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Abstract

Causal DAGs (also known as Bayesian networks) are a pop-
ular tool for encoding conditional dependencies between ran-
dom variables. In a causal DAG, the random variables are
modeled as vertices in the DAG, and it is stipulated that ev-
ery random variable is independent of its non-descendants
conditioned on its parents. It is possible, however, for two
different causal DAGs on the same set of random variables
to encode exactly the same set of conditional dependencies.
Such causal DAGs are said to be Markov equivalent, and
equivalence classes of Markov equivalent DAGs are known
as Markov Equivalent Classes (MECs). Beautiful combina-
torial characterizations of MECs have been developed in the
past few decades, and it is known, in particular that all DAGs
in the same MEC must have the same “skeleton” (underlying
undirected graph) and v-structures (induced subgraph of the
form a→ b← c).
These combinatorial characterizations also suggest several
natural algorithmic questions. One of these is: given an undi-
rected graph G as input, how many distinct Markov equiva-
lence classes have the skeleton G? Much work has been de-
voted in the last few years to this and other closely related
problems. However, to the best of our knowledge, a polyno-
mial time algorithm for the problem remains unknown.
In this paper, we make progress towards this goal by giving
a fixed parameter tractable algorithm for the above problem,
with the parameters being the treewidth and the maximum
degree of the input graph G. The main technical ingredient
in our work is a construction we refer to as shadow, which
lets us create a “local description” of long-range constraints
imposed by the combinatorial characterizations of MECs.

Introduction
Graphical models provide frameworks for concisely describ-
ing conditional independence constraints between subsys-
tems of a larger system. Due to their generality, they find
applications in several areas, and have also been studied ex-
tensively from a theoretical point of view.

In this paper, our focus is on a specific type of graphi-
cal model: namely directed acyclic graphical (DAG) mod-
els or Bayesian networks. Here, a probability distribution
over a set of random variables V is said to satisfy a DAG
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Figure 1: Markov equivalent DAGs and MECs with the same
skeleton. D1, D2, and D3 are Markov equivalent, while D4

is not equivalent to D1, D2, and D3. The MEC M1 =
{D1, D2, D3} contains D1, D2 and D3, and its graphical
representation is the union of D1, D2, and D3. The MEC M2

contains only D4, and its graphical representation matches
D4. The MECs M1 and M2 share G as their skeleton, and
in fact are the only MECs with skeleton G. Both M1 and
M2 entail a conditional independence relation of the form
B ⊥ C | S, where in M1, S = {A}, and in M2, S = ∅.

G with vertices V if and only if for every w in V , w is in-
dependent of the set of all its non-descendants conditional
on the set of its parents (x is a parent of y in G if x → y
is in G). The set of probability distributions that satisfy G is
denoted Markov(G). Further, for disjoint A,B, S ⊆ V , G
is said to entail that A is independent of B given S (writ-
ten G |= A ⊥ B|S) if and only if A is independent of B
given S in every probability measure in Markov(G). Two
DAGs are said to be Markov equivalent if both entail the
same set of such conditional independence relations. Verma
and Pearl (1990) gave an elegant graphical characterization
of this equivalence: two DAGs are Markov equivalent if and
only if they have the same skeleton (underlying undirected
graph) and the same set of v-structures (induced subgraphs
of the form a → b ← c). DAGs that are Markov equivalent
to each other are said to belong to the same Markov equiva-
lence class (MEC) (see fig. 1).

As an MEC consists of Markov equivalent DAGs, it
uniquely represents the set of conditional independence rela-
tions represented by the DAGs it contains and is graphically
represented by a partially directed graph which is the graph-
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ical union of the DAGs it contains. We treat an MEC and
its graphical representation as the same. Since all the DAGs
that belong to an MEC have the same skeleton and the same
set of v-structures, an MEC is determined by its skeleton
and the set of v-structures it contains. Andersson, Madigan,
and Perlman (1997) gave a necessary and sufficient condi-
tion for a partially directed graph to be an MEC (see Theo-
rem 1 below). Meek (1995) formulated rules to construct an
MEC based on knowledge about the conditional indepen-
dence relations among random variables. For a set of con-
ditional independence relations involving a set of random
variables V and represented by an MEC M , Meek (1995,
p. 3) also showed that two random variables A and B are
non-adjacent in the skeleton of M if and only if there exists
S ⊆ V \ {A,B} such that M entails that A ⊥ B | S.

This implies that two MECs M1 and M2 sharing the same
skeleton entail sets of conditional independence relations
M1 and M2, respectively, which have the following im-
portant relation:M1 contains a conditional independent re-
lation indicating that A is independent of B given some
S1 ⊆ V \ {A,B} if and only if M2 also contains a con-
ditional independence relation signifying that A is indepen-
dent of B given some S2 ⊆ V \ {A,B} (S1 are S2 may
not be same). In other words, MECs with the same skeleton
can be related by an equivalence relation that has not just a
graphical representation (i.e., that they have the same under-
lying undirected graph), but also a natural statistical one (the
one given above).

This connection between MECs with the same skeleton
motivates the problem of understanding this class. In partic-
ular, a natural question to ask is: how many MECs are in this
class?

