utilizes a new
upper bound tighter than existing ones, which allows for more
efficient pruning of branches. In theory, we prove a running-
time bound of O∗(1.4423n) for MEWCat, which breaks the
trivial bound of O∗(2n) in the research line of practical ex-
act MEWCP solvers for the first time. (3) Empirically, we
evaluate the performance of MEWCat on various benchmark
instances. The experiments demonstrate that MEWCat out-
performs state-of-the-art exact solvers significantly. For in-
stance, on 16 DIMACS graphs that the state-of-the-art solver
BBEWC fails to solve within 7200 seconds, MEWCat solves
all of them with an average time of less than 1000 seconds.
On real-world graphs, MEWCat achieves an average speedup
of over 36x.

Introduction
A clique is a graph such that every pair of vertices in it
are adjacent. The maximum clique problem (MCP), to find a
clique of maximum cardinality from a given graph, is a clas-
sical NP-hard problem that has been extensively studied in
optimization (Gary and Johnson 1979; Karp 2010).

There are several variants of MCP. The maximum vertex-
weighted clique problem (MVWCP) is to find a clique in
a vertex-weighted graph such that the total vertex weight
is maximized. The maximum edge-weighted clique problem
(MEWCP) is to find a clique in an edge-weighted graph such
that the total edge weight is maximized. In the maximum
total-weighted clique problem (MTWCP), both vertices and
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edges are weighted and the goal is to maximize the total ver-
tex and edge weight in the clique. Please see (Wu and Hao
2015) for an introduction to MCP and its variants. All these
variants are NP-hard since MCP is a special case of them.

To find a clique in a graph G is equal to finding an in-
dependent set in the complement graph of G. Therefore,
we can get the corresponding variants of the maximum in-
dependent set problem. The maximum clique problem and
the corresponding maximum independent set problem may
have the same computational complexity. However, in terms
of practical solvers, the algorithms for the pair of problems
may be different since the complement of a sparse graph
will become dense, and usually fast practical algorithms on
sparse and dense graphs are different.

In this paper, we focus on MEWCP. Because of edge
weights, MEWCP is more flexible than MCP in modeling
problems arising in different fields, such as material science
(Agapito et al. 2016), bioinformatics (Butenko and Wilhelm
2006; Li et al. 2010; Tomita, Akutsu, and Matsunaga 2011),
computer vision and pattern recognition (Ma and Latecki
2012; San Segundo and Artieda 2015), robotics (San Se-
gundo and Rodriguez-Losada 2013), and so on. Though im-
portant, MEWCP is less studied compared to MVWCP, and
most existing algorithms for MVWCP cannot be directly ap-
plied to MEWCP. This is unusual and we believe that there
is something essentially different between the two variants.
All above motivated us to carefully study the complexity of
MEWCP.

In terms of algorithms, there are several heuristic and ex-
act algorithms to address MEWCP. Pullan (2008) proposed
a local search algorithm that switches three phases to avoid
local optimum. An evolutionary algorithm is proposed by
Fontes, Goncalves, and Fontes (2018). Li et al. (2018b) pre-
sented a local search algorithm based on multiple rules to se-
lect the added vertex or the swapped vertex pair. A stochastic
local search algorithm, which combines clique construction,
local search, and graph reduction, is presented in (Chu et al.
2020). The heuristic algorithms can obtain solutions of high
quality in a short time, but cannot guarantee the optimality
of the solutions obtained.

Existing exact algorithms for MEWCP can be divided into
two approaches. One approach is to formulate mathemati-
cal programming and then use existing solvers to solve the
model (Gouveia and Martins 2015; Shimizu, Yamaguchi,
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and Masuda 2017). The other approach is the branch-and-
bound method. Hosseinian, Fontes, and Butenko (2018) pro-
posed a quadratic programming formulation for MEWCP
and used its continuous relaxation as an upper bound to
prune the search. Shimizu, Yamaguchi, and Masuda (2019)
presented EWCLIQUE, an algorithm that iteratively com-
putes optimal solutions to subproblems of increasing size.
San Segundo et al. (2019) introduced a new upper bound
for MEWCP, which shifts edge weights to vertices, and ob-
tained the algorithm BBEWC. Shimizu, Yamaguchi, and
Masuda (2020) proposed a new branch-and-bound algo-
rithm called MECQ, which assigns edge weights to vertices
and computes upper bounds using vertex coloring. Hos-
seinian, Fontes, and Butenko (2020) proposed a new analytic
upper bound on the clique number of a graph, and embedded
it in a branch-and-bound framework. They mainly focused
on the theory of the new upper bound, and the performance
of their algorithm obtained is worse than both MECQ and
BBEWC according to the results reported.

In summary, this paper makes the following contributions.

• We distinguish the computational complexity of
MVWCP and MEWCP for the first time. We consider
graphs of bounded degree. It is less interesting to con-
sider graphs with bounded maximum degree, since the
size of a maximum clique will also be bounded by the
maximum degree. Therefore, we consider graphs with
bounded minimum degree. We prove that, surprisingly,
MEWCP is NP-hard even when the minimum degree
of the graph is n − 2, in contrast to MVWCP which
can be solved in polynomial time when the minimum
degree of the graph is at least n − 3. See Table 1 for the
computational complexity of MVWCP and MEWCP.

