
Delegation-Relegation for Boolean Matrix Factorization

Florent Avellaneda1, 2, Roger Villemaire1

1 Université du Québec à Montréal (UQAM), Montréal, Canada
2 Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Canada

avellaneda.florent@uqam.ca, villemaire.roger@uqam.ca

Abstract

The Boolean Matrix Factorization (BMF) problem aims to
represent a n×m Boolean matrix as the Boolean product of
two matrices of small rank k, where the product is computed
using Boolean algebra operations. However, finding a BMF
of minimum rank is known to be NP-hard, posing challenges
for heuristic algorithms and exact approaches in terms of rank
found and computation time, particularly as matrix size or the
number of entries equal to 1 grows.
In this paper, we present a new approach to simplifying the
matrix to be factorized by reducing the number of 1-entries,
which allows to directly recover a Boolean factorization of
the original matrix from its simplified version. We intro-
duce two types of simplification: one that performs numerous
simplifications without preserving the original rank and an-
other that performs fewer simplifications but guarantees that
an optimal BMF on the simplified matrix yields an optimal
BMF on the original matrix. Furthermore, our experiments
show that our approach outperforms existing exact BMF al-
gorithms.

1 Introduction
The problem of Boolean Matrix Factorization (BMF) is to
represent a n × m matrix X as the Boolean product of an
n × k and k × m matrices A ◦ B. The Boolean semiring
operator, denoted by ◦, represents a matrix multiplication in
which the product is computed using the logical “AND” op-
erator and the addition is computed using the logical “OR”
operator. By searching for matrices A and B of small rank
k, the BMF allows us to represent the initial matrix X in
a concise way. BMF is widely used in various fields such
as data mining (Wicker, Pfahringer, and Kramer 2012), role
mining (Ene et al. 2008), bioinformatics (Liang, Zhu, and
Lu 2020), logic synthesis (Ma, Hashemi, and Reda 2022;
Hashemi, Tann, and Reda 2018), and network analysis (Ko-
cayusufoglu, Hoang, and Singh 2018), and has been the sub-
ject of numerous research studies (Miettinen and Neumann
2020).

In the context of BMF, two types of problems arise. The
first problem is, given a matrix X, finding a BMF of min-
imal rank. The second problem is, given a matrix X and a

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

rank k, finding a BMF that is as close as possible to the ma-
trix X. In this paper, we only consider exact solutions in
which no error is allowed. Exact solutions are a key concern
in application areas such as security role mining (Ene et al.
2008) where a spurious authorization would jeopardize a se-
curity policy. Moreover, it is well-known that the set basis
and biclique covering problems are equivalent to BMF (Mi-
ettinen and Neumann 2020). Therefore, this opens up ad-
ditional domains that would benefit from exact BMF such
as network nodes’ service that provide functions bundling
(Markopoulou and E. Anagnostou 1998), encryption key
management (Shu, Lee, and Yannakakis 2006), and frame-
proof codes (Hajiabolhassan and Moazami 2012).

In this setting, our objective is to devise methods to find
exact BMF with minimal or as close to minimal rank as
possible. Since the problem of finding the BMF of mini-
mal rank k is known to be NP-hard (Miettinen et al. 2008),
most existing algorithms in the literature aim to minimize
the rank k without guaranteeing optimality (Asso (Mietti-
nen et al. 2008), GreConD (Belohlavek and Vychodil 2010),
Hyper (Xiang et al. 2011), MEBF (Wan et al. 2020), Nassau
(Karaev, Miettinen, and Vreeken 2015), PaNDa+ (Lucchese,
Orlando, and Perego 2010), Proximus (Koyutürk and Grama
2003), Tiling (Geerts, Goethals, and Mielikäinen 2004)).
However, recent work based on constraint solvers proposed
methods for finding optimal BMF (Kovacs, Gunluk, and
Hauser 2021; Avellaneda and Villemaire 2022). While these
approaches can find optimal factorizations for small matri-
ces only, they can still find low-rank factorization for larger
matrices by using relaxations and approximations. There-
fore, these constraint solver-based methods are more com-
putationally demanding than traditional approaches, but they
generally produce smaller rank BMF. A natural question that
arises is: is it possible to simplify the matrices before factor-
ization in order to make the constraint solving algorithms
run more efficiently?

The idea of simplifying the matrices to be factorized be-
fore performing the factorization is not new and has been in-
troduced in a particular family of BMF algorithms based on
formal concept analysis (Ganter and Wille 2012). A formal
concept corresponds to a pair of lines and columns (I, J)
such that ∀i ∈ I, j ∈ J,Xi,j = 1. Formal concepts are
partially ordered and give rise to a lattice called the concept
lattice. The BMF problem then coincides with the selection

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20632



of a set of formal concepts called concept factors.
Although this representation does not allow missing val-

ues in the matrix to be factorized, it is used by an algorithm
called GreEss (Belohlavek and Trnecka 2015) to locate so-
called “essential entries”. The authors furthermore show that
a BMF covering all the essential entries can be transformed
into a BMF of equivalent rank covering all the entries of the
initial matrix. Although the rank of this factorization is not
optimal for the initial matrix, the gain related to the simplifi-
cation of the matrix allows good execution time and factor-
ization of low rank. This approach has been pushed to the ex-
treme in Iteress (Belohlavek, Outrata, and Trnecka 2019) by
applying this simplification process iteratively until a fixed
point is reached.