Our Contributions We now formalize the problem out-
lined above. Our input consists of a connected undirected
graph G with n nodes. Our objective is to determine the
count of MECs that have G as their skeleton. The primary
contribution of this paper is the introduction of a fixed-
parameter tractable (FPT) algorithm. This algorithm, when
given an undirected graph G, computes the number of MECs
whose skeletons match G. The algorithm’s parameters are
the degree and the treewidth of the input undirected graph.
(An algorithm is said to be FPT with respect to a parameter
if there is a constant c and a computable function f such that
the algorithm’s runtime on instances of size n for which the
value of the parameter is k is bounded above by f(k)·nc: the
crucial point here is that the degree of the polynomial in n
does not depend upon the parameter k (Cygan et al. 2015).)
Our main result presents an algorithm capable of counting
the MECs associated with an input undirected graph G with
n nodes and having a degree of δ and a treewidth of k. This
counting can be achieved in O(n(2O(k4δ4) + n2)) time. Im-
portantly, the runtime of our algorithm remains polynomi-
ally bounded when the parameters δ and k are both bounded
above by constants. As an illustrative example, our algo-
rithm demonstrates polynomial runtime for tree graphs with
bounded degrees.

As of now, we do not know the precise computational
complexity of this problem, and we consider our result as a

first step towards a complete resolution of this question. This
mirrors the situation of the problem of counting DAGs of an
MEC, where initially an algorithm that was exponential in
the degree of the graph was given by Ghassami et al. (2019)
and then improved by Talvitie and Koivisto (2019) who gave
a fixed parameter tractable algorithm for the problem. Fi-
nally, a polynomial algorithm was provided by Wienöbst,
Bannach, and Liśkiewicz (2021). We hope that the tech-
niques introduced in our paper will be useful in the further
study for the problem.

Related Work The problem of counting MECs with a
given number of nodes (instead of a skeleton) has received
extensive attention in the literature. Gillispie and Perlman
(2001) developed a computer program for computing the
number of MECs with n nodes. Gillispie and Perlman
(2002) created a computer program to enumerate Markov
equivalence classes, studying class size distributions and the
number of edges for graphs up to 10 vertices. They also ob-
served that the ratio of DAGs to the number of MECs seems
to asymptotically converge to around 3.7. Steinsky (2003)
presented a recursive formula for counting Markov equiva-
lence classes of size 1. Gillispie (2006) provided a recursive
algorithm for counting MECs of any size. He, Jia, and Yu
(2013) analyze the set of MECs with n nodes by construct-
ing a Markov chain on the space of MECs and show that
most edges of an MECs are directed. More recently, Schmid
and Sly (2022) show that the expected ratio of the number
of DAGs and the number of MECs approaches a positive
constant when the number of nodes goes to infinity.

All of the previous results focused on the class of MECs
with a given number of nodes, and not with a given skeleton.
Radhakrishnan, Solus, and Uhler (2016) considered instead
the problem of counting MECs with a given skeleton. They
classified MECs based on the number of v-structures present
and derived a generating function for counting MECs. They
experimentally demonstrated that the generating function
varies for graphs with the same number of vertices. In
subsequent work, Radhakrishnan, Solus, and Uhler (2018)
delved further into the problem of counting MECs with the
same skeleton. They explored generating functions for spe-
cific graph structures (e.g., path graphs, cycle graphs, star
graphs, and bi-star graphs) and provided tight lower and up-
per bounds for the number of MECs in any tree.

We are not aware of any progress on the problem of count-
ing MECs for general graphs, and to the best of our knowl-
edge, this paper is the first to introduce a fixed-parameter
tractable algorithm for this problem.

Preliminaries
In this paper, we adopt mostly the terminology and nota-
tion introduced by Andersson, Madigan, and Perlman (1997)
and Diestel (2005). We defer details of standard terminology
about chain graphs and tree decompositions to the supple-
mentary material1. Additionally, all omitted proofs can be
found in the supplementary material .

1The supplementary material is available at
https://arxiv.org/abs/2310.04218.
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Figure 2: Strongly protected u→ v.

Markov Equivalence Class. A causal DAG encodes a set
of conditional independence relations between random vari-
ables represented by its vertices. Two DAGs are said to be-
long to the same Markov equivalence class (MEC) if both
encode the same set of conditional independence relations.
Verma and Pearl (1990) showed that two DAGs are in the
same MEC if, and only if, both have (i) the same skeleton
and (ii) the same set of v-structures. An MEC can be rep-
resented by the graph union of all DAGs in it. Andersson,
Madigan, and Perlman (1997) give the following necessary
and sufficient conditions for a graph to be an MEC.

Theorem 1. (Andersson, Madigan, and Perlman 1997) A
graph G is an MEC if, and only if,

1. G is a chain graph.
2. For every chain component τ of G, Gτ is chordal, i.e.,

every undirected connected component of G is chordal.
3. The configuration a→ b−c does not occur as an induced

subgraph of G.
4. Every directed edge u → v ∈ G is strongly protected in

G, i.e., u → v is a part of at least one of the subgraphs
of G as shown in fig. 2.

With a slight abuse of terminology, we equate the chain
graph with chordal components that represent an MEC with
the MEC itself, and refer to both as an “MEC”.

Definition 2 (Partial MEC). A graph M is identified as
a partial MEC if it meets these conditions: it is a chain
graph, its undirected connected components are chordal, and
it lacks subgraphs in the form of u → v − w. In essence, a
partial MEC follows conditions 1, 2, and 3 of Theorem 1.
It’s worth noting that every MEC is a partial MEC, and a
partial MEC adhering to condition 4 is an MEC.

