
Parallel Beam Search Algorithms for
Domain-Independent Dynamic Programming

Ryo Kuroiwa, J. Christopher Beck
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8

ryo.kuroiwa@mail.utoronto.ca, jcb@mie.utoronto.ca

Abstract

Domain-independent dynamic programming (DIDP), a
model-based paradigm based on dynamic programming, has
shown promising performance on multiple combinatorial op-
timization problems compared with mixed integer program-
ming (MIP) and constraint programming (CP). The current
DIDP solvers are based on heuristic search, and the state-
of-the-art solver, complete anytime beam search (CABS),
uses beam search. However, the current DIDP solvers can-
not utilize multiple threads, unlike state-of-the-art MIP and
CP solvers. In this paper, we propose three parallel beam
search algorithms and develop multi-thread implementations
of CABS. With 32 threads, our multi-thread DIDP solvers
achieve 9 to 39 times speedup on average and significant per-
formance improvement over the sequential solver, finding the
new best solutions for two instances of the traveling sales-
person problem with time windows. In addition, our solvers
outperform multi-thread MIP and CP solvers in four of the
six combinatorial optimization problems evaluated.

Introduction
Domain-independent dynamic programming (DIDP) has
been proposed as a model-based paradigm for combinatorial
optimization (Kuroiwa and Beck 2023b). In DIDP, a prob-
lem is formulated as a declarative dynamic programming
model, and the model is solved by a general-purpose solver.
Previous work has shown that DIDP solvers using heuristic
search outperform existing model-based paradigms, mixed-
integer programming (MIP) and constraint programming
(CP), in multiple problems (Kuroiwa and Beck 2023b,c).
The state-of-the-art DIDP solver uses complete anytime
beam search (CABS) (Zhang 1998), which is based on beam
search. However, the current DIDP solvers cannot utilize
multiple threads, unlike state-of-the-art MIP and CP solvers.

Parallel heuristic search has been studied in previous
work. For best-first search algorithms, multi-thread and dis-
tributed parallel algorithms have been proposed (Burns et al.
2010; Kishimoto, Fukunaga, and Botea 2013; Jinnai and
Fukunaga 2017; Kuroiwa and Fukunaga 2019, 2020). They
can be used to parallelize CAASDy (Kuroiwa and Beck
2023b), a DIDP solver based on best-first search. However,
CAASDy is not an anytime solver and is outperformed by

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

CABS in practice (Kuroiwa and Beck 2023c). Beam search
has been parallelized for specific combinatorial optimization
problems (Frohner et al. 2023), but DIDP is more general.

We propose three parallel beam search algorithms and
develop corresponding multi-thread DIDP solvers. The ex-
perimental results show that our solvers achieve significant
speedup and performance improvement compared to CABS
and find the new best solutions for two instances of the trav-
eling salesperson problem with time windows. In addition,
our solvers outperform multi-thread MIP and CP solvers in
four of six combinatorial optimization problems tested.

Domain-Independent Dynamic Programming
Domain-independent dynamic programming (DIDP) is
a paradigm for combinatorial optimization problems
(Kuroiwa and Beck 2023b) in which a problem is described
by a formalism called dynamic programming description
language (DyPDL), based on a state transition system. In
this paper, we focus on a subset of DyPDL that has been
used in previous work (Kuroiwa and Beck 2023b,c).

A DyPDL model is a tuple (V , S0, T ,B, C, h). A state is
defined by values of state variables V . Each state variable
has a type: set, element, or numeric. A set variable takes a
subset of a given set, an element variable takes an element of
a given set, and a numeric variable takes a number (integer in
this paper). We denote the value of a state variable v in state
S by S[v]. A transition τ ∈ T is applicable in state S if S
satisfies the preconditions of τ . The set of applicable transi-
tions in S is denoted by T (S). When τ is applied, S transi-
tions to another state S[[τ]] according to the effects of τ with
the cost of wτ (S) ≥ 0, where wτ is a function called the cost
expression. Preconditions, effects, and cost expressions are
described by expressions, mathematical operations on state
variables. For example, a transition τ may have an effect
U ← U \ {j} on a set variable U and effect i ← j on an
element variable i with precondition j ∈ U and cost expres-
sion cij . A solution is a sequence of transitions that makes
the target state S0 transition to a base state S∗, which satis-
fies one of the base cases B, denoted by ∃B ∈ B, S∗ |= B.
In addition, each state S resulting from applying a transition
in a solution must satisfy the state constraints C, denoted by
S |= C. An S-solution is a sequence of transitions satisfying
the above conditions starting from S. Base cases and state
constraints are also described by expressions. The cost of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20743

Algorithm 1: Beam search.
Input: DyPDL model (V, S0, T ,B, C, h) and primal bound f .
Parameters: beam width b.
Output: solution x having lower cost than f and its optimality.
1: g(S0)← 0, f(S0)← h(S0), x(S0)← ⟨⟩
2: O ← {S0}, x← NULL, complete← ⊤, f ← f(S0)

3: while O ̸= ∅ and x = NULL do
4: G← ∅
5: for all S ∈ O do
6: if ∃B ∈ B, S |= B then ▷ A solution.
7: if g(S) < f then x← x(S), f ← g(S)

8: if g(S) = f then return x(S), ⊤ ▷ Optimal.