• We develop an efficient branch-and-bound solver called
MEWCat for MEWCP. Our algorithm utilizes a new up-
per bound tighter than existing ones. This new bound al-
lows for more efficient pruning of search nodes, resulting
in a faster algorithm. Experiments on DIMACS bench-
marks, real-world graphs, and random graphs show that
MEWCat outperforms existing solvers significantly. For
example, on 16 DIMACS instances that the state-of-the-
art solver BBEWC fails to solve within 7200 seconds,
MEWCat solves all of them with an average time of
less than 1000 seconds. On real-world graphs, MEWCat
achieves an average speedup of over 36x.

• We theoretically prove a running-time bound of
O∗(1.4423n)1 for MEWCat. Most previous algorithms
for MEWCP do not analyze the running-time bound or
have a bound of O∗(2n). This is the first time we break
the trivial bound of O∗(2n) in the research line of practi-
cal exact solvers for MEWCP.

Preliminaries
Given an edge-weighted undirected graph G = (V,E,w),
we use w(u, v) to denote the weight of an edge (u, v) ∈ E.
Let δ(G) denote the minimum degree of graph G. Denote
the set of the neighbors of a vertex v by N(v) = {u ∈

1The O∗ notation ignores the polynomial factor.

Problems P NP-hard

MVWCP δ(G) ≥ n− 3 δ(G) ≤ n− 4
(Xiao et al. 2021) (Garey et al. 1974)

MEWCP δ(G) = n− 1 δ(G) ≤ n− 2
(Trivial) (Theorem 1 in this paper)

Table 1: The computational complexity of MVWCP and
MEWCP on graphs with different minimum degree (denoted
by δ(G)).

V | (u, v) ∈ E}. Let G[S] be the subgraph of G induced
by S ⊆ V , and let E(S) be the edge set of G[S]. A set
I ⊆ V is an independent set if every two vertices in I are
not adjacent. An independent set partition of V is a partition
of V such that each part is an independent set. A set C ⊆ V
is a clique if every two vertices in C are adjacent. A clique
is maximal if no larger clique contains it. For a clique C,
we use W (C) to denote the total edge weight of C, i.e.,
W (C) =

∑
(u,v)∈E(C) w(u, v). For a clique C and a vertex

v ∈ V , let W (C, v) =
∑

u∈C w(u, v).

Computational Complexity
First of all, we show some differences between the vertex-
weighted and edge-weighted versions of the maximum
clique problem by carefully checking the computational
complexity. As mentioned before, both MVWCP and
MEWCP are NP-hard on general graphs even when the
weights are identical. Now we consider the complexity of
the two problems on graphs close to complete graphs (i.e.,
each vertex is not adjacent to only a few vertices). When
the minimum degree δ(G) of the graph is n − 1, the whole
graph is a clique and the two problems are trivial. When
δ(G) is at least n − 3, MVWCP is equivalent to the max-
imum independent set problem in vertex-weighted graphs
with maximum degree 2. The latter problem can be solved in
polynomial time by using the reduction rules in (Xiao et al.
2021) to iteratively handle degree-1 and degree-2 vertices.
Thus, MVWCP can be solved in polynomial time when
δ(G) ≥ n − 3. On the other hand, MVWCP becomes NP-
hard when δ(G) ≤ n−4 since the maximum independent set
problem is NP-hard in degree-3 graphs (Garey, Johnson, and
Stockmeyer 1974). For MEWCP, the problem seems harder.
We will show that MVWCP becomes NP-hard even when
δ(G) = n − 2 (i.e., each vertex in the graph is not adjacent
to at most one other vertex). The computational complexity
of MVWCP and MEWCP is summarized in Table 1.

Theorem 1. MEWCP is NP-hard on graphs where each ver-
tex is not adjacent to at most one other vertex.

Proof. We prove the theorem by reducing from MAX-2-
SAT. MAX-2-SAT is NP-hard (Garey, Johnson, and Stock-
meyer 1974), and it is to find an assignment to satisfy the
maximum number of clauses simultaneously in a conjunc-
tive normal form (CNF) with each clause containing exactly
two literals.

Let X be a MAX-2-SAT instance contains n variables
x1, . . . , xn and m different clauses c1, . . . , cm, allowing for
clause duplication. Assume that each clause ci appears wi

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20769



times for i ∈ {1, . . . ,m} and we let W = 1+max{wi | i ∈
{1, . . . ,m}}. We construct an instance G of MEWCP as fol-
lows. The graph G contains n′ = 2n vertices: for each vari-
able xi in X , we introduce two vertices xi and ¬xi. For each
i ∈ {1, . . . , n}, there is an edge between vertex xi and each
other vertex except ¬xi. Thus, δ(G) = n′ − 2. Next, we set
the edge weight of G. Initially, each edge has a weight of
W . Then, for each clause ci = x ∨ y, we change the edge
weight between ¬x and ¬y to W − wi.