The notion of partial MEC has been studied earlier, for
example, by Van Der Zander and Liskiewicz (2016).

Notation 3. Let G = (V,E) be a graph, where V denotes
the vertex set and E ⊆ V × V is the edge set. For any
vertices u and v in V , if both (u, v) and (v, u) are in E,
we denote an undirected edge between u and v as u − v. If
only (u, v) is in E (and (v, u) is not), we indicate a directed
edge from u to v as u → v. We use VG to represent the
set of vertices in graph G and EG as its edge set. We say
that an MEC M is an MEC of an undirected graph G if
skeleton(M) = G. Similarly, we say a partial MEC M is a

partial MEC of an undirected graph G if skeleton(M) = G.
For an undirected graph G, we denote by MEC(G) the set
of MECs of G, and by PMEC(G) the set of partial MECs of
G. We denote the collection of v-structures in G as V(G).
For an undirected graph G, we denote by N(X,G) the set
of neighbors of nodes in X in G.

Paths. For a graph G, a sequence P =
(u1, u2, . . . , ul−1, ul) of distinct vertices u1 to ul is
said to be a path from u1 to ul if, for all 1 ≤ i < l, either
ui − ui+1 ∈ EG or ui → ui+1 ∈ EG. The number of
edges in the path is referred to as the length of the path (the
length of P above is l − 1). P is considered an undirected
path of G if, for all 1 ≤ i < l, ui − ui+1 ∈ EG. If the
path contains directed edges, it is termed a directed path
of G. A path P = (u1, u2, . . . , ul−1, ul) is considered
a chordal path of G if there is no edge in G between
any two non-adjacent nodes of P . In other words, for
1 ≤ i < j ≤ l, if j ̸= i+ 1, then neither ui − uj ∈ EG, nor
ui → uj ∈ EG, nor uj → ui ∈ EG. For a graph G, a path
P = (u1, u2, . . . , ul−1, ul) is defined as a triangle-free path
of G if there is no edge between the two adjacent nodes of
any node ui in P . More formally, for any 2 ≤ i ≤ l − 1,
neither ui−1 − ui+1 ∈ EG, nor ui−1 → ui+1 ∈ EG, nor
ui+1 → ui−1 ∈ EG, i.e., ui−1 − ui+1 /∈ skeleton(G). We
say that P = (u1, u2, . . . , ul−1, ul) is a path from (u, v) to
(x, y) if the first two nodes of P are u and v (i.e., u1 = u
and u2 = v), and the last two nodes of P are x and y (i.e.,
ul−1 = x and ul = y). Similarly, if the first two nodes of P
are u and v, and the last node of P is w, then we say P is a
path from (u, v) to w.

The notion of triangle-free paths does not seem to have
been used much in the literature, but turns out to be crucial
for our purposes. It is clear that every chordless path is also
a triangle-free path. The utility of triangle-free paths for us
stems partly from the following two results.

Proposition 4. Let G be an undirected chordal graph, and
P be a triangle-free path in G. Then, P is also a chordless
path.

The following observation shows the transitive nature of
triangle-free paths in a chain graph.

Proposition 5 (Concatenation of Triangle-Free Paths).
Consider a chain graph G with chordal undirected compo-
nents. Let u, v, x, y, w ∈ VG be (possibly non-distinct) ver-
tices of G. Suppose P1 = (a1 = u, a2 = v, . . . , al−1 =
x, al = y) and P2 = (b1 = x, b2 = y, . . . , bm−1, bm =
w) are triangle-free paths in G from (u, v) to (x, y)
and from (x, y) to w, respectively. Then, their concate-
nation P = (a1 = u, a2 = v, . . . , al−1 = x, al =
y, b3, b4, . . . , bm−1, bm = w) is a triangle-free path in G
from (u, v) to w.

We will also need the standard notion of a tree decompo-
sition (see, e.g., Blair and Peyton (1993)).

Definition 6 (Tree decomposition). Given an undirected
graph G = (V,E) a tree decomposition of G is a tuple
(X = {X1, X2, X3, . . . , Xl}, T ), where each Xi ⊆ V and
T is a tree with vertex set X satisfying the conditions that
(i) for every edge u − v ∈ E, there exists Xi ∈ X such
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that u, v ∈ Xi, and (ii) for any v ∈ V , the set of all Xj that
contain v is connected in T . If the size of the largest element
of X is w + 1, then the tree decomposition is said to have
width w. The treewidth of G is the smallest possible width
of a tree decomposition of G.

Main Results
We start with a formal description of the problem.

Problem 1 (Counting MECs of an undirected graph). In-
put: An undirected graph G.
Output: |MEC(G)|.

To compute |MEC(G)|, we first assign a unique identifier,
referred to as a “shadow” to each MEC of G. We then pro-
ceed to count the MECs of G that have the same shadow S,
for each possible shadow S. The sum of these counts, over
all possible shadows S, yields |MEC(G)| (Lemma 10). We
now define the concept of a shadow for an MEC.