9: continue
10: for all τ ∈ T (S) with S[[τ]] |= C do ▷ Expand.
11: gτ ← g(S)× wτ (S), f

τ ← gτ × h(S[[τ]])

12: if fτ ≥ f then continue
13: INSERT(S, τ, gτ , fτ , G)
14: O ← {S ∈ G | f(S) < f}
15: if complete and O ̸= ∅ then f ← max{f,minS∈O f(S)}
16: if |O| > b then
17: O ← the best b states in O, complete← ⊥
18: return x, complete ∧O = ∅

a solution x = ⟨τ1, ..., τn⟩ is wτ1(S
0) × ... × wτn(S

n−1),
where Si = Si−1[[τi]] for i = 1, ..., n and× is a binary oper-
ator, either of + or max, specified by the model. An optimal
solution minimizes the cost.

DyPDL allows a user to model implied information. Ele-
ment and numeric variables can be defined as resource vari-
ables, with a preference of less or more. A state S domi-
nates another state S′, denoted by S′ ⪯ S, if S[v] ≤ S′[v]
(S[v] ≥ S′[v]) for all resource variables v where less (more)
is preferred, and S[v] = S′[v] for all non-resource variables
v. If S′ ⪯ S, it is guaranteed that an optimal S-solution
has a lower or equal cost than an optimal S′-solution. The
dual bound function h returns h(S), a lower bound on the
S-solution cost, given a state S.

Beam Search for DIDP
A DyPDL model can be solved by heuristic search in a state
transition graph, where nodes are states, the weight of an
edge (S, S[[τ]]), corresponding to transition τ , is wτ (S), and
an S-solution corresponds to a path from S to a base state
(Kuroiwa and Beck 2023b). The path cost is computed by
taking the sum or maximum of the edge weights. Taking the
maximum is different from usual settings for heuristic search
but can be handled by generalizing it (Edelkamp, Jabbar, and
Lafuente 2005). We assume an acyclic state transition graph.

The current state-of-the-art solver (Kuroiwa and Beck
2023c) uses complete anytime beam search (CABS) (Zhang
1998), which is based on beam search (see Algorithm 1).
As part of its input, beam search takes the, possibly infi-
nite, primal bound, f , an upper bound on the optimal solu-
tion cost. For each state S, it maintains x(S), the best path
found so far from the target state S0. The g-value, g(S), is
the cost of x(S). The h-value, h(S), is a lower bound on
the optimal path cost from S to a base state. The f -value,

Algorithm 2: Insert a successor to a set if it is not dominated.
Input: state S, transition τ , g-value gτ , f -value fτ , and set G
1: function INSERT(S, τ, gτ , fτ , G)
2: if ∄S′ ∈ G with S[[τ]] ⪯ S′ and gτ ≥ g(S′) then
3: if ∃S′ ∈ G with S′ ⪯ S[[τ]] and gτ ≤ g(S′) then
4: G← G \ {S′} ▷ Remove a dominated state.
5: g(S[[τ]])← gτ , f(S[[τ]])← fτ ▷ Update g and f .
6: x(S[[τ]])← ⟨x(S); τ⟩ ▷ Update the path.
7: G← G ∪ {S[[τ]]} ▷ Insert the state into the set.

f(S) = g(S)×h(S) is the lower bound on the cost of a path
to a base state extending x(S). Beam search also maintains
the global dual bound f , the lower bound on the solution
cost, initialized with f = f(S0) (line 2).

At each iteration, beam search processes all states in the
open list O, which is initilized with S0 in line 2. For each
state S in O, if S is a base state and the solution cost is better
than the primal bound f , the solution x and f are updated
(line 7). If the solution cost matches the global dual bound,
the solution is optimal and beam search terminates (line 8).
Otherwise, beam search expands S, i.e., it applies transitions
to S and inserts the resulting successor states into the open
list (lines 10-13). It only considers applicable transitions and
successor states satisfying the state constraints (line 10). The
g-value and f -value of each successor state are computed
and saved to gτ and fτ (line 11). If fτ is greater than or
equal to f , the state is pruned because it does not lead to a
better solution (line 12). Otherwise, it is inserted into the set
of states G if it is not dominated (line 13).

The function INSERT in Algorithm 2 checks if any state
S′ in G dominates the successor state S[[τ]] and has a lower
or equal g-value (line 2). In such a case, a path cost to S′

is lower or equal, and S′-solution has a better or equal cost
by definition of dominance. Thus, the current successor state
can be ignored without loss of optimality. Conversely, if the
current successor state and its g-value dominate an existing
state, the dominated state is removed from G (lines 3 and 4).

After expanding all states, O is updated to G ignoring
states with f -values greater than or equal to the primal
bound (line 14). The open list O contains only states in the
same layer, i.e., states reached from the target state with the
same number of transitions. If |O| > b, the best b states are
kept, and the flag ‘complete’ is set to ⊥ (lines 17). Here, b is
called a beam width. When a solution is found or O becomes
empty, beam search terminates (line 18). If complete = ⊤,
i.e., no state is discarded, and O is empty, we have exhausted
all solutions having lower costs than f , which is indicated by
the second return value. CABS repeats beam search while
doubling b and updating f to the best solution cost until the
second return value becomes ⊤. At such a point, the best
found solution is optimal, or the model is infeasible if no so-
lution is found. Our version of CABS follows Kuroiwa and
Beck (2023c), but the original one by Zhang (1998) is more
general; beam search selects states in O using some crite-
rion, and CABS relaxes such a criterion at each iteration.