We revisit the concept of matrix simplification used in
GreEss and Iteress, but from the perspective of row/column
inclusion. In contrast to previous work, which only apply to
complete 0/1 matrices, we propose a simplification method
that incorporates missing values (don’t care) and allows for
more extensive simplification than Iteress. Furthermore, we
introduce a second line/column inclusion notion that addi-
tionally guarantees that an optimal BMF on the simplified
matrix yields an optimal BMF on the initial matrix.

The BMF problem can be seen as the problem of cover-
ing the matrix’s 1-entries by the so-called blocks. The ratio-
nale for our approach is that reducing the number of 1s in
a matrix will simplify their covering and should generally
lead to BMF speed-ups. In particular, with constraint-based
BMF algorithms, where the presence of 1s in the matrix to
be factorized generate constraints that are harder to satisfy
than missing values or 0s, we show that our simplification
approach can significantly reduce the computational time.

The paper is structured as follows. First, to formalize the
approach, we present definitions related to BMF and intro-
duce the concept of matrix inclusion (Section 2). Then, in
Section 3, we define a simplification operator, which we call
“delegation”, and show how to obtain a BMF on the original
matrix from a BMF on a simplified matrix using the “rel-
egation” operator. Algorithms based on the delegation and
relegation operator are then proposed in Section 4. Finally,
we report the results of several experiments in Section 5.

2 Notation
We denote by Xm×n a Boolean matrix X ∈ {0, 1, ∅}n×m
with m rows, and n columns. We use ∅ to represent missing
data and if X ∈ {0, 1}n×m we say that the matrix X is com-
plete. We also use the notation Xi,j to represent the entry in
the i-th row and the j-th column and the notation Xi,: and
X:,j , to represent the i-th row and the j-th column of X, re-
spectively. We now formally define the Boolean product of
two matrices.

Definition 2.1. The Boolean product of two complete ma-
trices Am×k and Bk×n is a matrix (A ◦ B)m×n defined
by:

(A ◦B)i,j =
k∨

ℓ=1

(Ai,ℓ ∧Bℓ,j)

This definition is similar to the classical matrix product,

where the product is replaced by the logical “AND” and the
addition is replaced by the logical “OR”.

Note that the Boolean product of two rank-k matrices can
also be seen as the union of k rank-1 matrices called blocks:

(A ◦B) =
k∨

ℓ=1

(A:,ℓ ◦Bℓ,:)

where the
∨

operator applies entrywise.
Therefore, the BMF problem corresponds to finding a set

of blocks that cover all the 1s of the matrix and do not cover
any 0s. The idea developed in this paper is that blocks that
cover certain 1s can be “extended” to cover some other spe-
cific 1s. Therefore, the 1s that can be covered by “extending”
these blocks can be ignored and removed from the matrix. To
define these specific 1s, we introduce the concept of matrix
inclusion.
Definition 2.2. A matrix X′m×n is existentially included in
a matrix Xm×n (denoted X′ ≤∃ X) if there is no i, j such
that X′i,j = 1 and Xi,j = 0.

Intuitively, this definition means that it is possible to fill
in the missing values, represented by ∅, in both matrices X
and X′ such that the inequality X′i,j ≤ Xi,j holds true for
all indices i, j.
Definition 2.3. A matrix X′m×n is universally included in a
matrix Xm×n (denoted X′ ≤∀ X) if for all i, j, if Xi,j = 0,
then X′i,j = 0.

Intuitively, this definition means that regardless of how we
fill in the missing values ∅ in X′, we can always find a way
to fill in the missing values ∅ in X such that X′i,j ≤ Xi,j

holds true for all indices i, j.
Definition 2.4. A matrix X′m×n is consistent with a matrix
Xm×n (denoted X′ ≃ X) if X ≤∃ X′ and X′ ≤∃ X.

Intuitively, this definition means that it is possible to fill
in the missing values ∅ in both X and X′ such that for all
i, j, we have X′i,j = Xi,j .
Definition 2.5. Two complete matrices Am×k and Bk×n
are a BMF of the matrix Xm×n if (A ◦B) ≃ X.

3 Transformation Into Sparse Matrices
In this section, we show how to simplify a matrix to be fac-
torized using the “delegation” operator and demonstrate how
to obtain a BMF on the original matrix from a BMF on a
simplified matrix using the “relegation” operator.
Definition 3.1. We denote by Xv↓w the delegation of the line
w to the line v in the matrix X.

Xv↓w
i,j =

{
0 if i = v and Xw,j = 0,
∅ if i = w and Xv,j = 1,

Xi,j otherwise.

Definition 3.2. We denote by Av↑w the relegation of the line
w from the line v in the matrix A.

Av↑w
i,j =

{
1 if i = w and Av,j = 1,

Ai,j otherwise.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20633



We now show that if a line v is existentially included in a
line w, then we can obtain a BMF of the original matrix X
from a BMF A ◦ B on the simplified matrix Xv↓w (Theo-
rem 3.5).

The intuition, illustrated in Figure 1, is as follows. A rank-
k BMF can be seen as the union of k rank-1 BMF, the blocks.
Since each 1 present in the matrix to be factorized must be
covered by at least one block, we can see that if a line v is
included in a line w, then a block covering a 1 on v can also
be extended to cover the line w. Thus, all columns where
there is a 1 on the line v and the line w can be removed
from the line w. However, to ensure that the line v is indeed
included in the line w, we must replace every ∅ from the line
v with zeros if the column j is such that Xw,j = 0.

Figure 1: Delegation Xv↓w in the case where a line v is in-
cluded in a line w.

We now prove this result more formally, using two inter-
mediate propositions.