We show that there are k clauses in X (counting du-
plications) that can be satisfied simultaneously if and only
if G has a maximal clique with edge-weight n(n−1)

2 W −∑m
i=1 wi + k.
Consider a solution to X that satisfies k clauses. For each

variable xi, if xi is set to true, include vertex xi to the
clique, otherwise include ¬xi. We will get a clique H of
size n, which is maximal. We show that the edge weight of
H is n(n−1)

2 W −
∑m

i=1 wi + k. If all edges have the same
weight W , the weight of the clique would be n(n−1)

2 W . If a
clause ci = x ∨ y is not satisfied, the edge (¬x,¬y) will be
in the clique H . Note that the weight of this edge is W −wi

and then the weight of the clique will decrease by wi. On
the other hand, if a clause ci = x ∨ y is satisfied, the edge
(¬x,¬y) is not in the clique H . There are

∑m
i=1 wi clauses

in total. The solution to X satisfies k clauses and then there
are

∑m
i=1 wi−k clauses not satisfied. Thus, the edge weight

of the clique H will decrease
∑m

i=1 wi−k from n(n−1)
2 W in

total. So the edge weight of H is n(n−1)
2 W −

∑m
i=1 wi + k.

For the reverse direction, let H be a maximal clique in
G with weight W (H) = n(n−1)

2 W −
∑m

i=1 wi + k. since
H is maximal, exactly one of xi and ¬xi is in H for i ∈
{1, . . . , n}. By setting the one included to true, we get an
assignment A for X . Consider a clause ci = x∨ y, the edge
(¬x,¬y) is in H if and only if both x and y are false. Let
C ′ be the set of clauses ci = x ∨ y such that edge (¬x,¬y)
is in H . We have W (H) = n(n−1)

2 W −
∑

ci∈C′ wi. Thus,∑
ci∈C′ wi =

n(n−1)
2 W −W (H) =

∑m
i=1 wi−k, which is

the number of clauses not satisfied by A. Thus, the number
of clauses satisfied by A is k.

Since the maximum edge-weighted clique is a maximal
clique, at most k clauses can be simultaneously satisfied in
X is equivalent to that the maximum edge-weighted clique
in G has weight n(n−1)

2 W −
∑m

i=1 wi + k.

The Branch-and-Bound Framework
Although there are many existing algorithms for MVWCP,
they can not be directly modified for MEWCP. The above
computational complexity can also explain that MEWCP
may be harder than MVWCP. In this paper, we focus on
branch-and-bound algorithms for MEWCP.

The simple and basic idea of a branch-and-bound algo-
rithm is to branch on a vertex by either deleting it from the
graph or including it in the solution. This operation will re-
sult in the problem to find a maximum clique containing a
set C of some pre-decided vertices. Note that C should also
form a clique, otherwise there is no solution. To get an ef-

Algorithm 1: MEWCat(G)

1: Cmax ← PLS(G)
2: return Search(G, ∅, V, Cmax)

Algorithm 2: Search(G, C, S, Cmax)

1: if W (C) > Cmax then
2: Cmax ← C
3: end if
4: B ← GetBranches(G,C, S,Cmax)
5: B′ ← GetBranchesDegree(G,S)
6: if |B| > |B′| then
7: B ← B′

8: end if
9: for all v ∈ B do

10: Cmax ← Search(G,C ∪ {v}, S ∩N(v), Cmax)
11: S ← S \ {v}
12: end for
13: return Cmax

fective algorithm, we may reduce the search space by set-
ting more constraints. First, we may determine a vertex set
S such that the maximum clique only contains vertices in
C ∪ S. Thus, we only need to consider vertices in S instead
of the whole vertex set V \C. Second, we may already get a
current clique Cmax, which can be obtained by some heuris-
tic algorithms or previous steps of the branch-and-bound al-
gorithm. Then, we can prune the branches that cannot lead
to a clique better than the current clique Cmax.

Based on the above ideas, we propose a new branch-and-
bound algorithm MEWCat to address MEWCP. The entry
of MEWCat is Algorithm 1. The input is an edge-weighted
graph G = (V,E,w). It first computes an initial solution
Cmax with the heuristic algorithm PLS (Pullan 2008), and
then calls Search to solve the problem. MECQ (Shimizu,
Yamaguchi, and Masuda 2020) also uses PLS to compute
the initial solution, and our parameter settings of PLS are
the same as those in it.

The function Search is responsible for searching a clique
F (if exists) in G such that the weight is maximized un-
der the constraints that C ⊆ F ⊆ C ∪ S and W (F ) >
W (Cmax). The pseudocode is shown in Algorithm 2.

The main idea of Search is to compute a branching set
B ⊆ S such that, if the maximum edge-weighted clique F
under the constraints that C ⊆ F ⊆ C ∪ S and W (F ) >
W (Cmax) exists, then it must contain at least one vertex in
B. Then, we simply branch by including each vertex in B
to C to generate a new search node. We will use two meth-
ods GetBranchesDegree and GetBranches to compute B and
adopt the smaller one returned by them.