Definition 7 (Shadow of an MEC). Let M be an MEC
of G, Y ⊆ VG, O ∈ PMEC(G[Y ]) (i.e., O is a partial
MEC with skeleton G[Y ]), and P1 : EO × EO → {0, 1}
and P2 : EO × VO → {0, 1} be two functions. We
define (O,P1, P2) as a shadow of M on Y , denoted as
(O,P1, P2) = shadow(M,Y ) if the following conditions
are met:

1. M [Y ] = O, meaning that O is an induced subgraph of
M on Y .

2. For (u, v), (x, y) ∈ EO, P1((u, v), (x, y)) = 1 if
(u, v) ̸= (x, y) and there exists a triangle-free path from
(u, v) to (x, y) in M , otherwise P1((u, v), (x, y)) = 0.

3. For (u, v) ∈ EO and w ∈ VO, P2((u, v), w) = 1, if
v ̸= w and there exists a triangle-free path from (u, v) to
w in M , otherwise P2((u, v), w) = 0.

With a slight abuse of notation, we refer to (O,P1, P2)
as a shadow of an undirected graph G, denoted as
(O,P1, P2) ∈ shadow(G), where O ∈ PMEC(G), and
P1 : EO × EO → {0, 1} and P2 : EO × VO → {0, 1}
are two functions.

Remark 8 (P1 does not determine P2). We emphasize that
P2 is not necessarily determined by P1. Further details can
be found in the supplementary material.

The following definition is used to partition the set
MEC(G).

Definition 9 (MEC(G,O, P1, P2)). Let G be an undirected
graph, Y ⊆ VG, and (O,P1, P2) ∈ shadow(G[Y ]). We
define MEC(G,O, P1, P2) to be the set of MECs M of G
for which (O,P1, P2) is a shadow of M on Y . More for-
mally, MEC(G,O, P1, P2) := {M : M ∈ MEC(G) and
(O,P1, P2) = shadow(M,VO)}.

Lemma 10 uses the partitioning of the set of MECs of G
based on their shadow to compute |MEC(G)|.
Lemma 10. Let G be an undirected graph.
Then, for any Y ⊆ VG, |MEC(G)| =∑

(O,P1,P2)∈shadow(G[Y ]) |MEC(G,O, P1, P2)|.

1
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Figure 3: Example: G is an undirected graph, T is a
tree decomposition of G, where X1 = {1, 2, 3}, X2 =
{2, 4, 5}, X3 = {2, 3, 6}, X4 = {3, 7, 8}, X5 =
{5, 9, 10}, X6 = {7, 11, 12}, X7 = {8, 13, 14}, X8 =
{12, 15, 16}, and X9 = {14, 17}.

Projection of an MEC
Lemma 10 shows that if we possess knowledge about
|MEC(G,O, P1, P2)| for every shadow (O,P1, P2) ∈
shadow(G[Y ]) for some Y ⊆ VG, then we can compute
|MEC(G)|. Our goal now is to construct a recursive algo-
rithm to compute |MEC(G,O, P1, P2)|. At a high level, the
recursive structure of this algorithm is similar to many other
algorithms that employ tree decompositions, the novelty be-
ing in the method for implementing each step of the recur-
sion. We therefore give only a short description of this struc-
ture here and defer a detailed description to the supplemen-
tary material.

Let (X = {X1, X2, . . . , Xk}, T ) be a tree decomposition
of G, with the root node being X1. For each node Xi in
T , the subtree rooted at Xi is denoted as Ti. The induced
subgraph of G corresponding to Ti is denoted as Gi. Thus,
our goal is to to count the MECs of G1.

Let the children of Xi in the subtree Ti be denoted as
(Xi1 , Xi2 , . . . , Xil). For 0 ≤ j ≤ l, we use T j

i to repre-
sent the induced subtree of Ti containing node Xi and the
nodes of Ti1 , Ti2 , . . . , Tij . Specifically, T 0

i consists of only
the node Xi, and T l

i = Ti. The corresponding induced sub-
graph of G for T j

i is denoted as Gj
i . When the number of

children of X1 is denoted as p, it holds that T p
1 = T1 = T ,

and correspondingly, Gp
1 = G1 = G. In this case, our goal

is to count the MECs of Gp
1 (see fig. 3).

Standard arguments show (see the supplementary mate-
rial) that for j ≥ 1, if we cut the edge Xi −Xij in the tree
T j
i , then the two subtrees T j−1

i and Tij of Ti we obtain are
tree decompositions of the corresponding subgraphs Gj−1

i

and Gij of Gj
i . The recursive structure of the algorithm is

now as follows. The base case is of graphs G0
i = G[Xi], for

1 ≤ i ≤ k. For each shadow (O,P1, P2) ∈ shadow(G[Xi]),
we compute |MEC(G0

i , O, P1, P2)| using brute force ap-
proach (which can be done, since each Xi is of size at most
one more than the width of the tree decomposition).