Proposition 3.3. Let v, w be such that Xv,: ≤∃ Xw,: and
Y be complete. If Y ≃ Xv↓w then Yv↑w ≃ X

Proof. Let Y ≃ Xv↓w. If Yv↑w
i,j , Xi,j take different values

in {0, 1} we either have that Yv↑w
i,j ̸= Yi,j or Xi,j ̸= Xv↓w

i,j .

If Yv↑w
i,j ̸= Yi,j by definition 3.2 we must have i = w,

Yv↑w
w,j = 1 and Yv,j = 1. Since Yv↑w

w,j ̸= Xw,j , it follows
that Xw,j = 0 and by definition 3.1 Xv↓w

v,j = 0, which con-
tradicts Y ≃ Xv↓w.

If Xi,j ̸= Xv↓w
i,j by definition 3.1 we either have that i =

v with Xv↓w
v,j = 0 and Xw,j = 0 or i = w, Xv↓w

w,j = ∅ and
Xv,j = 1.

In the first case, it follows from Xw,j = 0 that Xv,j = 0
since this entry is in {0, 1} by hypothesis and Xv,: ≤∃ Xw,:.
Now Yv↑w

v,j = 1 since it differs from Xv,j . Furthermore,
Yv,j is also 1 since in definition 3.2 line v is left unchanged.
But now Xv↓w

v,j = 0 contradicts Y ≃ Xv↓w.

In the final case, i = w, Xv↓w
w,j = ∅ and Xv,j = 1, we have

from Xv,: ≤∃ Xw,: that Xw,j = 1 and hence Yv↑w
w,j = 0

since these two last values are different and in {0, 1}. Defi-
nition 3.1 yields, from Xw,j = 1, that Xv↓w

v,j = Xv,j = 1.
Now since Yv↑w

w,j = 0 it follows from definition 3.2 that
Yv,j ̸= 1 and is hence 0 but then Yv,j ̸= Xv↓w

v,j contradicts
Y ≃ Xv↓w.

Proposition 3.4. Let A and B be two matrices. Then:

(A ◦B)v↑w = Av↑w ◦B

Proof. By Definition 3.2, the relegation operator only mod-
ifies line w, it hence follows that for i ̸= w, (A ◦B)v↑wi,j =

(A ◦ B)i,j and Av↑w
i,ℓ = Ai,ℓ, hence (Av↑w ◦ B)i,j =

(A ◦B)i,j . Let us now consider the entries on lines i = w.
By Definition 3.2 we have that (A ◦ B)v↑ww,j = 1 exactly

when either (A ◦B)w,j = 1 or (A ◦B)v,j = 1.
Similarly, (A)v↑ww,ℓ = 1 holds exactly when either Aw,ℓ =

1 or Av,ℓ = 1. Furthermore, from Definition 2.1 we have
that (Av↑w◦B)w,j = 1 exactly when Av↑w

w,ℓ = 1 and Bℓ,j =

1 for some ℓ. Combining both, (Av↑w ◦B)w,j = 1 exactly
when either Aw,ℓ = 1 and Bℓ,j = 1 or Av,ℓ = 1 and
Bℓ,j = 1 holds, for some ℓ. This therefore holds exactly
when either (A ◦ B)w,j = 1 or (A ◦ B)v,j = 1 and (A ◦
B)v↑ww,j = (Av↑w ◦B)w,j as required.

Theorem 3.5. Let v, w be such that Xv,: ≤∃ Xw,:. If (A ◦
B) ≃ Xv↓w then (Av↑w ◦B) ≃ X.

Proof. By Proposition 3.3, if (A ◦ B) ≃ Xv↓w then (A ◦
B)v↑w ≃ X. Then, by Proposition 3.4, (Av↑w ◦ B) ≃ X.

Now, let us show that if the line v is universally included
in the line w, then finding an optimal BMF on the original
matrix X is equivalent to finding an optimal BMF on the
simplified matrix Xv↓w (Theorem 3.7). The intuition here is
that if the line v is universally included in the line w, no ∅ of
the line v will have to be changed to 0 during the delegation
operation (see Figure 1). Thus, no assumptions about ∅ will
be made, only reductions of 1s that we know can be covered
by relegation. We prove this theorem using an intermediate
lemma.

Lemma 3.6. Let v, w be such that Xv,: ≤∀ Xw,:. There
exists a k-rank BMF on X if and only if there exists a k-
rank BMF on Xv↓w.

Proof. If (A◦B) ≃ Xv↓w then, since Xv,: ≤∀ Xw,: implies
Xv,: ≤∃ Xw,:, by Theorem 3.5, we know that (Av↑w◦B) ≃
X.

Conversely, if (A ◦B) ≃ X, let us show that (A ◦B) ≃
Xv↓w. By Definition 2.3 Xv,: ≤∀ Xw,: means that for all
j, Xv,j = 0 when Xw,j = 0. Thus, by applying Xv↓w,
the only changes will be the replacement of some 1s by ∅
(Definition 3.1). Thereby, (A ◦B) ≃ Xv↓w.

Theorem 3.7. Let v, w be such that Xv,: ≤∀ Xw,:. (Av↑w ◦
B) is an optimal BMF for X if and only if (A ◦ B) is an
optimal BMF for Xv↓w.

Proof. Direct application of Lemma 3.6.

We now introduce the analogous notions for columns, and
extend the previous properties to the case of column inclu-
sion.

Definition 3.8. We denote Xv→w the delegation of the col-
umn w to the column v in the matrix X.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20634



Xv→w
i,j =

{
0 if j = v and Xi,w = 0,
∅ if j = w and Xi,v = 1,

Xi,j otherwise.