To get a more efficient algorithm, we also use some tricks
when branching on B. First, the vertices in B are processed
in ascending order of the degree in G[S]. Second, to avoid
duplicated subproblems, when a vertex v ∈ B is processed
in a branch, we delete v from S in the remaining branches
(Step 11). These two techniques are helpful. For the vertices
v processed first, since the degree is small, the set N(v)∩ S
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is also small; and for the vertices v processed last, the set
N(v)∩S may also be small since S will become small after
removing the processed vertices from it. Accordingly, the
generated subproblems are balanced to some degree, which
could potentially reduce the size of the search tree in the
algorithm.

The way to compute the set B is important. Next, we
consider GetBranchesDegree and GetBranches. The first
method GetBranchesDegree is relatively simpler. The sec-
ond method GetBranches needs to use a new upper bound
and the details will be introduced later.

• GetBranchesDegree: It finds a vertex v with the maxi-
mum degree in the induced graph G[S] and lets B be the
set of vertices in S not adjacent to v and vertex v itself.
Note that if the clique does not contain any vertex not
adjacent to v, then we can include v to the clique (if v is
not in the clique) to get a larger clique. Thus, at least one
vertex in B will be in the maximum clique.

• GetBranches: The idea is to compute a pruned set P such
that expanding C with vertices only from P will not lead
to a clique better than the current clique Cmax. Then, we
return B = S \ P . This idea is common in the literature
(Li, Jiang, and Manyà 2017; Li et al. 2018a). We show
how to compute P later.

The purpose of GetBranches is also to compute a small
set B. Meanwhile, it cannot be too time-consuming; other-
wise, the total time may be long, even if it finds a small set.
Therefore, its pruning capability and running time should be
well balanced. In the sequel, we focus on developing an effi-
cient GetBranches function based on a new upper bound for
MEWCP.

A New Upper Bound
Consider the problem of finding the maximum edge-
weighted clique F under the constraint C ⊆ F ⊆ C ∪S. we
assume that C already forms a clique, and each vertex in S
is adjacent to all vertices in C. We first reduce this problem
to the maximum vertex-and-edge-weighted clique problem
(MTWCP).

Given G, C, and S, we construct a vertex-and-edge-
weighted graph G′ = (V ′, E′) with V ′ = S and E′ =
E(S). The edge weight in G′ is the same as that in the orig-
inal graph G. For every vertex v ∈ V ′, the vertex weight
w(v) is defined to be W (C, v).

For a clique F in G with C ⊆ F ⊆ C ∪ S, we let F ′ =
F \ C. Note that F ′ is a clique in S. We have W (F ) =
W (C ∪ F ′) = W (C) + W (F ′) +

∑
v∈F ′ W (C, v). Note

that W (F ′) +
∑

v∈F ′ W (C, v) is the sum of edge weight
and vertex weight of the clique F ′ in G′. For a fixed C, the
part W (C) is also fixed, and then the problem becomes to
find a maximum vertex-and-edge-weighted clique F ′ in G′.
To upper bound W (F ) in G, it suffices to upper bound the
maximum vertex-and-edge-weighted clique in G′.

A frequently used technique to compute an upper bound
for the maximum clique problems is the independent set par-
tition technique (Tomita and Seki 2003). We also use this
technique here.

We consider the vertex-and-edge-weighted graph G′ =
(V ′, E′) and want to find a maximum clique F ′ in it. Let
I1,I2,. . . ,Ik be an independent set partition of V ′ = S. For
each v ∈ S, let τ(v) be the index of the independent set
that v belongs to, i.e., v ∈ Iτ(v). For an edge between v
and u, previously we use w(v, u) = w(u, v) to denote the
weight of the edge since the edge has no direction. Now, we
slightly modify the weight function w to distinguish w(v, u)
and w(u, v). For an edge (v, u), define weight function w′ as
follows: if τ(v) > τ(u) then w′(v, u) = w(v, u); otherwise
w′(v, u) = 0 for τ(v) < τ(u). Thus, w(v, u) = w(u, v) =
w′(v, u) + w′(u, v). For a clique F ′ in G′ and a vertex v ∈
F ′, we define the total weight covered by v in F ′ by

cover(F ′, v) = w(v) +
∑
u∈F ′

w′(v, u).

Observe that two vertices in the same independent
set cannot be in the same clique. Thus, |F ′ ∩ Ii| ≤ 1
holds for each i ∈ {1, . . . , k}. Now we analyze an
upper bound for cover(F ′, v) based on this observa-
tion. It is not hard to see that cover(F ′, v) = w(v) +∑

u∈F ′ w′(v, u) = w(v) +
∑k

i=1

∑
u∈Ii∩F ′ w′(v, u) =

w(v) +
∑

i<τ(v)

∑
u∈Ii∩F ′ w(v, u) ≤ w(v) +∑

i<τ(v) max{w(v, u) | u ∈ Ii ∩ F ′} ≤ w(v) +∑
i<τ(v) max{w(v, u) | u ∈ Ii ∩N(v)}.
Thus, cover(F ′, v) is upper bounded by

σ(v) := W (C, v) +
∑

i<τ(v)

max{w(v, u) | u ∈ Ii ∩N(v)}.