We now turn to the recursive case. This is the main techni-
cal content of the paper. For 1 ≤ i ≤ k, and j ≥ 1, we give
relations between MECs of Gj

i , G
j−1
i , and Gij , such that if
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we have knowledge about (a) |MEC(Gj−1
i , O1, P11, P12)|

for each shadow (O1, P11, P12) ∈ shadow(Gj−1
i [Xi ∪

N(Xi, G
j−1
i )]), and (b) |MEC(Gij , O2, P21, P22)| for

each shadow (O2, P21, P22) ∈ shadow(Gij [Xij ∪
N(Xij , Gij )]), then we can compute |MEC(Gj

i , O, P1, P2)|
for each shadow (O,P1, P2) ∈ shadow(Gj

i [Xi ∪
N(Xi, G

j
i )]). This gives us a recursive method to compute

|MEC(Gp
1, O, P1, P2)| for each shadow (O,P1, P2) of Gp

1
on X1∪N(X1, G

p
1). Further, using Lemma 10, we can com-

pute |MEC(G = Gp
1)|.

It turns out that the problem of establishing these rela-
tions can be abstracted out in simpler terms. We consider an
undirected graph H , and let H1 and H2 be two induced sub-
graphs of H such that H = H1 ∪H2, and I = VH1

∩VH2
is

a vertex separator of H that separates VH1 \ I and VH2 \ I .
Let S1 ⊆ VH1 and S2 ⊆ VH2 such that S1∩S2 = I . To con-
nect to the previous discussion, H plays the role of Gj

i , H1

that of Gj−1
i , H2 that of Gij , S1 plays the role of Xi, and S2

plays the role of Xij (Xi ∩ Xij = VGj−1
i
∩ VGij

= I , is a
vertex separator, comes from the tree decomposition proper-
ties). Many forthcoming definitions, observations, lemmas,
and theorem, will use the set-up of H,H1, H2, S1, S2 and I
stated above.

The chief technical contribution of this paper is to con-
struct tools for establishing relations between shadows of
the MECs of H , H1, and H2. As a first step towards this,
we define a relation between MECs of H and MECs of H1

and H2 in the following definition.

Definition 11 (Projection). Let G be an undirected graph,
X ⊆ VG, G′ = G[X] be an induced subgraph of G, M be
an MEC of G, and M ′ be an MEC of G′. We say that M ′

is a projection of M onto X , denoted as P(M,X) = M ′,
if V(M ′) = V(M [X]) (Recall from Notation 3 that V(G) is
the set of v-structures of G).

With slight overloading of the function P , for two subsets
X1, X2 ⊆ VG, we define (M1,M2) to be the projection of
M onto (X1, X2), denoted as: P(M,X1, X2) = (M1,M2),
if M1 = P(M,X1), and M2 = P(M,X2).

To further motivate the notion of projection, we quote here
a lemma, on the structural similarity between an MEC M
and its projection M ′, which turns out to be important for
our proofs given in the supplementary material.

Lemma 12. Let G be a graph, X ⊆ VG, M ∈ MEC(G),
and P(M,X) = M ′. If u→ v ∈M ′, then u→ v ∈M .

The structural resemblance between an MEC and its pro-
jection further implies a relationship between their shad-
ows. This relationship will be used to recursively com-
pute |MEC(H,O, P1, P2)| for any shadow (O,P1, P2) ∈
shadow(H[S1 ∪ N(S1, H)]). To establish this relationship,
we provide the following definition.

Definition 13 (Derived Path Function). Let (O,P1, P2) ∈
shadow(H[S1 ∪ S2 ∪N(S1 ∪ S2, H)]), and for a ∈ {1, 2},
(Oa, Pa1, Pa2) ∈ shadow(Ha[Sa ∪ N(Sa, Ha)]).
We say (P1, P2) as the derived path function of
(O,P11, P12, P21, P22), denoted as (P1, P2) =

DPF(O,P11, P12, P21, P22), if P1 and P2 are computed
through the following steps:
1. Step 1 (Initialization):

(a) ∀((u, v), (x, y)) ∈ EO × EO, if (u, v) ̸= (x, y)
and there exists a triangle-free path from (u, v) to
(x, y) in O, then P1((u, v), (x, y)) = 1, otherwise
P1((u, v), (x, y)) = 0.

(b) ∀((u, v), w) ∈ EO × VO, if v ̸= w and there ex-
ists a triangle-free path from (u, v) to w in O, then
P2((u, v), w) = 1, otherwise P2((u, v), w) = 0.

2. Step 2 (Update 1):
(a) ∀((u, v), (x, y)) ∈ EO × EO such that (u, v) ̸=

(x, y) and P1((u, v), (x, y)) = 0, if for some a ∈
{1, 2}, Pa1((u, v), (x, y)) = 1, then update P1 with
P1((u, v), (x, y)) = 1.

(b) ∀((u, v), w) ∈ EO × VO such that v ̸=
w and P2((u, v), w) = 0, if for any a ∈
{1, 2}, Pa2((u, v), w) = 1, then update P2 with
P2((u, v), w) = 1.

3. Step 3 (Update 2: adding transitivity):
(a) ∀((u, v), (x, y)) ∈ EO × EO such that (u, v) ̸=

(x, y) and P1((u, v), (x, y)) = 0, if there exists
(z1, z2) ∈ EO such that P1((u, v), (z1, z2)) =
P1((z1, z2), (x, y)) = 1, then update P1 with
P1((u, v), (x, y)) = 1.

(b) ∀((u, v), w) ∈ EO × VO, such that v ̸= w and
P2((u, v), w) = 0, if there exists (z1, z2) ∈ EO such
that P1((u, v), (z1, z2)) = P2((z1, z2), w) = 1, then
update P2 with P2((u, v), w) = 1.