Definition 3.9. We denote Bv←w the relegation of the col-
umn w from the column v in the matrix B.

Bv←w
i,j =

{
1 if j = w and Bi,v = 1,

Bi,j otherwise.

Theorem 3.10. Let v, w be such that X:,v ≤∃ X:,w. If (A ◦
B) ≃ Xv→w then (A ◦Bv←w) ≃ X.

Proof. Similar to Theorem 3.5.

Theorem 3.11. Let v, w such that X:,v ≤∀ X:,w. (A ◦
Bv←w) is an optimal BMF for X if and only if (A ◦ B)
is an optimal BMF for Xv→w.

Proof. Similar to Theorem 3.7.

4 Algorithm
In this section, we leverage the theorems from the previous
section to build a BMF algorithm. This algorithm (Algo-
rithm 2) consists of simplifying the initial matrix using the
delegation operation, applying a BMF algorithm on the sim-
plified matrix, and then transforming this factorization using
the relegation operation to obtain a factorization of the ini-
tial matrix. In the rest of this paper, we say that a matrix
X is universally simplified if we apply this Algorithm 2 to
the matrix X with the operator ∀, and existentially simpli-
fied if we apply this Algorithm 2 to the matrix X with the
operator ∃. To avoid adding unnecessary delegation, the al-
gorithm only applies delegation when at least one 1 entry is
replaced by an ∅. Algorithm 1 therefore first performs the
line delegation each time it detects that a line is included
in a second one and replaces a 1 by a ∅ in a least one col-
umn, then performs the same operation for the column dele-
gation. This process is performed as long as there are lines or
columns that can be delegated. The inclusion detection can
be performed using either universal or existential inclusion,
depending on whether the goal is to preserve the rank of the
original matrix or perform more simplifications.
Example 4.1. Consider the matrix of Figure 2. Line 1 is uni-
versally included in lines 4 and 5 and a delegation of these
two lines to line 1 can be performed, thereby removing six
1s, and replacing them with the emptyset value as shown in
the left matrix of Figure 3. There is no more further univer-
sal simplifications between the lines of this resulting matrix.
For existential simplification, line 1 is also existentially in-
cluded in lines 4 and 5 but now we furthermore have that
line 2 is existentially included in lines 3 and 5. Performing
these existential simplifications yields the further existential
inclusion of line 3 in line 4 and of line 4 in line 3. Performing
the first of these two last existential simplifications leads to
the right matrix in Figure 3. There is then no more existential
simplifications to apply.

Note that the simplified matrix we obtain will depend on
the order in which the delegations are made. After perform-
ing all the line delegations, the algorithm delegates columns,

leading to the matrices in Figure 4. From this example,
we see that the existentially simplified matrix has fewer 1-
entries (3) than the universally simplified matrix (7), which
should yield a simpler BMF problem. However, as seen be-
fore, the minimum rank on the universally simplified matrix
is guaranteed to be the same as the minimum rank of the
initial matrix, while this is not necessarily the case for the
existential simplification.


j1 j2 j3 j4 j5 j6

i1 0 0 1 1 0 1
i2 1 1 0 ∅ ∅ 1
i3 1 1 ∅ 0 1 1
i4 0 0 1 1 1 1
i5 1 1 1 1 0 1


Figure 2: Example of a Boolean matrix to factorize.


0 0 1 1 0 1
1 1 0 ∅ ∅ 1
1 1 ∅ 0 1 1
0 0 ∅ ∅ 1 ∅
1 1 ∅ ∅ 0 ∅



0 0 1 1 0 1
1 1 0 0 0 1
0 0 ∅ 0 1 ∅
0 0 ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ 0 ∅


Figure 3: Matrix from Figure 2 after applying Xv↓w for ev-
ery Xv,: ≤∀ Xw,: at left and for every Xv,: ≤∃ Xw,: at
right.


0 0 1 1 0 ∅
1 ∅ 0 ∅ ∅ ∅
1 ∅ ∅ 0 1 ∅
0 0 ∅ ∅ 1 ∅
1 ∅ ∅ ∅ 0 ∅



0 0 1 ∅ 0 ∅
1 ∅ 0 0 0 ∅
0 0 0 0 1 ∅
0 0 ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ 0 ∅


Figure 4: Left matrix from Figure 3 after applying Xv→w for
every X:,v ≤∀ X:,w at left and right matrix from Figure 3
for every X:,v ≤∃ X:,w at right.

Theorem 4.2. Algorithm 2 is correct, i.e., it correctly pro-
duces a BMF of Matrix X and this for both values OP ∈
{∃, ∀}.

Proof. First, Algorithm 1 applies delegation (both on lines
and columns) in a greedy fashion by stacking the applied
delegations in LIFO Delegation. The resulting matrix and
delegation LIFO are then affected in X′ and Delegation in
line 2 of Algorithm 2. Algorithm 2 then proceeds to relegate
in the inverse order of the delegations, which by an iterative
use of Theorems 3.5 and 3.10 yields a BMF of the original
matrix X.