The total weight of a clique F ′ in G′ is equal to∑
v∈F ′ w(v) +

∑
(v,u)∈E(F ′) w(v, u) =

∑
v∈F ′ w(v) +∑

v∈F ′
∑

u∈F ′ w′(v, u) =
∑

v∈F ′ cover(F ′, v) ≤∑
v∈F ′ σ(v) ≤

∑k
i=1 max{σ(v) | v ∈ Ii}. So, for every

clique F in G with C ⊆ F ⊆ C ∪ S, we get the new bound

W (F ) ≤W (C) +
k∑

i=1

max{σ(v) | v ∈ Ii}. (1)

This bound is equivalent to the one proposed by Shimizu,
Yamaguchi, and Masuda (2020).

Next, we derive a tighter bound. We sort the vertices in S
in ascending order of τ(·) (for vertices with the same τ(·),
we order them arbitrarily). For a vertex vj ∈ S, we consider
cliques in which vj is the maximum vertex in this order, i.e.,
we are considering cliques F with C ∪ {vj} ⊆ F ⊆ C ∪
{v1, . . . , vj}. For such cliques, we denote the upper bound
of their weight by upper(vj).

For a clique F with C ⊆ F ⊆ C ∪ S, let vj be the max-
imum vertex in it, then W (F ) ≤ upper(vj). Therefore, we
get the bound

W (F ) ≤ max{upper(v) | v ∈ S}. (2)

We can compute upper(vj) as follows. For a clique
F with C ∪ {vj} ⊆ F ⊆ C ∪ {v1, . . . , vj}, we have
C ∪ {vj} ⊆ F ⊆ (C ∪ {vj}) ∪ ({v1, . . . , vj−1} ∩
N(vj)). So the candidate set S′ for F is {v1, . . . , vj−1} ∩
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N(vj) =
⋃

i<τ(vj)
Ii ∩ N(vj). Let C ′ ← C ∪ {vj}

and I ′i ← Ii ∩ N(vj) for i < τ(vj), then the new
σ(·) for v ∈ S′ becomes σ′(v) = W (C ∪ {vj}, v) +∑

i<τ(v) max{w(u, v) | u ∈ Ii ∩ N(vj) ∩ N(v)} ≤
W (C, v) +

∑
i<τ(v) max{w(u, v) | u ∈ Ii ∩ N(v)} +

w(vj , v) = σ(v) + w(vj , v). By applying Bound 1, we
have W (F ) ≤ W (C ∪ {vj}) +

∑
i<τ(vj)

max{σ′(v) | v ∈
Ii ∩ N(vj)} ≤ W (C ∪ {vj}) +

∑
i<τ(vj)

max{σ(v) +
w(vj , v) | v ∈ Ii ∩N(vj)}. Therefore, we can set

upper(vj) = W (C) +W (C, vj)+∑
i<τ(vj)

max{σ(v) + w(vj , v) | v ∈ Ii ∩N(vj)}.

𝑣଴

𝑣ଵ

𝑣ଶ

𝑣ଷ

𝑣ସ

𝑣ହ

1
1
1
1
1

9

8

8

1 1

Figure 1: Example graph to illustrate upper bounds

Example Here we give an example to illustrate the
new upper bound with the graph G of Figure 1. Sup-
pose C = {v0}, S = {v1, v2, v3, v4, v5}, and S is
partitioned into I1 = {v1, v2}, I2 = {v3, v4}, and
I3 = {v5}. Then σ(v1) = W (C, v1) = 1, σ(v2) =
W (C, v2) = 1, σ(v3) = W (C, v3) + max{w(v1, v3)} =
10, σ(v4) = W (C, v4) + max{w(v1, v4)} = 2,
σ(v5) = W (C, v5) + max{w(v1, v5), w(v2, v5)} +
max{w(v4, v5)} = 10. Bound 1 gives W (C) +
max{σ(v1), σ(v2)}+max{σ(v3), σ(v4)}+max{σ(v5)} =
0+1+10+10 = 21. For Bound 2, we compute the upper(·)
value for each vertex, and get upper(v1) = W (C) +
W (C, v1) = 0+1 = 1, upper(v2) = W (C)+W (C, v2) =
0+1 = 1, upper(v3) = W (C)+W (C, v3)+max{σ(v1)+
w(v1, v3)} = 0 + 1 + (1 + 9) = 11, upper(v4) =
W (C) +W (C, v4) + max{σ(v1) + w(v1, v4)} = 0 + 1 +
(1 + 1) = 3, and upper(v5) = W (C) + W (C, v5) +
max{σ(v1)+w(v1, v5), σ(v2)+w(v2, v5)}+max{σ(v4)+
w(v4, v5)} = 0+ 1+ (1 + 8) + (2 + 1) = 13. So the upper
bound obtained is max{upper(v1), upper(v2), upper(v3),
upper(v4), upper(v5)} = 13, which is optimal and corre-
sponds to the clique Cmax = {v0, v1, v4, v5} in this graph.

An Efficient GetBranches Function
In this section, we develop an efficient GetBranches function
based on the new upper bound above. The pseudocode is
shown in Algorithm 3.

Recall that the GetBranches function is responsible for
partitioning the candidate S into a pruned set P and a

branching set B such that expanding the current partial
clique C with only the vertices from P will not lead to a
clique better than the current best clique Cmax.