If complete = ⊤ and the primal bound is greater than
the optimal cost, there exists a state S ∈ O such that an

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20744

optimal solution is an extension of x(S); {x(S) | S ∈ O}
is the set of all non-dominated paths from the target state
to a certain layer. For paths removed due to dominance in
Algorithm 2, it is guaranteed that a better or equal path exists
in the set. For paths removed due to the primal bound, their
costs are greater than or equal to the optimal cost. Therefore,
we update the global dual bound in line 15 by taking the
minimum f -value of states in O.

Implementation of Beam Search In our implementation,
a data structure called a search node has a pointer to a state
and its g-, h-, and f -values. The set G is represented by a
hash table where the key is the values of non-resource vari-
ables and the hash-table entry is a list of search nodes. In
Algorithm 2, a new search node is compared with each node
in the list. If the new node dominates an existing one in the
list, it replaces the dominated node. Otherwise, the new node
is appended to the list if it is not dominated.

To save memory and computation, selecting the best b
states in O in line 17 of Algorithm 1 is performed incre-
mentally. Search nodes are stored in a binary heap in de-
scending order of f -values, and ties are broken by h-values.
Before checking dominance in Algorithm 2, if the number of
states in G is equal to b, and (fτ , h(S[[τ]])) is greater than or
equal to that of the top of the binary heap, S[[τ]] is ignored. A
search node also has a binary flag indicating if the state is in-
cluded in G. If a state S′ in G is dominated by the successor
state in line 3 of Algorithm 2, the flag of S′ is set to be false,
and the number of states in G is decremented. The domi-
nated search node is removed as soon as it becomes the top
of the binary heap. When inserting the successor state, if G
still contains b states, the top of the binary heap is removed.

Parallel Beam Search for DIDP
We propose three parallel beam search algorithms, all of
which expand states from the open list in parallel.

Shared Beam Search (SBS)
The main issue of expanding states in parallel is how to
check the dominance of successor states; a successor state
generated in one thread might be dominated by one gen-
erated in another thread, so communication across multiple
threads is necessary. As we have described, sequential beam
search performs the dominance check using a hash table.
Our first algorithm, shared beam search (SBS), uses a con-
current hash table: a hash table designed for multi-thread
access. Otherwise, SBS is similar to an existing problem-
specific beam search method (Frohner et al. 2023). While
there are multiple implementations of concurrent hash ta-
bles, we use DashMap 5.4.0,1 in which a hash table is di-
vided into multiple shards, and each shard is protected by
a lock. When a thread accesses a shard, it locks the shard,
performs the operation, and unlocks the shard. A shard is
uniquely determined by the hash value of a key, so the same
key is always stored in the same shard.

We show pseudo-code of SBS in Algorithm 3. The
concurrent hash table is divided into multiple shards

1https://crates.io/crates/dashmap/5.4.0

Algorithm 3: Shared beam search (SBS).
Input: DyPDL model (V, S0, T ,B, C, h), primal bound f .
Parameters: beam width b and shard amount m.
Output: solution x having lower cost than f and its optimality.
1: g(S0)← 0, f(S0)← h(S0), x(S0)← ⟨⟩
2: O ← {S0}, x← NULL, complete← ⊤, f ← f(S0)

3: while O ̸= ∅ and x = NULL do
4: for all S ∈ O with ∃B ∈ B, S |= B in parallel do
5: if g(S) < f then x← x(S), f ← g(S)

6: if x ̸= NULL then
7: if f = f then return x,⊤.

8: if not complete then return x,⊥.
9: Gi ← ∅ for i = 1, ...,m

10: for all S ∈ O with ∄B ∈ B, S |= B in parallel do
11: for all τ ∈ T (S) with S[[τ]] |= C do
12: gτ ← g(S)× wτ (S), f

τ ← gτ × h(S[[τ]]).
13: if fτ ≥ f then continue.
14: determine shard j for S[[τ]].
15: lock Gj

16: INSERT(S, τ, gτ , fτ , Gj)
17: unlock Gj

18: O ← {S ∈
⋃m

i=1 Gi | f(S) < f}
19: if complete and O ̸= ∅ then f ← max{f,minS∈O f(S)}
20: if |O| > b then
21: O ← the best b states in O, complete← ⊥
22: return x, complete ∧O = ∅

G1, ..., Gm. SBS checks base states in parallel (lines 4-8)
before expanding states. While the sequential implementa-
tion incrementally selects the best b states in line 17 of Al-
gorithm 1, parallelizing this step is not straightforward. In
the implementation of SBS, for the open list O, we use an
array of search nodes instead of a binary heap. In line 21,
search nodes are sorted in parallel by the ascending order
of f -values and h-values, and the best b are selected. This
difference from the sequential implementation may change
the search behavior as a tie may be broken differently. If the
flag of a search node indicates that the state is not included
in G, that search node is ignored before sorting. In the im-
plementation, the global dual bound computation in line 19
is performed only when the sorting is performed to avoid the
overhead of computing the minimum f -value of states in O.
The parallel operations in lines 4-5, 10-19, and 21 are per-
formed by a thread pool using Rayon 1.7.0.2 With k threads,
we use m = 4k shards, following the default of DashMap.