Theorem 4.3. Algorithm 2 with OP = ∀ returns an optimal
BMF whenever the BMF routine returns optimal BMF.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20635



Algorithm 1: SimpliOP

1: Input: Matrix X, OP ∈ {∃, ∀}
2: Delegation← LIFO()
3: repeat
4: noChange← true
5: while ∃v, w, j such that Xv,: ≤OP Xw,: and Xv,j =

Xw,j = 1 do
6: X← Xv↓w

7: Delegation.push(v ↓ w)
8: noChange← false
9: end while

10: while ∃v, w, i such that X:,v ≤OP X:,w and Xi,v =
Xi,w = 1 do

11: X← Xv→w

12: Delegation.push(v → w)
13: noChange← false
14: end while
15: until noChange is true
16: return X, Delegation

Algorithm 2: BMF through simplified matrix

1: Input: Matrix X, OP ∈ {∃, ∀}
2: X′, Delegation← SimpliOP (X)
3: A,B← BMF (X′)
4: while Delegation is not empty do
5: if (v ↓ w)← Delegation.pop() then
6: A← Av↑w

7: end if
8: if (v → w)← Delegation.pop() then
9: B← Bv←w

10: end if
11: end while
12: return A,B

Proof. The analysis proceeds as in the proof of Theorem 4.2
expect that Lemma 3.6 guarantees that the rank of the matrix
after a universal simplification remains identical to the rank
of the initial matrix. Therefore, an optimal BMF algorithm
will find a factorization of this rank for the simplified ma-
trix, and since the relegation operation does not increase the
rank of the factorization, it will find an optimal BMF for the
initial matrix.

5 Experimentation
Our algorithms were implemented in C++1, and we per-
formed the experiments on an Intel® Gold 6148 Skylake
processor using a single thread and 32 Go of RAM.

We conducted an evaluation of our methods, Simpli∃ and
Simpli∀, focusing on two key aspects: the degree of sim-
plification they achieve and their effect on the time savings
when performing factorizations on the simplified matrices
using existing constraint-based BMF solvers. We first eval-
uated the performance of our methods on well-established
datasets from the literature and then on synthetic datasets.

1https://github.com/FlorentAvellaneda/Delegation BMF

5.1 Classic Medium Datasets

We considered 31 classic datasets from the litera-
ture, namely: “Audiology”, “Autism”, “Balance Scale”,
“Brest Cancer”, “Car Evaluation”, “Chess”, “Contracep-
tive Method Choice”, “Dermatology”, “Firewall”, “Solar
Flare”, “Heart Disease”, “Hepatitis”, “Iris”, “Lymphogra-
phy”, “Mushroom”, “Nursery”, “Website Phishing”, “Soy-
bean”, “Student Performance”, “Thoracic Surgery”, “Tic-
Tac-Toe Endgame”, “Primary Tumor”, “Voting Records”,
“Wine”, “Zoo” from UCI (Kelly, Longjohn, and Nottingham
2023), “Americas-small”, “Apj”, “Customer” from (Ene
et al. 2008), “DNA” from (Myllykangas et al. 2006) and
“Paleo” from (Žliobaitė et al. 2023).

To evaluate the degree of simplification provided by our
method, we compared the number of 1s present in the initial
matrix with the number of 1s remaining after applying our
algorithms Simpli∃ and Simpli∀. We then compared these
results with the only matrix simplification algorithm from
the literature, Iteress.

As shown in Table 1, our method Simpli∃ consistently
produces simplified matrices with fewer 1s compared to the
simplified matrices obtained by Iteress. In regards to the sec-
ond algorithm, even though Simpli∀ performs only simplifi-
cations that do not increase the rank of the matrix, it still
generally produces matrices with fewer 1s compared to the
simplified matrices obtained by Iteress.

To evaluate the impact of these simplifications, we com-
pared the performance of two constraint-based BMF solvers:
CG (Kovacs, Gunluk, and Hauser 2021) and OptiBlock
(Avellaneda and Villemaire 2022). CG is an algorithm based
on a Mixed-Integer Programming (MIP) solver that uses
a column generation approach, while OptiBlock uses a
MaxSAT solver. We set a time limit of 3 hours and recorded
the execution time and rank found for CG in Table 1 and
for OptiBlock in Table 2. We present results for both solvers
using the original matrix and using the matrix simplified by
Iteress, Simpli∀, and Simpli∃0 . The approach Simpli∃0 con-
sists of replacing empty values with zeros in the simplified
matrix obtained by Simpli∃. While this additional simpli-
fication could theoretically lead to a degradation in matrix
rank, practical observations indicate that such rank degrada-
tion is rare. Furthermore, this step often leads to a reduction
in the time required to factorize the simplified matrix.

In Table 1, an asterisk indicates instances where optimal-
ity is proven, meaning that CG reports an optimal factor-
ization on a matrix that retains the same rank as the initial
matrix. While CG manages to report the optimal BMF for
5 out of 31 datasets using the original matrices, using the
Simpli∀ simplification increases this number to 11 out of 31
datasets. Moreover, the use of Simpli∀ never degrades the
rank of the obtained factorizations and improves it for 6 of
the datasets. While finding an optimal BMF when CG is ap-
plied to the matrix simplified by Simpli∃0 is not guaranted,
we observe that the rank of the BMF obtained is the best for
29 out of 31 datasets. Moreover, the computation times are
frequently and significantly reduced, often by several orders
of magnitude. Note that for some datasets the value “–” is
present for Iteress, corresponding to the fact that Iteress is

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20636



DATASET CHARACTERISTICS # ONES AFTER SIMPLIFY BMF WITH CG : TIME (RANK)