We say that a derived path function (P1, P2) of
(O,P11, P12, P21, P22) is a valid derived path function
if for all (u, v), (x, y) ∈ EO, if (u, v) ̸= (x, y) and
P1((u, v), (x, y)) = 1, then P1((x, y), (u, v)) = 0.

We now establish a relationship between shadows of
H,H1 and H2.
Definition 14 (Extension). For a ∈ {1, 2}, let
(Oa, Pa1, Pa2) ∈ shadow(Ha[Sa ∪ N(Sa, Ha)]). We
define O ∈ PMEC(H[S1 ∪ S2 ∪ N(S1 ∪ S2, H)]) to be
an extension of (O1, P11, P12) and (O2, P21, P22), denoted
as O ∈ E(O1, P11, P12, O2, P21, P22), if
1. For a ∈ {1, 2}, for u, v ∈ Sa ∪N(Sa, Ha), if u → v ∈

Oa, then u→ v ∈ O.
2. For a ∈ {1, 2}, V(Oa) = V(O[Sa ∪N(Sa, Ha)]).
3. For a ∈ {1, 2}, for u− v ∈ Oa, u→ v ∈ O if, and only

if, at least one of the following occurs:
(a) u→ v is strongly protected in O.
(b) ∃x − y ∈ Oa such that x → y ∈ O, and

Pa1((x, y), (u, v)) = 1.
(c) ∃x−y ∈ Oa such that x→ y ∈ O, Pa2((x, y), v) = 1,

and Pa2((v, u), x) = 1.
4. DPF(O,P11, P12, P21, P22) is valid.
With a slight abuse of notation, we say that (O,P1, P2)
is an extension of (O1, P11, P12, O2, P21, P22), denoted as
(O,P1, P2) ∈ E(O1, P11, P12, O2, P21, P22), if
1. O satisfies items 1 to 4 of Definition 14, and
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2. (P1, P2) = DPF(O,P11, P12, P21, P22).

The following two lemmas, Lemmas 15 and 16, estab-
lish a method to count |MEC(H,O, P1, P2)| for any shadow
(O,P1, P2) ∈ shadow(H[S1 ∪ S2 ∪ N(S1 ∪ S2, H)])
when we have knowledge of |MEC(H1, O1, P11, P12)| and
|MEC(H2, O2, P21, P22)| for all shadows (O1, P11, P12) ∈
shadow(H1[S1 ∪ N(S1, H1)]) and (O2, P21, P22) ∈
shadow(H2[S2 ∪N(S2, H2)]).

Lemma 15. Let M , M1, and M2 be MECs of H , H1, and
H2, respectively. Let (O,P1, P2) be the shadow of M on
S1 ∪ S2 ∪N(S1 ∪ S2, H), (O1, P11, P12) be the shadow of
M1 on S1 ∪ N(S1, H1), and (O2, P21, P22) be the shadow
of M2 on S2∪N(S2, H2). If P(M,VH1 , VH2) = (M1,M2),
then (O,P1, P2) ∈ E(O1, P11, P12, O2, P21, P22)

The definitions of extensions and derived path function
constitute the main conceptual ingredient in the proof of
Lemma 15. Given these definitions, the proof is based on
a somewhat technical structural induction, that uses ideas
that have appeared previously in works on Markov equiva-
lence (Chickering 1995). The detailed proof is provided in
the supplementary material.

Lemma 16. Let M1 be an MEC of H1, and M2 be an
MEC of H2. Let (O1, P11, P12) be the shadow of M1 on
S1 ∪ N(S1, H1), and (O2, P21, P22) be the shadow of M2

on S2 ∪ N(S2, H2). Let (O,P1, P2) ∈ shadow(H[S1 ∪
S2 ∪ N(S1 ∪ S2, H)]). If (O,P1, P2) is an extension
of (O1, P11, P12, O2, P21, P22), then there exists a unique
MEC M of H such that (O,P1, P2) = shadow(M,S1 ∪
S2 ∪N(S1 ∪ S2, H)), and P(M,VH1

, VH2
) = (M1,M2).

The proof of this lemma is constructive: in order to show
the existence of M , we give an algorithmic process for con-
structing M given the other data in the lemma (the claim
of uniqueness is then relatively easier to establish). At the
heart of this algorithmic process is a modified version of
the celebrated lexicographical breadth first search algorithm
(LBFS) of Rose, Tarjan, and Lueker (1976). Interestingly,
a different modified version of the LBFS algorithm was
also important in the algorithm of Wienöbst, Bannach, and
Liśkiewicz (2021) for computing sizes of MECs. Our modi-
fication, however, is of a different character. While detailed
proof and description are provided in the supplementary ma-
terial, we present here a brief summary.

The usual LBFS algorithm proceeds like a usual BFS, ex-
cept that it progressively constructs a “lexicographical” par-
tial order on the set of vertices, and each step chooses one
of the vertices that are minimal in this order. In particular,
it can choose any such vertex. For our purposes, we need to
further specify the vertex we choose at each step: in particu-
lar, we isolate the notion of a so-called canonical source ver-
tex (CSV) (see the supplementary material for a definition),
and show that, in the context in which we use the LBFS al-
gorithm, the vertex that the LBFS algorithm chooses can al-
ways be taken to be such a CSV. The definition of a CSV, and
the fact that we can always find such a CSV for the LBFS
algorithm to choose in the context in which we use the algo-
rithm, both turn out to be crucial in the proof of Lemma 16
given in the supplementary material.