Hash Distributed Beam Search (HDBS)
Another approach to parallel beam search is to use mes-
sage passing as in previous work on parallel best-first search
(BFS) (Kishimoto, Fukunaga, and Botea 2013; Jinnai and
Fukunaga 2017; Kuroiwa and Fukunaga 2019). In this ap-
proach, a state is uniquely assigned to a worker3 by a hash
function, and each worker independently maintains an open
list and a hash table to check dominance. When a worker

2https://crates.io/crates/rayon/1.7.0
3We use ‘worker’ instead of ‘thread’ or ‘process’ as message

passing can be used with multi-thread and multi-process settings.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20745

Algorithm 4: Hash distributed beam search 1 (HDBS1).
Input: DyPDL model (V, S0, T ,B, C, h) and primal bound f .
Parameters: beam width b and number of workers k.
Output: solution x having lower cost than f and its optimality.
1: g(S0)← 0, f(S0)← h(S0), x(S0)← ⟨⟩
2: f ← f(S0), Qi ← [] for i = 1, ..., k
3: for i = 1, ..., k in parallel do
4: Oi ← ∅, xi ← NULL, completei ← ⊤, f i ← f
5: if i = HASH(S0) then Oi ← Oi ∪ {S0}
6: loop
7: Gi ← ∅, ci ← 0, sent alli ← ⊥
8: while ci < k do
9: RECV STATE(Qi, Gi, ci)

10: if ∃S ∈ Oi then
11: Oi ← Oi \ {S}
12: if ∃B ∈ B, S |= B then
13: if g(S) < f i then xi ← x(S), f i ← g(S)

14: continue
15: for all τ ∈ T (S) with S[[τ]] |= C do
16: gτ ← g(S)×wτ (S), fτ ← gτ ×h(S[[τ]])

17: if fτ ≥ f i then continue
18: j ← HASH(S[[τ]])
19: PUSH(Qj , (S, τ, g

τ , fτ))
20: else if not sent all then
21: PUSH(Qj ,NULL) for j = 1, ..., k
22: sent all← ⊤
23: Oi ← {S ∈ Gi | f(S) < f i}, f i

← minS∈Oi f(S)

24: send xi, f i f i
, |Oi|, and completei to worker 1

25: if i = 1 then AGGREGATE(f)

26: receive f , l, and is optimal from worker 1
27: if i = l then
28: if xi ̸= NULL and f i = f then return xi, ⊤
29: return xi, is optimal.
30: else if l ̸= NULL then
31: break
32: if |Oi| > b/k then
33: Oi ← the best b/k states in Oi, completei ← ⊥

generates a search node, it is sent to the worker responsi-
ble for the corresponding state. We adapt this idea to beam
search and propose hash distributed beam search (HDBS).

Unlike BFS, beam search explores layer by layer: the set
of generated states G contains only states in the same layer.
In HDBS, when a worker inserts a state received from an-
other worker into G, the state must belong to the same layer
as the other states in G. In other words, we need to syn-
chronize the layer searched by each worker. We propose two
synchronization variants, HDBS1 and HDBS2.

HDBS1 HDBS1 takes a straightforward approach: each
worker proceeds to the next layer when all workers finish
the current layer (Algorithm 4). Each worker i maintains an
open list Oi and set Gi. A state is assigned a worker by a
hash function HASH based on the values of non-resource
variables. Channels used for message passing are repre-
sented by Qi. When a worker generates a search node, it
is sent to the worker responsible for the corresponding state
using PUSH (line 19). This operation is non-blocking, i.e.,

Algorithm 5: Receive states from a channel.
Input: channel Q, set G, and counter c
1: function RECV STATE(Q,G, c)
2: while Q contains a message do
3: (S, τ, gτ , fτ)← POP(Q)
4: if (S, τ, gτ , fτ) = NULL then
5: c← c+ 1
6: else
7: INSERT(S, τ, gτ , fτ , G)

Algorithm 6: Aggregate information of the current layer.
Input: current dual bound f .
1: function AGGREGATE(f)
2: receive xj , f j , f

j
, |Oj |, and completej from j = 1, ..., k

3: empty←
∑k

j=1 |Oj | = 0, complete←
∧k

j=1 completej
4: if ∀j = 1, ..., k, xj = NULL then ▷ No solution.
5: if empty then ▷ No states to search.
6: l← 1
7: else
8: l← NULL
9: else

10: let l ∈ argminj=1,...,k f j

11: if complete and not empty then
12: f ← max{f,min{ min

j=1,...,k
f j , min

j=1,...,k:|Oj |>0
f
j
} }

13: is optimal← complete ∧ empty
14: broadcast f , l, is optimal

the worker does not wait until the message is received. Mes-
sages are received in the order of sending. A worker receives
a state using POP, which is also non-blocking, and inserts it
into G after a dominance check (Algorithm 5). HDBS1 al-
ternately receives states and expands a state (lines 9 and 10).