We construct the pruned set P by creating a series of inde-
pendent sets, and define P to be the union of them. Specifi-
cally, suppose we have created k − 1 maximal independent
sets I1, I2, . . . , Ik−1, and we are now trying adding a ver-
tex to Ik (Ik may be empty or already contain some ver-
tices). We assume that now the set P :=

⋃k
i=1 Ii satisfies

the above-mentioned property for a pruned set. We use T to
denote the set of vertices that are not processed, i.e., vertices
that are not added to B or any independent set. And we use
X to denote the set of vertices that are not processed and not
adjacent to any vertex in Ik.

If X is not empty, we select from X the vertex v with the
max degree in G[S] to process. It is known that adding ver-
tices in such a way favors the production of large indepen-
dent sets (San Segundo et al. 2016; San Segundo, Furini, and
Artieda 2019).To add v to Ik, we must ensure that the upper
bound of W (F ) with C ⊆ F ⊆ C ∪ P ∪ {v} is no greater
than W (Cmax). For a clique F with C ⊆ F ⊆ C∪P ∪{v},
if v /∈ F , then C ⊆ F ⊆ C ∪ P , so W (F ) ≤ W (Cmax)
by the definition of P . Therefore, we only need to consider
cliques containing v. In the previous section, we have shown
that an upper bound for such cliques is upper(v) = W (C)+
W (C, v)+

∑
i<τ(v) max{σ(u)+w(v, u) | u ∈ Ii∩N(v)}.

If upper(v) is no larger than W (Cmax), we add v to Ik (and
accordingly to P ), compute and store σ(v), and remove the
neighbors of v from X . Otherwise, we add v to the branch-
ing set B. Notice that when computing upper(v), all the σ(·)
values used are already available, so the computation can be
fast.

If X is empty, then no more vertices can be added to the
current independent set. If T is not empty, we open a new
independent set and repeat the above steps to process the
remaining vertices. Otherwise, all vertices have been pro-
cessed and we return the final branching set B.

Algorithm 3: GetBranches(G, C, S, Cmax)

1: B ← ∅; T ← S; k ← 0
2: while T ̸= ∅ do
3: k ← k + 1; Ik ← ∅; X ← T
4: while X ̸= ∅ do
5: v← the vertex with max degree in X
6: X ← X \ {v}; T ← T \ {v}
7: upper(v)←W (C) +W (C, v) +∑

i<k max{σ(u) + w(u, v) | u ∈ Ii ∩N(v)}
8: if upper(v) ≤W (Cmax) then
9: σ(v)←W (C, v) +∑

i<k max{w(u, v) | u ∈ Ii ∩N(v)}
10: Ik ← Ik ∪ {v}; X ← X \ N(v)
11: else
12: B ← B ∪ {v}
13: end if
14: end while
15: end while
16: return B
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Running-Time Analysis
This section analyzes the running-time bound of the algo-
rithm MEWCat. We first show the following lemma.

Lemma 1. For the |B| branches generated at Step 10 in
Algorithm 2, in each branch, the size of the set S decreases
by at least |B|.

Proof. Let d denote the maximum degree in G[S]. When a
vertex v ∈ S is included to C, all vertices not adjacent to v
in S (including v itself) are removed from S, so the size of S
decreases by at least |S| − dG[S](v) ≥ |S| − d = |B′|. After
Step 8 in Algorithm 2, |B′| ≥ |B|, so the lemma holds.

Based on this lemma, we prove the following theorem.

Theorem 2. MEWCat solves MEWCP in O∗(1.4423n)
time.

Proof. It is easy to see that when S = ∅, MEWCP solves
the problem directly. We use T (s) to denote the maximum
number of leaves in the search tree generated by MEWCP
on any instance with |S| = s. We prove that T (s) = O(3

s
3 )

by an induction on s. When s = 1, apparently there ex-
ists a positive real number c such that T (1) ≤ c · 3 s

3 . Now
suppose that T (s) ≤ c · 3 s

3 for all s ≤ l − 1. We show it
also holds for s = l. Note that the only branching opera-
tion in MEWCat is Step 10 in Algorithm 2. This operation
generates |B| branches, and in each branch, the size of S
decreases by at least |B| by Lemma 1. Let l denote the size
of S, and li denote the size of the new S in the i-th branch.
We have that l − li ≥ |B| for each i. By the assumption,
we have that T (li) ≤ c · 3

li
3 . Thus, T (l) ≤

∑|B|
i=1 T (li) ≤∑|B|

i=1 c · 3
li
3 ≤

∑|B|
i=1 c · 3

l−|B|
3 = c · 3 l

3 · |B| · 3
−|B|

3 . It
can be verified that the function f(i) = i · 3−i

3 takes the
maximum value 1 at i = 3 when restricting i to take in-
teger values. Thus, T (l) ≤ c · 3 l

3 · |B| · 3
−|B|

3 ≤ c · 3 l
3 .

Therefore, T (s) ≤ c · 3 s
3 also holds for s = l. We always

have T (s) = O(3
s
3 ). Note that other steps of MEWCat can

be executed in polynomial time. Thus, the running time of
MEWCat is bounded by O∗(3

n
3 ) = O∗(1.4423n).

To the best of our knowledge, MEWCat is the first prac-
tical exact solver for MEWCP that has a worst-case time
complexity better than the trivial bound O∗(2n).