SIZE # ONES ITERESS SIMPLI∀ SIMPLI∃ ORIGINAL ITERESS SIMPLI∀ SIMPLI∃0

ADVERT. 3279×1557 45139 5941 3942 705 3h (1556) 3h (1596) 3h (1556) 3h (704)
AMERIC. 3477×1587 105205 49980 396 187 3h (1521) 3h (1251) 3h (299) 2m (187)
APJ 2044×1164 6841 2946 503 453 3h (1148) 3h (1133) 3h (497) 20m (453)
AUDIO 200×310 2333 225 200 200 3h (200) 2m (200) 3m (200*) 2m (200)
AUTISM 704×155 6832 – 5702 1776 3h (154) – 3h (154) 50m (154)
BALANCE 625×23 3125 3125 3125 3125 20m (23*) 20m (23) 20m (23*) 20m (23)
BREAST 699×90 6516 – 4153 4149 3h (90) – 3h (90) 3h (90)
CAR 1728×25 12096 11071 11071 11071 1h (25*) 30m (25) 3h (25*) 30m (25)
CHESS 3196×39 25582 368 780 38 3h (38) 1s (38) 20m (38*) 1s (38)
CMC 1473×71 11009 9992 10179 9573 3h (71) 3h (71) 3h (71) 3h (71)
CUSTOM. 10961×277 45427 2771 1442 276 3h (277) 6m (276) 3h (277) 3m (276)
DERMAT. 366×194 12482 – 6823 6164 3h (194) – 1h (194) 3h (187)
DNA 4590×392 26527 1556 539 367 1m (392) 3h (368) 3h (384) 5m (367)
FIREWA. 365×709 31951 2744 88 65 3h (64) 9m (65) 1h (64*) 1s (65)
FLARE 1066×43 9283 2928 1950 428 2m (43) 3h (42) 1h (42*) 3h (42)
HEART 270×382 3036 325 1459 270 3h (270) 9m (270) 3h (270) 9m (270)
HEPATI. 155×337 1377 – 1027 154 3h (154) – 3h (154) 10s (154)
IRIS 150×126 750 502 515 486 10m (121*) 8m (121) 10m (121*) 9m (121)
LYMPH 148×54 1823 1288 1543 1283 3h (52) 20m (53) 3h (52*) 40m (53)
MUSH. 8124×54 124768 – 1654 51 3h (54) – 2h (51) 1s (51)
NURSERY 12960×31 110160 61196 59480 53001 3h (30) 3h (30) 3h (30) 3h (30)
PALEO 501×139 3537 284 1853 139 3h (139) 1s (139) 3h (139) 1s (139)
PHISHI. 1353×26 11507 8430 4856 4466 3h (26) 3h (26) 3h (26) 6m (26)
SOYBEAN 307×100 6315 – 3354 2909 1h (99) – 20m (90) 3h (88)
STUDENT 395×176 9254 8488 8517 8470 3h (176) 3h (176) 3h (176) 3h (176)
THORAC. 470×340 3376 2373 2439 2310 3h (304) 3h (304) 3h (304) 3h (304)
TICTAC. 958×28 8954 8954 8954 8954 3h (28) 3h (28) 3h (28) 3h (28)
TUMOR 339×44 2136 – 1099 107 40m (44*) – 20m (44*) 2h (44)
VOTES 435×17 2961 – 381 17 90m (17*) – 3h (17*) 1s (17)
WINE 178×1279 2492 816 190 178 3h (178) 20s (178) 4m (178*) 20s (178)
ZOO 101×28 640 85 108 25 3h (25) 1s (25) 3h (25*) 1s (25)

Table 1: Characteristics of the datasets used, comparison of the number of 1s after simplification across different algorithms and
time required to find a BMF with CG. Bolded values indicate the best performance, and underlined values indicate the second
best performance. The asterisk signifies that the tool was able to prove the optimality of the rank.

not able to factorize incomplete matrices.
In Table 2, we notice that no asterisk is present since

OptiBlock is not capable of proving the optimality of the
found factorizations. Similar to the previous result with CG,
we observe that the use of Simpli∀ and Simpli∃0 improves
the rank of the BMF found by OptiBlock. If we compare
the rank of the BMF and, in the case of equality, the reso-
lution times, OptiBlock applied to matrices simplified with
Simpli∃0 gave the best results in 25 out of the 31 datasets.

5.2 Synthetic Datasets
In this second experiment, we reused the protocol used by
GreEss (Belohlavek and Trnecka 2015), the ancestor of Iter-
ess. In their protocol, the authors created synthetic matri-
ces of size 1000 × 500 with four different levels of density
(0.1, 0.2, 0.3, and 0.4) and three different levels of rank (20,
30, and 40). Based on the same protocol, we compared our
two algorithms Simpli∃ and Simpli∀ to Iteress. Note that we
have not included GreEss because Iteress, which uses the

same method iteratively, performs more simplifications than
GreEss.

As shown in Table 3, the results indicate that Simpli∃ con-
sistently finds the best simplification with lowest number of
1-entries, Simpli∀ generally finds the second-best simplifi-
cation, and Iteress generally finds a simplification with more
1-entries compared to the other two algorithms. Note that in
our experiment, Simpli∃ almost always finds minimal sim-
plifications, i.e., containing only k 1s for matrices of rank k.
Indeed, since a k-rank BMF can be viewed as the union of
k 1-rank BMF, a matrix of rank k containing k 1s cannot be
further simplified and its factorization is trivial.

To quantify how these simplifications, in terms of the
number of 1s removed from the original matrix, affect the
performance of constraint-based BMF algorithms, we used
the UndercoverBMF tool (Avellaneda and Villemaire 2022)
with the “--optimal” option to find optimal BMF.