When a worker has expanded all states in the open list, it
notifies other workers that it has sent all states by sending a
special message, NULL (line 21). Here, the flag ‘sent all’
is used to send the special message only once. Using ci,
worker i maintains the number of workers from which it has
received all successor states, which is incremented in line 5
of Algorithm 5. When ci becomes the number of workers,
k, worker i has finished the current layer. The worker then
sends the best solution found (xi), its cost (f i), the mini-
mum f -value in the open list (f

i
), the number of states in

the open list (|Oi|), and if states are discarded (completei)
to worker 1 (line 24). Worker 1 aggregates this information
and broadcasts the global dual bound (f), the worker index
which has found the best solution (l), and the solution op-
timality (is optimal) in Algorithm 6. When the open lists
of all workers are empty with no solution found, HDBS1
sets l to 1. The global dual bound is computed from f

j
only

when no state is discarded up to this point in each worker
j (line 11 of Algorithm 6). In line 12, it is possible that
minj=1,..,k:|Oj |>0 f j

> f = minj=1,..,k f j . In such a case,
all states in the next layer can be pruned, and the current
solution is optimal, so the global dual bound becomes f .

If l ̸= NULL, a solution is found or all open lists are

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20746

Algorithm 7: Hash distributed beam search 2 (HDBS2).
Input: DyPDL model (V, S0, T ,B, C, h) and primal bound f .
Parameters: beam width b and number of workers k.
Output: solution x having lower cost than f and if x is optimal.
1: g(S0)← 0, f(S0)← h(S0), x(S0)← ⟨⟩
2: Qi, Ri ← [] for i = 1, ..., k
3: for i = 1, ..., k in parallel do
4: Oi ← ∅, xi ← NULL, completei ← ⊤
5: f i ← f , f

i
←∞

6: if i = HASH(S0) then Oi ← Oi ∪ {S0}, f
i
← f(S0)

7: for j = 1, ..., k do
8: PUSH(Rj , (NULL, f i, f i

, |Oi|, completei))

9: loop
10: Gi ← ∅, ci ← 0, sent alli ← ⊥
11: Pij ← [] for j = 1, ..., k

12: Li ← ∅, li ← NULL, f̂i, f ′
i ←∞, emptyi ← Oi = ∅

13: while ci < k do
14: RECV INFO(Ri, Li, li, f̂i, f

′
i , emptyi, completei)

15: f i = min{f i, f̂i}
16: if |Li| = k, completei, and not emptyi then
17: f

i
= max{f

i
,min{f̂i, f ′

i}}
18: for all j ∈ Li such that Pij contains a message do
19: APPEND(Qj , Pij), Pij ← []

20: RECV STATE(Qi, Gi, ci)
21: if ∃S ∈ Oi then
22: Oi ← Oi \ {S}
23: if ∃B ∈ B, S |= B then
24: if g(S) < f i then xi ← x(S), f i ← g(S)

25: continue
26: for all τ ∈ T (S) with S[[τ]] |= C do
27: gτ ← g(S)×wτ (S), fτ ← gτ ×h(S[[τ]])

28: if fτ ≥ f i then continue
29: j ← HASH(S[[τ]])
30: if j ∈ Li then
31: PUSH(Qj , (S, τ, g

τ , fτ))
32: else
33: PUSH(Pij , (S, τ, g

τ , fτ))
34: else if not sent all and |Li| = k then
35: PUSH(Qj ,NULL) for j = 1, ..., k
36: sent all← ⊤
37: if i = li ∨ (emptyi ∧ i = 1) then
38: if xi ̸= NULL and f i = f

i
then return xi, ⊤

39: return xi, emptyi ∧ completei
40: else if li ̸= NULL ∨ emptyi then
41: break
42: Oi ← {S ∈ Gi | f(S) < f i}, f i

← minS∈Oi f(S)

43: for j = 1, ..., k do
44: PUSH(Rj , (xi, f i, f i

, |Oi|, completei))

45: if |Oi| > b/k then
46: Oi ← the best b/k states in Oi, completei ← ⊥

empty, so all workers terminate, and worker l returns xl

(lines 27-31). Otherwise, each worker knows that all work-
ers finished the current layer, so it proceeds to the next layer.
In line 33, each worker keeps the best b/k states. As a result,
the set of kept states is not necessarily the same as the best b
states across all open lists. For example, if states with high f -

Algorithm 8: Receive the information of the previous layer.

Input: channel R, set L, index l, bounds f̂ and f ′, and two flags
1: function RECV INFO(R,L, l, f̂ , f ′, empty, complete)
2: while R contains a message do
3: (xj , f j , f j

, |Oj |, completej)← POP(R)
4: L← L ∪ {j}
5: if xj ̸= NULL ∧ (f j < f̂ ∨ (f j = f̂ ∧ j < l)) then
6: f̂ ← f j , l← j

7: empty← empty ∧ |Oj | = 0
8: complete← complete ∧ completej
9: if compelete and |Oj | > 0 then f ′ = min{f ′, f

j
}

values are concentrated in a single worker, states that would
have been discarded by sequential beam search will be kept.
HDBS1 can behave differently from sequential beam search.