Lemmas 15 and 16 together give a method for computing
|MEC(H,O, P1, P2)| for all (O,P1, P2) ∈ shadow(H[S1 ∪
S2 ∪N(S1 ∪ S2, H)])

Lemma 17. Let (O,P1, P2) ∈ shadow(H[S1 ∪ S2 ∪
N(S1 ∪ S2, H)]). Then, |MEC(H,O, P1, P2)| =∑
|MEC(H1, O1, P11, P12)| × |MEC(H2, O2, P21, P22)|,

where the summation runs over all (O1, P11, P12) ∈
shadow(H1[S1 ∪ N(S1, H1)]) and (O2, P21, P22) ∈
shadow(H2[S2 ∪ N(S2, H2)]) such that (O,P1, P2) ∈
E(O1, P11, P12, O2, P21, P22).

We now recall the discussion in the paragraphs preced-
ing Definition 11. As discussed there, H resembles Gj

i , H1

resembles Gj−1
i , H2 resembles Gij , and S1 and S2 resem-

ble Xi and Xij . Lemma 17 implies that if for all shad-
ows (O1, P11, P12) ∈ shadow(Gj−1

i [Xi ∪ N(Xi, G
j−1
i )]),

and (O2, P21, P22) ∈ shadow(Gij [Xij ∪ N(Xij , Gij )]),
we have the knowledge about |MEC(Gj−1

i , O1, P11, P12)|
and |MEC(Gij , O2, P21, P22)|, then for all (O,P1, P2) ∈
shadow(Gj

i [Xi ∪ Xij ∪ N(Xi ∪ Xij , G
j
i )]), we can

compute |MEC(Gj
i , O, P1, P2)|. But for the recursion,

we need |MEC(H,O′, P ′
1, P

′
2)| for all (O′, P ′

1, P
′
2) ∈

shadow(Gj
i [Xi ∪ N(Xi, G

j
i )]). As (O,P1, P2) contains

more information than (O′, P ′
1, P

′
2), we define the projection

of (O,P1, P2) to get |MEC(H,O′, P ′
1, P

′
2)| for each shadow

(O′, P ′
1, P

′
2).

Definition 18 (Projection of shadow (O′, P ′
1, P

′
2)). Let H

be an undirected graph. S and S′ are two vertex sub-
sets of H such that S′ ⊆ S ⊆ VH . Let (O,P1, P2) ∈
shadow(G[S]) and (O′, P ′

1, P
′
2) ∈ shadow(G[S′]). We say

(O′, P ′
1, P

′
2) is a projection of (O,P1, P2) on S′ denoted as

P(O,P1, P2, S
′) = (O′, P ′

1, P
′
2) if

1. O[S′] = O′,
2. for ((u, v), (x, y)) ∈ EG[S′] × EG[S′],

P ′
1((u, v), (x, y)) = P1((u, v), (x, y)), and

3. for ((u, v), w) ∈ EG[S′] × VG[S′], P ′
2((u, v), w) =

P2((u, v), w).

We now compute |MEC(H,O′, P ′
1, P

′
2)|.

Lemma 19. Let H be an undirected graph, S
and S′ are two vertex subsets of H such that
S′ ⊆ S ⊆ VH . Let (O′, P ′

1, P
′
2) ∈ shadow(H[S′]). Then,

|MEC(H,O′, P ′
1, P

′
2)| equals

∑
|MEC(H,O, P1, P2))|,

where the sum runs over all (O,P1, P2) ∈ shadow(H[S])
for which (O′, P ′

1, P
′
2) = P(O,P1, P2, S

′).

Combining Lemmas 17 and 19, we obtain the following
lemma:

Lemma 20. For any shadow (O′, P ′
1, P

′
2) ∈

shadow(H[S1 ∪ N(S1, H)]), |MEC(H,O′, P ′
1, P

′
2)| equals∑

|MEC(H1, O1, P11, P12)| × |MEC(H2, O2, P21, P22)|,
where the summation runs over all (O,P1, P2) ∈
shadow(H[S1 ∪ S2 ∪ N(S1 ∪ S2, H)]),
(O1, P11, P12) ∈ shadow(H1[S1 ∪ N(S1, H1)]), and
(O2, P21, P22) ∈ shadow(H2[S2 ∪ N(S2, H2)]) such
that (O,P1, P2) ∈ E(O1, P11, P12, O2, P21, P22) and
(O′, P ′