Computational Experiments
In this section, we present the results of the experiments car-
ried out to evaluate our new exact solver MEWCat2. MEW-
Cat is written in C++, and compiled by g++ 9.4.0 with opti-
mization option -O3. All the experiments are carried out in
single-threaded mode on a 64-core Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz, equipped with 512 GB of memory
and running a 64-bit Ubuntu 20.04 operation system. The
time limit to solve each instance is set to 7200 seconds.

We compare MEWCat with two state-of-the-art exact
solvers BBEWC (San Segundo et al. 2019) and MECQ

2Our Appendix, code, and data are publicly available at the
website https://github.com/afkbrb/MEWCat

instances time (seconds) tree size (millions)
MEWCat MECQ BBEWC MEWCat MECQ

brock400 2 2659.44 tle tle 196.9 inf
brock400 3 1301.82 4120.80 tle 78.4 363.6
brock400 4 743.35 2158.84 tle 37.1 157.8
DSJC1000.5 761.14 1059.02 tle 86.5 200.2

gen200 p0.9 44 748.29 tle 4759.73 48.7 inf
gen200 p0.9 55 9.98 246.74 147.65 0.3 13.4

hamming8-2 1.22 20.71 tle 0.0 0.5
p hat300-3 108.02 tle tle 9.0 inf
p hat500-2 19.01 2076.05 tle 1.1 175.4
p hat700-2 411.37 tle tle 21.4 inf

san200 0.7 2 0.16 2.43 1128.50 0.0 0.3
san200 0.9 3 424.82 5619.84 tle 24.8 510.6
san400 0.5 1 0.41 0.51 106.19 0.0 0.0
san400 0.7 1 1.69 15.93 tle 0.0 0.5
san400 0.7 2 6.03 53.14 tle 0.3 2.8
san400 0.7 3 24.08 212.14 tle 1.9 20.6
san400 0.9 1 2363.83 tle tle 25.8 inf

san1000 4.28 22.13 tle 0.1 0.3
sanr200 0.9 3263.35 tle tle 287.1 inf
sanr400 0.7 996.8 2577.28 tle 129.1 495.6

Table 2: Running times in seconds and tree sizes in millions
on DIMACS graphs. The best times are in bold. “tle” means
the time limit is exceeded, and the corresponding tree size is
marked “inf” (infinite) in this case. Column opt is the weight
of the maximum edge-weighted clique.

(Shimizu, Yamaguchi, and Masuda 2020). The source code
of MECQ is publicly available3. We compile it by the same
configuration as MEWCat. However, the source code of
BBEWC is not available, so we scaled the reported results
for comparison. Specifically, we run the clique algorithm df-
max4 on the benchmarks graphs r300.5, r400.5, and r500.5.
The computing times are 0.17, 0.93, and 3.40 seconds re-
spectively. The results reported in (San Segundo et al. 2019)
are 0.19, 1.16, and 4.37 seconds respectively. We com-
pute the factor (0.17/0.19 + 0.93/1.16 + 3.40/4.37)/3 =
0.82, and use it to multiply the reported times of BBEWC.
Comparing codes run on different machines in this way
is common in the literature on clique problems (San Se-
gundo, Rodrı́guez-Losada, and Jiménez 2011). Note that
Hosseinian, Fontes, and Butenko (2020) also proposed an
exact algorithm for MEWCP. But that algorithm performs
much worse than either BBEWC or MECQ according to the
reported results, so it is is not considered in our experiments.

DIMACS Graphs
The DIMACS graphs are from the 2nd DIMACS implemen-
tation challenge5. These 80 graphs are standard benchmarks
for MCP, MVWCP, and MEWCP (San Segundo, Nikolaev,
and Batsyn 2015; Li, Jiang, and Manyà 2017; Fang, Li, and
Xu 2016; San Segundo et al. 2019; Shimizu, Yamaguchi,
and Masuda 2020). Most instances contain hundreds of ver-
tices, and the density ranges from 0.04 to nearly 1.0. We set

3http://www2.kobe-u.ac.jp/∼ky/source/index.html
4http://archive.dimacs.rutgers.edu/pub/dsj/clique/
5http://dimacs.rutgers.edu/archive/Challenges/
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instances time (seconds) tree size
MEWCat MECQ BBEWC MEWCat MECQ

socfb-UIllinois 0.59 40.66 60.63 895 2.74m
cond-mat-2003 0.14 2.15 0.26 3 48

ia-email-EU 0.30 2.59 0.07 106 435
rgg n 2 15 s0 0.15 2.30 0.33 14 322
ia-enron-large 0.44 2.90 0.52 583 10494

socfb-UF 1.08 75.01 511.22 2135 3.76m
socfb-Texas84 1.14 274.00 323.86 1997 15.85m
tech-internet-as 0.74 4.44 0.16 31 178
cond-mat-2005 0.21 3.79 0.45 5 109

sc-nasasrb 0.58 8.05 2.95 2564 8652
soc-brightkite 0.56 9.66 5.16 456 174180

soc-loc-brightkite 0.50 9.49 7.72 112 111158
rgg n 2 16 s0 0.30 10.30 1.33 45 334
soc-themarker 16.00 342.23 906.03 118662 12.81m
rec-eachmovie 11.33 556.64 30.43 15973 58973

soc-Slashdot0811 1.05 16.73 5.03 699 68934
soc-Slashdot0902 1.11 19.09 8.00 1046 95550

sc-pkustk11 1.07 22.18 8.54 3364 21103
ia-wiki-Talk 1.60 23.75 3.22 1698 13917
sc-pkustk13 1.01 26.06 14.52 2316 37629