HDBS2 In HDBS1, each worker needs to wait until all
workers finish the current layer. However, a worker can ac-
tually expand states in the next layer as long as it does not
send successor states to unfinished workers. Based on this
idea, we propose HDBS2. We show pseudo-code of HDBS2
in Algorithm 7. Instead of aggregating all information to
worker 1, each worker sends the information to all workers
using channels Rj in line 44 and immediately proceeds to
the next layer. When worker i receives this information from
worker j (line 14), worker i knows that worker j has finished
the previous layer. When worker i generates a search node
assigned to j, if j finished the previous layer, it is imme-
diately pushed to the channel Qj (line 31). Otherwise, it is
stored in a local buffer Pij (line 33), and all search nodes in
Pij are pushed to Qj once i receives the information from j
(line 19). Here, Li maintains the set of workers from which
worker i has received the information of the previous layer.

The information of the previous layer is aggregated by
each worker in Algorithm 8. It keeps updating the worker
index which has found the best solution in the previous layer
(l), the best solution cost in the previous layer (f̂), the min-
imum f -value in the current layer (f ′), the flag indicating if
the current layer is empty (empty), and the flag indicating if
any worker discarded a state (complete). For f̂ , when multi-
ple workers find the best solution, the one with the smallest
index is selected (line 5). In line 24 of Algorithm 7, f̂ is not
updated by the solution found in the current layer. Thus, f̂
and l only depend on the information shared with all work-
ers, and l is uniquely determined. Worker l may return a so-
lution having a better cost than f̂l in line 39, since xl can
be updated. However, even if worker j ̸= l finds a better
solution than f̂j = f̂l, worker j does not return a solution.

In line 34, before sending the special message NULL,
each worker checks if all workers have finished the previous
layer. This condition ensures the following property: when
worker i receives the special message NULL from worker
j in channel Qi, worker i knows that worker j already re-
ceived the information of the previous layer from all work-
ers. Therefore, when worker i sends the information of the
current layer in line 44, worker i is sure that all workers have

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20747

already processed the information of the previous layer, and
the information of the current layer will not be mixed with
the information of the previous layer. In other words, worker
i exits the while loop in lines 13-36 after receiving exactly
one message from each worker in channel Ri and all as-
signed states in the next layer. For the first layer, HDBS2
sends dummy messages (line 8).

Implementation For the open list and hash table, we use
the same implementation as sequential beam search. While
a worker sends a message to itself in the pseudo-code, such
a message is processed without being sent to a channel. For
HASH, we use FxHash from rustc-hash 1.1.04, take the re-
mainder of the hash value divided by k, and increase it
by 1 so that the resulting value is in {1, ..., k}. Although
HDBS can be implemented for multi-process (distributed)
environments, we focus on the multi-thread implementation
in this paper. For message passing, we use Crossbeam Chan-
nel 0.5.8.5 For broadcast in HDBS1, we use bus 2.4.0.6

Empirical Evaluation
We implement multi-thread DIDP solvers using CABS
with SBS (CASBS), HDBS1 (CAHDBS1), and HDBS2
(CAHDBS2) in an existing DIDP framework, didp-rs,7 with
Rust 1.65.0. We use up to 32 threads, and CABS starts from
b = 32. We evaluate the DIDP solvers in six problems
used by Kuroiwa and Beck (2023b): the traveling salesper-
son problem with time windows (TSPTW), the capacitated
vehicle routing problem (CVRP), the simple assembly line
balancing problem (SALBP-1), bin packing, the minimiza-
tion of open stacks problem (MOSP) (Yuen and Richard-
son 1995), and graph-clear (Kolling and Carpin 2007). We
also evaluate MIP and CP models using Gurobi 10.0.1 and
IBM ILOG CP Optimizer 22.1.0. We use the DyPDL mod-
els from Kuroiwa and Beck (2023c) and MIP and CP models
from Kuroiwa and Beck (2023b)8 with Python 3.11.2. For a
memory allocator, jemalloc 5.2.19 is used. All experiments
are run on a machine with 2 Intel Xeon Gold 6148 CPUs (40
cores in total) using 188 GB memory and 300 seconds.

Evaluation Measures
We evaluate the coverage: the number of optimally solved
problem instances within the time and memory limits. We
measure speedup by the time that the sequential solver takes
to optimally solve an instance divided by that of a parallel
solver, excluding the time to create a model. As discussed,
parallelization may change the behavior of beam search, so
we also evaluate the speedup of search time per expansion.

To evaluate the behavior difference between sequential
and parallel CABS, we compute the expansion ratio, the
number of expansions by a parallel solver divided by that of

4https://crates.io/crates/rustc-hash/1.1.0
5https://crates.io/crates/crossbeam-channel/0.5.8
6https://crates.io/crates/bus/2.4.0
7https://github.com/domain-independent-dp/didp-rs/releases/

tag/parallel-aaai24
8https://github.com/Kurorororo/didp-models
9https://jemalloc.net/

the sequential solver. A similar metric, search overhead, was
used by previous work (Kishimoto, Fukunaga, and Botea
2013), which is our expansion ratio minus 1.10

We use the primal gap and primal integral (Berthold 2013)
following Kuroiwa and Beck (2023c). When a solver finds
a solution with cost f(x), and the best-known solution cost
is f(x∗), the primal gap is (f(x) − f(x∗))/f(x). When no
solution is found, the primal gap is 1. The primal integral
measures the solution quality over time. Let p(t) be the pri-
mal gap achieved at time t. When the time limit is T , and a
solver finds a better solution at time ti for i = 1, ..., l − 1,
the primal integral is

∑l
i=0 p(ti), where t0 = 0 and tl = T .

