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Abstract

We propose an approach to learn a multiattribute utility func-
tion to model, explain or predict the value system of a De-
cision Maker. The main challenge of the modeling task is
to describe human values and preferences in the presence
of interacting attributes while keeping the utility function as
simple as possible. We focus on the generalized additive de-
composable utility model which allows interactions between
attributes while preserving some additive decomposability of
the evaluation model. We present a learning approach able to
identify the factors of interacting attributes and to learn the
utility functions defined on these factors. This approach relies
on the determination of a sparse representation of the ANOVA
decomposition of the multiattribute utility function using mul-
tiple kernel learning. It applies to both continuous and discrete
attributes. Numerical tests are performed to demonstrate the
practical efficiency of the learning approach.

Introduction
An increasing number of AI systems is used to describe,
explain or predict human behaviors in evaluation or deci-
sion making tasks, but also to help one or more individu-
als to make a relevant choice in the light of their prefer-
ences (Domshlak et al. 2011; Pigozzi, Tsoukias, and Viap-
piani 2016). Intelligent decision systems can also be used to
give machines the ability to make sophisticated decisions in
complex environments in an autonomous but controlled way
(Mosier and Skitka 2018). These systems are often grounded
on decision theory which proposes preference models that
verify normative properties guaranteeing the internal con-
sistency of the value system modeled and the resulting de-
cisions (Raiffa 1968; Fishburn 1970; Keeney, Raiffa, and
Meyer 1993; Roy 1996; Wakker 2010).

One of the current research challenges in this area is to pro-
duce models that are sufficiently expressive to account for a
diversity of possible behaviors, but at the same time suffi-
ciently simple to remain interpretable and allow the explana-
tion of evaluations or decisions (Labreuche 2011). There is
also a need of automated mechanisms for preference assess-
ment and tailoring general models to specific users (Braz-
iunas and Boutilier 2008). With this in mind, we focus in
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this paper on learning utility functions to efficiently repre-
sent values and preferences on multiattribute objects. For this
purpose, the most widely used preference model is the so-
called additive utility model (Krantz et al. 1971). It assumes
a special kind of independence among attributes called “mu-
tual preferential independence” which ensures that the over-
all utility of multiattribute objects can be decomposed as the
sum of mono-attribute utility functions. Such decomposabil-
ity significantly simplifies the construction of the model that
can be achieved componentwise. However, in practice, pref-
erential independence is often violated, when interactions
among attributes are present, and the simple additive utility
model does not fit. This is the reason why, in this paper, we
tackle the problem of learning a more general multiattribute
utility function in the presence of interacting attributes, with
the aim of keeping the model as simple and decomposable
as possible.

Les us consider a toy example involving a set of cars de-
scribed using 3 attributes, namely car make, body color and
seat color. Let 𝑋1 = {Ferrari, Lamborghini, Porsche} be the
car make domain, 𝑋2 = {Blue, Red, Yellow} be the body
color domain, and 𝑋3 = {Black, White} the seat color do-
main. Assume that an individual (named the Decision Maker
hereafter, DM for short) prefers a red body color for a Fer-
rari but a blue one for a Porsche. Then one cannot build a
mono-attribute utility function on body color because the
preferences on body colors depend on the car make. This is
an example of interaction between two attributes. A similar
problem appears when, in addition, the DM prefers a black
seat color for a red car and a white seat color for a blue
car. This makes it impossible to define a mono-attribute util-
ity function on the seat color. Hence the DM’s preferences
over 𝑋1 × 𝑋2 × 𝑋3 cannot be described by an additive utility
function of the form 𝑢(𝑥1, 𝑥2, 𝑥3) = 𝑢1 (𝑥1) + 𝑢2 (𝑥2) + 𝑢3 (𝑥3)
due to presence of interactions among attributes {1, 2} on
the one hand, and among attributes {2, 3} on the other. A
less decomposable utility function can be used instead, of
the form: 𝑢(𝑥1, 𝑥2, 𝑥3) = 𝑢1,2 (𝑥1, 𝑥2) + 𝑢2,3 (𝑥2, 𝑥3). Function
𝑢1,2 measures the attractiveness of the pair (car make, body
color) for the DM while function 𝑢2,3 measures car and seats
color matching.