Table 3 shows the time used by this tool to find and guar-
antee an optimal BMF from the original and the universally

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20637



DATA BMF WITH OPTIBLOCK : TIME (RANK)

ORIGINAL SIMPLI∀ ITERESS SIMPLI∃0

ADV. 3h (794) 3h (749) 3h (711) 3h (703)
AME. 3h (216) 3h (188) 1h (189) 1h (187)
APJ 3h (474) 3h (453) 2h (453) 2h (453)
AUD. 30m (200) 1m (200) 1m (200) 1m (200)
AUT. 3m (154) 3m (154) – 1m (154)
BAL. 1s (23) 1s (23) 1s (23) 1s (23)
BRE. 10s (90) 1m (90) – 30s (90)
CAR 3s (25) 3s (25) 3s (25) 3s (25)
CHE. 1m (38) 20s (38) 10s (38) 10s (38)
CMC 40s (71) 40s (71) 20s (71) 20s (71)
CUS. 3h (282) 2h (277) 1h (276) 1h (276)
DER. 17m (189) 17m (184) – 6m (192)
DNA 3h (497) 3h (373) 1h (368) 1h (367)
FIRE. 2m (64) 1m (64) 30s (65) 30s (65)
FLA. 14s (42) 14s (42) 4s (42) 4s (42)
HEA. 90m (270) 90m (270) 2m (270) 2m (270)
HEP. 9m (154) 7m (154) – 20s (154)
IRIS 10s (121) 10s (122) 10s (122) 20s (122)
LYM. 5s (54) 6s (54) 3s (55) 3s (54)
MUS. 20m (51) 3m (51) – 1m (51)
NUR. 40s (30) 40s (30) 90s (30) 40s (30)
PAL. 4m (139) 2m (139) 30s (139) 30s (139)
PHI. 10s (26) 5s (26) 5s (26) 5s (26)
SOY. 2m (84) 1m (85) – 1m (88)
STU. 6m (176) 6m (176) 5m (177) 4m (176)
THO. 10m (304) 20m (306) 20m (306) 20m (305)
TIC. 3s (28) 3s (28) 3s (28) 3s (28)
TUM. 4s (44) 3s (44) – 1s (44)
VOT. 2s (17) 1s (17) – 1s (17)
WIN. 6m (178) 2m (178) 2m (178) 2m (178)
ZOO 1s (25) 1s (25) 1s (25) 1s (25)

Table 2: Characteristics of the datasets used, comparison of
the number of 1s after simplification across different algo-
rithms and time required to find a BMF with OptiBlock.
Bolded values indicate the best performance, and underlined
values indicate the second best performance.

simplified datasets. We did not use the existentially simpli-
fied dataset since the simplifications made in this case no
longer guarantee finding a minimal rank factorization. We
observed that the simplification obtained by the universal
simplification improved the computation time of this con-
straint solver by several orders of magnitude. Note that when
CG replaces optimal UndercoverBMF, the results remain
similar: for universally simplified matrices, CG identifies
optimal BMF within seconds for k = 20, within minutes
for k = 30, and within few dozen minutes for k = 40. How-
ever, after 3 hours, no solution is found for k = 40 with
a density of 0.4. And when the matrix is not simplified, no
proof of optimality is obtained after 3 hours of computation.

This experiment showed that for matrices of low rank, our
approach allowed us to find optimal BMF, even if the size of
the matrix to be factorized is large.

DENS NUMBER OF REMAINING 1S BMF

SIMPLI∃ SIMPLI∀ ITERESS OPT∀ OPT

K=20
0.1 20 20 3218 4s 5m
0.2 20 20 1561 4s 14m
0.3 20 20 796 3s 20m
0.4 20 20 343 2s 30m

K=30
0.1 30 30 1525 1m 2h
0.2 30 30 550 4m 1h
0.3 30 188 584 8m 1h
0.4 36 2856 1324 4m 2h

K=40
0.1 40 72 1011 11m –
0.2 40 259 669 54m –
0.3 40 512 513 3h –
0.4 57 9029 5292 – –

Table 3: Number of ones present in a synthetic matrix af-
ter simplification and time to find an optimal BMF from the
original and simplified matrices. Bolded values indicate the
best performance, and underlined values indicate the second
best performance.

6 Conclusion
This paper has addressed the problem of BMF by exploring
the potential of matrix simplification before factorization to
reduce the time required by existing constraint-based BMF
algorithms.

We introduced two methods to simplify Boolean matri-
ces before factorization by replacing specific 1-entries in the
matrix with missing values. The central idea is that these
simplifications allow for an easy translation from a BMF
on the simplified matrix to a BMF on the original matrix.
The first method, existential simplification (Simpli∃), can
perform numerous simplifications, but does not ensure that
the rank of the simplified matrix matches the rank of the
original matrix. The second method, universal simplifica-
tion (Simpli∀), performs fewer simplifications, but guaran-
tees that an optimal BMF on the simplified matrix results in
an optimal BMF on the original matrix.

The benefits of our approach were quantified through ex-
periments. First, our methods effectively reduced the num-
ber of 1s in the matrices to be factorized, regardless of
whether they come from real or synthetic datasets. Second, a
significant reduction in computational time was observed for
factorizations on simplified matrices compared to the orig-
inal matrices. Third, the simplification of matrices not only
improved the computation time, but also allowed heuristics
to discover lower-rank factorizations. This result can be at-
tributed to the reduction of the search space due to simplifi-
cation. Finally, our method demonstrated the ability to iden-
tify optimal rank factorizations for ranks up to several dozen,
even with large matrices.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20638



Acknowledgements
We gratefully acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada
(NSERC), [funding reference number RGPIN-2023-04468
and RGPIN-2023-04557].