1, P
′
2) = P(O,P1, P2, S

′).
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Using Lemma 20, we can compute
|MEC(Gj

i , O
′, P ′

1, P
′
2)| for any partial MEC (O′, P ′

1, P
′
2) ∈

shadow(Gj
i [Xi ∪N(Xi, G

j
i )]). This provides us a recursive

method to compute the MECs of G.
We now summarise the above solution. To count
|MEC(G)|, we first partition MEC(G) based on the shad-
ows (O,P1, P2) ∈ shadow(G[Y ]) for some Y ∈ VG.
From Lemma 10, this reduces our goal to computing
|MEC(G,O, P1, P2)| for all the shadows (O,P1, P2) ∈
shadow(G[Y ]) for some Y ∈ VG. To achieve this, we
recursively partition G using its tree decomposition, as
shown in fig. 3. For the base case, G0

i , we compute
|MEC(G0

i , O, P1, P2)| for all (O,P1, P2) ∈ shadow(G0
i =

G0
i [Xi ∪ N(Xi, Gi)]) using the brute force method. We

then recursively compute |MEC(Gj
i , O

′, P ′
1, P

′
2)| for all

shadows (O′, P ′
1, P

′
2) ∈ shadow(Gj

i [Xi ∪ N(Xi, G
j
i )])

using Lemma 20. As G = Gp
1, after computing

|MEC(Gp
i , O, P1, P2)| for all shadows (O,P1, P2) ∈

shadow(Gp
1[X1 ∪ N(X1, G

p
1)]), we implement Lemma 10

to compute |MEC(G)|.

Time Complexity To compute |MEC(G)|, we first con-
struct a tree decomposition of G. Let k be the treewidth of
G. We use Korhonen (2022)’s algorithm, which constructs
a tree decomposition (X = {X1, X2, . . . , Xl}, T ) of G of
width d where k ≤ d ≤ 2k + 1 in time 2O(k) · n. We
need to implement the brute force method for the base case,
G0

i = G[Xi], for each Xi ∈ X . Since the number of nodes
in a tree decomposition of a graph with n nodes is O(n),
therefore, the number of times we have to call the brute force
method is O(n). In the base case, G0

i , VG0
i
= Xi. Since

the width of the tree decomposition is d, therefore, |VG0
i
|

can be at most d + 1, and |EG0
i
| = O(d2). For any edge

u − v ∈ EG0
i
, in a partial MEC O ∈ PMEC(G0

i ), there
are three possibilities, either u → v ∈ O or v → u ∈ O
or u − v ∈ O. This implies the number of partial MEC
of Gj

i is O(3O(d2)). For each O ∈ PMEC(G0
i ), the num-

ber of distinct functions P1 : EO → EO → {0, 1}
and P2 : EO → VO → {0, 1} is O(2O(d4)). Thus,
the number of shadows of G0

i is O(2O(d4)). From Defi-
nition 2, each MEC is itself a partial MEC. Therefore, in
the base case, for any shadow (O,P1, P2) ∈ shadow(G0

i ),
if M ∈ MEC(G0

i , O, P1, P2) then O = M and for any
(u, v), (x, y) ∈ EO, P1((u, v), (x, y)) = 1 if there ex-
ists a triangle-free path from (u, v) to (x, y) in O else
P1((u, v), (x, y)) = 0. Verification of whether a partial
MEC is an MEC or not takes O(d2) time, and verifica-
tion whether P1 and P2 obey the partial MEC O or not
takes O(d10) time (details are given in supplementary ma-
terial). Therefore, computing |MEC(G0

i , O, P1, P2)| for all
(O,P1, P2) ∈ shadow(G0

i ) takes time O(2O(d4)d10). As
discussed earlier, |X | = O(n). Therfore, solving base cases
requires time O(2O(d4)d10n).

For a recursive call, we cut an edge. As the number
of edges in the tree decomposition is O(n), therefore, the
number of times recursion occurs is O(n). In each re-

cursive call, for Gj
i , we partition Gj

i into Gj−1
i and Gij .

The partitioning of Gj
i takes O(n2) time. The number of

nodes in Xi ∪ Xij ∪ N(Xi ∪ Xij , G
j
i ) can be at most

(d+1)(δ+1), where δ is the degree of G. Thus, the number
of shadows in shadow(Gj

i [Xi ∪ Xij ∪ N(Xi ∪ Xij , G
j
i )])

is O(2O(d4δ4)) (similar to the base case). Finding the value
of |MEC(Gj

i , O, P1, P2) for each shadow (O,P1, P2) ∈
shadow(Gj

i [Xi ∪ N(Xi ∪ Xij )]) using Lemma 20 takes
the same time O(2O(d4δ4)). Therefore, the time complex-
ity of the whole process is O(n(2O(d4δ4) + n2)). Since
d = O(k), therefore, the time complexity of our algorithm
is O(n(2O(k4δ4) + n2)), where n = VG, and k and δ are the
treewidth and the degree of G, respectively.

Conclusion and Open Problems
We provide a fixed parameter tractable algorithm with run-
time O(n(2O(k4δ4) + n2)) for the problem of counting the
number of MECs with a given skeleton, where n is the num-
ber of nodes in the input graph, and k and δ are the treewidth
and the degree of the input graph, respectively.

The main problem left open by this work is to either
provide a fully polynomial time algorithm for this prob-
lem or else to prove that it is computationally hard in gen-
eral. We note that our analysis can be strengthened in cer-
tain very special cases to provide a much better running
time. In particular, it seems that (with some modifications
to the algorithm and the analysis) our method can be made
to run in polynomial time when G is a tree graph. Simi-
larly, for chordal graphs, it seems that the dependence on
the treewidth can be made much better.

An intermediate open problem towards the goal of under-
standing the complexity fully is to improve the runtime of
the fixed-parameter tractable algorithm itself: perhaps using
different parameters.

As stated in the introduction, we consider our results to be
a first step towards understanding the computational com-
plexity of this problem. However, we hope that the defini-
tions and techniques introduced in this paper will be helpful
in further study of the problem.
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