Experimental Results
In Figure 1, we show the speedup of parallel DIDP solvers
with 8, 16, and 32 threads using the problems where DIDP
outperforms MIP and CP in coverage according to previ-
ous work (Kuroiwa and Beck 2023c): TSPTW, SALBP-1,
MOSP, and graph-clear. All problems solved by sequential
CABS are solved by the parallel solvers except for one in-
stance of SALBP-1 unsolved by CASBS with 8 threads.

For 32 threads, the speedup is shown in Table 1 with the
coverage, the primal gap, the primal integral, and the ex-
pansion ratio. Table 1 includes results for all problems stud-
ied by Kuroiwa and Beck (2023b). HDBS achieves better
speedup than SBS. CAHDBS2 is better than CAHDBS1 in
TSPTW and SALBP-1, and the difference is small in MOSP
and graph-clear. We compare 1 and 32 thread solvers for
each instance in the appendix (Kuroiwa and Beck 2023a).

In TSPTW, CVRP, MOSP, and graph-clear, the expansion
ratio is close to 1, and the speedup is close to the speedup per
expansion, indicating that the effect on the search behavior
change is small. However, in SALBP-1, the expansion ra-
tio is below 1, and the speedup is larger than the speedup
per expansion, particularly in HDBS. In the DyPDL model
for SALBP-1, the dual bound is strong, and beam search
proves the optimality as soon as it finds an optimal solution
in some instances. Thus, the result suggests that the search
behavior change helps to find a good solution in SALBP-1.
We observe a more extreme tendency in bin packing, where
a similar DyPDL model is used, resulting in a super lin-
ear speedup of HDBS. CASBS solves fewer instances than
sequential CABS. While CAHDBS1 and CAHDBS2 solve
more instances in total, they do not solve 36 and 41 instances
solved by sequential CABS. We compare the numbers of ex-
panded states for each problem in the appendix.

Comparing coverage, the primal gap, and the primal
integral, parallel DIDP solvers with 32 threads are sig-
nificantly better than sequential CABS. CAHDBS1 and
CAHDBS2 find new best solutions for rbg193.2.tw (12138)
and rbg233.2.tw (14492) in the AFG set of TSPTW.

MIP and CP achieve a smaller speedup than DIDP. In
TSPTW and MOSP, while parallel CP has the better primal
gap, it is slower and solves fewer instances than sequential
CP. In terms of overall performance, parallel DIDP is better
(worse) than parallel MIP and CP if the sequential DIDP is
better (worse) than the sequential MIP and CP.

10We keep the metric positive to take the geometric mean.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20748

8 16 32
#threads

4

8

12

16

20

24

28

32
Sp

ee
du

p
Per expansion
CASBS
CAHDBS1
CAHDBS2

(a) TSPTW

8 16 32
#threads

4

8

12

16

20

24

28

32

Sp
ee

du
p

Per expansion
CASBS
CAHDBS1
CAHDBS2

(b) SALBP-1

8 16 32
#threads

4

8

12

16

20

24

28

32

Sp
ee

du
p

Per expansion
CASBS
CAHDBS1
CAHDBS2

(c) MOSP

8 16 32
#threads

4

8

12

16

20

24

28

32

Sp
ee

du
p

Per expansion
CASBS
CAHDBS1
CAHDBS2

(d) Graph-Clear

Figure 1: Speedup of parallel CABS methods over sequential CABS (the geometric mean over instances optimally solved by
sequential CABS in 10-300 seconds). ‘Per expansion’ shows the speedup of search time per expansion.

1 thread 32 threads
Problem Method # Gap Integral # Gap Integral Speedup Speedup/expansion Expansion ratio

TSPTW (340)

MIP 192 0.313 108.3 239 0.210 77.5 4.2 - -
CP 42 0.028 9.6 27 0.025 17.1 0.1 - -
CASBS

235 0.006 2.9
260 0.003 1.5 9.5 9.2 0.968

CAHDBS1 262 0.002 1.1 13.0 13.5 1.036
CAHDBS2 262 0.002 1.1 13.3 13.8 1.035

CVRP (90)

MIP 13 0.232 121.8 29 0.114 81.5 5.3 - -
CP 0 0.079 28.0 0 0.060 24.6 - - -
CASBS

5 0.055 18.6
6 0.055 18.5 5.2 5.2 0.983

CAHDBS1 8 0.040 13.8 9.3 9.3 0.999
CAHDBS2 8 0.040 13.8 9.3 9.3 1.000

SALBP-1 (2100)

MIP 1322 0.332 107.4 1351 0.206 69.6 1.3 - -
CP 1563 0.011 16.5 1581 0.009 15.9 1.4 - -
CASBS

1714 0.002 2.0
1818 0.001 1.0 6.3 6.0 0.952

CAHDBS1 1824 0.000 0.5 16.7 14.1 0.845
CAHDBS2 1824 0.000 0.5 18.8 14.5 0.773

Bin Packing (1615)