Table 3: Running times in seconds and tree sizes on real-
world graphs. The “m” after a number means million.

the weight of each edge (u, v) ∈ E as (u+ v) mod 200+ 1,
the same way as in (San Segundo et al. 2019) and (Shimizu,
Yamaguchi, and Masuda 2020).

We show the running times and tree sizes (i.e., the number
of tree nodes) in Table 2. Note that, “easy” instances that
can be solved in 100 seconds by every solver and “hard”
instances that no solver can solve within the given time limit
are omitted. As a result, we get 20 instances left in the table
(the full results can be found in the Appendix). The tree sizes
of BBEWC are omitted in the table due to two reasons: (1)
BBEWC counts only internal nodes, and that number can be
much smaller than the tree size. (2) BBEWC cannot solve
many instances in the given time limit, so the corresponding
tree sizes are not available.

In general, MEWCat is significantly faster than the other
two solvers for these instances based on the following
facts. First, out of the whole 80 DIMACS graphs, the num-
ber of instances solved by MEWCat is 52, clearly ex-
ceeding the number of instances solved by MECQ and
BBEWC, which is 46 and 36, respectively. Second, MEW-
Cat achieves considerable speedups on many instances. For
example, the speedups are 15x, 17x, 67x, and 109x for
gen200 p0.9 55, hamming8-2, p hat300 3, and p hat500 2,
respectively. Comparing average times for solving the in-
stances in this table, MEWCat is 4.43x faster than MECQ,
and is also much faster than BBEWC which cannot even
provide results for 16 instances. Notably, MEWCat is the
only algorithm that can solve the 5 instances brock400 2,
p hat300 3, p hat700-2, san400 0.9 1, and sanr200 0.9.

In terms of tree sizes, MEWCat dominates MECQ for
all these instances. This indicates that the new upper bound
proposed in this paper is tighter than the one proposed in
(Shimizu, Yamaguchi, and Masuda 2020).

Real-World Graphs
The real-world graphs considered here can be found in the
Network Repository6 and are also used in the experiments
in (San Segundo et al. 2019) and (Shimizu, Yamaguchi,
and Masuda 2020). These graphs are from several fields in-
cluding social networks, scientific computing networks, and
technological networks. The edge weights are assigned in
the same way as the DIMACS graphs. These graphs are
much larger than the DIMACS graphs and are sparser on
the other hand. The number of vertices of these graphs
ranges from 30795 to 94893, and the density ranges from
0.0000850 to 0.00267.

The full results are shown in Table 3. It is clear that
MEWCat significantly outperforms other solvers on these
instances. The speedup of MEWCat over the best of MECQ
and BBEWC achieves 69x, 69x, and 240x for socfb-
UIllinois, socfb-UF, and socfb-Texas84, respectively. The
average time for MEWCat, MECQ, and BBEWC is 2.00,
72.60, and 94.52 seconds, respectively. On average, MEW-
Cat is over 36x and 47x faster than MECQ and BBEWC,
respectively.

Random Graphs
We also conduct experiments on random graphs. The ran-
dom graphs used are generated in the same way as in
(San Segundo et al. 2019). An edge between any two ver-
tices exists with a constant probability, and the weight is as-
signed in the same way as described above.

The results are given in Table 4 in the Appendix due to
space limit. We summarize the results below. (1) The av-
erage time to solve all these random graphs for MEWCat,
MECQ, and BBEWC is 36.43, 92.26, and 84.29 seconds, re-
spectively. The speedup of MEWCat to MECQ and BBEWC
is 2.53 and 2.31, respectively. (2) It is observed that, for
a fixed |V |, as the density increases, the running time of
MEWCat increases moderately comparing with the other
two solvers. For example, for |V | = 200, when the density
increases from 0.7 to 0.8, the running time increases 22x,
42x, and 40x for MEWCat, MECQ, and BBEWC, respec-
tively.

Conclusions
We proved that MEWCP is still NP-hard even when the min-
imum degree of the graph is n − 2, in contrast to MVWCP
which is polynomial-time solvable when the minimum de-
gree of the graph is at least n − 3. This result distinguishes
the computational complexity of the two problems for the
first time. To address MEWCP, we introduced a new upper
bound and developed a practical branch-and-bound solver
MEWCat based on it. Theoretically, we proved that MEW-
Cat is guaranteed to find the maximum edge-weighted clique
in O∗(1.4423n) time, while previous solvers cannot guaran-
tee the time complexity to be better than the trivial bound
O∗(2n). We also carried out experiments on different graphs
to evaluate the practical performance of MEWCat. The re-
sults show that MEWCat significantly outperforms other
state-of-the-art exact solvers.

6https://networkrepository.com/
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