References
Avellaneda, F.; and Villemaire, R. 2022. Undercover
Boolean Matrix Factorization with MaxSAT. Proceedings
of the AAAI Conference on Artificial Intelligence, 36(4):
3672–3681.
Belohlavek, R.; Outrata, J.; and Trnecka, M. 2019. Factor-
izing Boolean matrices using formal concepts and iterative
usage of essential entries. Information Sciences, 489: 37–49.
Belohlavek, R.; and Trnecka, M. 2015. From-below approx-
imations in Boolean matrix factorization: Geometry and new
algorithm. Journal of Computer and System Sciences, 81(8):
1678–1697.
Belohlavek, R.; and Vychodil, V. 2010. Discovery of op-
timal factors in binary data via a novel method of matrix
decomposition. Journal of Computer and System Sciences,
76(1): 3–20.
Ene, A.; Horne, W.; Milosavljevic, N.; Rao, P.; Schreiber,
R.; and Tarjan, R. E. 2008. Fast exact and heuristic meth-
ods for role minimization problems. In Proceedings of the
13th ACM symposium on Access control models and tech-
nologies, 1–10.
Ganter, B.; and Wille, R. 2012. Formal concept analysis:
mathematical foundations. Springer Science & Business
Media.
Geerts, F.; Goethals, B.; and Mielikäinen, T. 2004. Tiling
databases. In International conference on discovery science,
278–289. Springer.
Hajiabolhassan, H.; and Moazami, F. 2012. Secure frame-
proof codes through biclique covers. Discrete Mathematics
& Theoretical Computer Science, Vol. 14 no. 2.
Hashemi, S.; Tann, H.; and Reda, S. 2018. BLASYS: Ap-
proximate logic synthesis using Boolean matrix factoriza-
tion. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 1–6. IEEE.
Karaev, S.; Miettinen, P.; and Vreeken, J. 2015. Getting to
know the unknown unknowns: Destructive-noise resistant
boolean matrix factorization. In Proceedings of the 2015
SIAM International Conference on Data Mining, 325–333.
SIAM.
Kelly, M.; Longjohn, R.; and Nottingham, K. 2023. The UCI
Machine Learning Repository.
Kocayusufoglu, F.; Hoang, M. X.; and Singh, A. K. 2018.
Summarizing network processes with network-constrained
Boolean matrix factorization. In 2018 IEEE International
Conference on Data Mining (ICDM), 237–246. IEEE.
Kovacs, R. A.; Gunluk, O.; and Hauser, R. A. 2021. Binary
matrix factorisation via column generation. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(5): 3823–
3831.

Koyutürk, M.; and Grama, A. 2003. PROXIMUS: a frame-
work for analyzing very high dimensional discrete-attributed
datasets. In Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
147–156.
Liang, L.; Zhu, K.; and Lu, S. 2020. BEM: mining coregu-
lation patterns in transcriptomics via boolean matrix factor-
ization. Bioinformatics, 36(13): 4030–4037.
Lucchese, C.; Orlando, S.; and Perego, R. 2010. Mining
top-k patterns from binary datasets in presence of noise. In
Proceedings of the 2010 SIAM International Conference on
Data Mining, 165–176. SIAM.
Ma, J.; Hashemi, S.; and Reda, S. 2022. Approximate Logic
Synthesis Using Boolean Matrix Factorization. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, 41(1): 15–28.
Markopoulou, A. P.; and E. Anagnostou, M. 1998. Optimal
grouping of components in a distributed system. Computer
Communications, 21(16): 1452–1461.
Miettinen, P.; Mielikäinen, T.; Gionis, A.; Das, G.; and Man-
nila, H. 2008. The discrete basis problem. IEEE transactions
on knowledge and data engineering, 20(10): 1348–1362.
Miettinen, P.; and Neumann, S. 2020. Recent Developments
in Boolean Matrix Factorization. In Bessiere, C., ed., Pro-
ceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, 4922–4928. ijcai.org.
Myllykangas, S.; Himberg, J.; Böhling, T.; Nagy, B.;
Hollmén, J.; and Knuutila, S. 2006. DNA copy number am-
plification profiling of human neoplasms. Oncogene, 25(55):
7324–7332.
Shu, G.; Lee, D.; and Yannakakis, M. 2006. A note on
broadcast encryption key management with applications to
large scale emergency alert systems. In IEEE International
Parallel & Distributed Processing Symposium, 8 pp.–.
Wan, C.; Chang, W.; Zhao, T.; Li, M.; Cao, S.; and Zhang, C.
2020. Fast and efficient boolean matrix factorization by ge-
ometric segmentation. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(04): 6086–6093.
Wicker, J.; Pfahringer, B.; and Kramer, S. 2012. Multi-label
classification using boolean matrix decomposition. In Pro-
ceedings of the 27th annual ACM symposium on applied
computing, 179–186.
Xiang, Y.; Jin, R.; Fuhry, D.; and Dragan, F. F. 2011. Sum-
marizing transactional databases with overlapped hyperrect-
angles. Data Mining and Knowledge Discovery, 23(2): 215–
251.
Žliobaitė, I.; Fortelius, M.; Bernor, R. L.; Van den Hoek Os-
tende, L. W.; Janis, C. M.; Lintulaakso, K.; Säilä, L. K.;
Werdelin, L.; Casanovas-Vilar, I.; Croft, D. A.; et al. 2023.
The NOW database of fossil mammals. In Evolution of
Cenozoic Land Mammal Faunas and Ecosystems: 25 Years
of the NOW Database of Fossil Mammals, 33–42. Springer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20639