MIP 1122 0.047 19.3 1192 0.034 15.5 6.4 - -
CP 1189 0.006 4.5 1251 0.002 1.3 9.2 - -
CASBS

1110 0.003 4.9
1077 0.006 3.6 3.9 4.2 1.089

CAHDBS1 1239 0.003 1.8 36.4 10.5 0.288
CAHDBS2 1239 0.003 1.8 39.6 11.0 0.278

MOSP (570)

MIP 216 0.059 26.4 238 0.050 22.9 3.1 - -
CP 421 0.008 4.2 397 0.005 4.8 0.3 - -
CASBS

507 0.000 0.2
526 0.000 0.3 5.4 5.3 0.987

CAHDBS1 531 0.000 0.1 8.9 9.0 1.012
CAHDBS2 531 0.000 0.1 9.0 9.1 1.015

Graph-Clear (135)

MIP 6 0.214 80.4 16 0.187 72.6 2.0 - -
CP 4 0.048 22.6 3 0.040 22.0 3.2 - -
CASBS

92 0.000 0.3
103 0.000 0.2 6.0 6.0 0.999

CAHDBS1 113 0.000 0.1 10.4 10.5 1.011
CAHDBS2 113 0.000 0.1 10.3 10.5 1.011

Table 1: Comparison of solvers with 1 and 32 threads. ‘#’ is the coverage, ‘Gap’ is the primal gap, and ‘Integral’ is the primal
integral (arithmetic mean). We show the geometric mean speedup in instances solved by a sequential solver in 10-300 seconds.

Conclusion and Future Work

We proposed parallel beam search algorithms for domain-
independent dynamic programming (DIDP). Hash dis-
tributed beam search (HDBS) distributes states to threads
based on hash values using message passing, adapted from
parallel best-first search (BFS). HDBS achieves significant
speedup and performance improvement over the state-of-

the-art sequential DIDP solver. A potential bottleneck of
HDBS is frequent communication between threads. In paral-
lel BFS, such overhead can be reduced by abstracted hashing
(Jinnai and Fukunaga 2017), which tends to assign succes-
sors of state S to the same thread assigned to S, exploiting
problem structure. Designing such a hash function for DIDP
is future work.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20749

Acknowledgments
This work was partially supported by the Natural Sciences
and Engineering Research Council of Canada.

References
Berthold, T. 2013. Measuring the Impact of Primal Heuris-
tics. Operations Research Letters, 41: 611–614.
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2010. Best-
First Heuristic Search for Multicore Machines. Journal of
Artificial Intelligence Research, 39: 689–743.
Edelkamp, S.; Jabbar, S.; and Lafuente, A. L. 2005. Cost-
Algebraic Heuristic Search. In Proceedings of the 20th Na-
tional Conference on Artificial Intelligence (AAAI), 1362–
1367.
Frohner, N.; Gmys, J.; Melab, N.; Raidl, G.; and Talbi, E.-G.
2023. Parallel Beam Search for Combinatorial Optimiza-
tion. In Workshop Proceedings of the 51st International
Conference on Parallel Processing.
Jinnai, Y.; and Fukunaga, A. 2017. On Hash-Based Work
Distribution Methods for Parallel Best-First Search. Journal
of Artifiicial Intelligence Research, 60: 491–548.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2013. Evalua-
tion of a Simple, Scalable, Parallel Best-First Search Strat-
egy. Artificial Intelligence, 195: 222–248.
Kolling, A.; and Carpin, S. 2007. The GRAPH-CLEAR
Problem: Definition, Theoretical Properties and Its Connec-
tions to Multirobot Aided Surveillance. In Proceedings of
IEEE International Conference on Intelligent Robots and
Systems (IROS), 1003–1008.
Kuroiwa, R.; and Beck, J. C. 2023a. Appendix for Parallel
Beam Search Algorithms for Domain-Independent Dynamic
Programming. https://tidel.mie.utoronto.ca/pubs/Appendix
Parallel AAAI24.pdf. Accessed: 2023-12-13.
Kuroiwa, R.; and Beck, J. C. 2023b. Domain-Independent
Dynamic Programming: Generic State Space Search for
Combinatorial Optimization. In Proceedings of the 33rd
International Conference on Automated Planning and
Scheduling (ICAPS), 236–244.
Kuroiwa, R.; and Beck, J. C. 2023c. Solving Domain-
Independent Dynamic Programming Problems with Any-
time Heuristic Search. In Proceedings of the 33rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 245–253.
Kuroiwa, R.; and Fukunaga, A. 2019. On the Pathological
Search Behavior of Distributed Greedy Best-First Search. In
Proceedings of the 29th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 255–263.
Kuroiwa, R.; and Fukunaga, A. 2020. Analyzing and Avoid-
ing Pathological Behavior in Parallel Best-First Search. In
Proceedings of the 30th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 175–183.
Yuen, B. J.; and Richardson, K. V. 1995. Establishing the
Optimality of Sequencing Heuristics for Cutting Stock Prob-
lems. European Journal of Operational Research, 84: 590–
598.

Zhang, W. 1998. Complete Anytime Beam Search. In Pro-
ceedings of the Fifteenth National/Tenth Conference on Ar-
tificial Intelligence/Innovative Applications of Artificial In-
telligence (AAAI-98/IAAI-98), 425–430.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20750