We can see that some additive decomposability still re-
mains in this decomposition but utility factors now include
several interacting attributes and the factors may partially
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overlap (here 𝑥2 appears in both factors). Such a decomposi-
tion over overlapping factors is called a GAI decomposition
where GAI stands for Generalized Additive Independence
(Fishburn 1970). It includes additive and multilinear decom-
positions as special cases (Keeney, Raiffa, and Meyer 1993),
and also multiattribute utility models based on Choquet in-
tegrals (Grabisch and Labreuche 2010), but it is much more
flexible as it does not make any assumption on the kind of
interactions between attributes. For this reason, it is widely
used for preference modeling and decision support and was
the subject of various studies in the AI community (Bacchus
and Grove 1995; Gonzales and Perny 2004; Braziunas and
Boutilier 2005, 2007; Brafman and Engel 2009; Bigot et al.
2012).

The construction of a GAI utility model from preference
information (overall evaluations or pairwise comparisons)
remains a challenge. It requires the determination of the rel-
evant factors to be used in the decomposition (groups of
interacting attributes) as well as the determination of sub-
utility functions on these factors. Some contributions focus
on the elicitation of these sub-utility functions, assuming the
decomposition of the utility into factors is known (Gonza-
les and Perny 2004; Braziunas and Boutilier 2005). Some
other tackle the problem of learning the decomposition. For
example, a procedure to learn the GAI model (structure +
utility tables) has been proposed (Bigot et al. 2012) in the
case of boolean attributes and interactions limited to subsets
of bounded size (typically 2 elements). More recently, a pro-
cedure to determine a well-formed decomposition of mono-
tonic GAI models was proposed (Grabisch, Labreuche, and
Ridaoui 2022) wherein the interactions are limited to pairs
of attributes.

However, until now, the learning of general GAI models
with no prior assumption on the size of the interacting groups
of attributes is still understudied. All the above-mentioned
contributions either assume that the structure of the GAI
decomposition is known or that it is limited to interactions
involving very few attributes. Moreover, most of them only
consider the case of finite attribute domains. In this paper,
we propose a more general procedure to learn a GAI utility
model, kept as simple as possible, with no prior restriction on
the size of interactions, and that applies to both continuous
and discrete attribute domains.

The paper is organized as follows. In a first section we
recall some background on multiattribute utility models and
GAI decompositions. Then, in the second section, we present
an approach to construct a GAI decomposition from data us-
ing multiple kernel learning. Finally, a third section provides
the results of numerical tests on synthetic and real data.

Background and Notations
Let us consider a finite set 𝑁 = {1, . . . , 𝑛} of attributes used
to describe a set 𝑋 of alternatives in a decision problem.
Every alternative 𝑥 in 𝑋 is characterized by a multiattribute
evaluation vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) where 𝑥𝑖 is the evaluation
of 𝑥 with respect to attribute 𝑖, for any 𝑖 ∈ 𝑁 . Let 𝑋𝑖 be
the attribute domain of 𝑖, i.e., the set of possible values of
alternatives on attribute 𝑖. This set can be continuous or
discrete. The multiattribute description space is denoted X =

𝑋1× . . .×𝑋𝑛 and 𝑋 can be characterized as a subset ofX. Let
≿ denote the DM’s preference relation, which is assumed to
be a weak order over X.

Under mild assumptions (Debreu 1964), it can be shown
that ≿ is representable by a utility, i.e., there exists a utility
function 𝑢 : X ↦→ R such that 𝑥 ≿ 𝑦 ⇔ 𝑢(𝑥) ≥ 𝑢(𝑦) for all
𝑥, 𝑦 ∈ X. As preferences are specific to each individual, util-
ities must be elicited using sequences of preference queries
or learned using databases of preference examples. Another
use of multiattribute utility functions can be to measure the
intrinsic value of any alternative for the DM. In this case, the
multiattribute utility function can be learned from a labeled
data set wherein overall utility values are assigned by the DM
to elements of X.

DM’s preferences usually have an underlying structure in-
duced by independence among attributes that substantially
decreases the complexity of the model. This simplifies its
interpretation and its use for optimization tasks (Gonzales
and Perny 2005). The simplest case is obtained when values
or preferences over X = 𝑋1 × . . . × 𝑋𝑛 are represented by an
additive utility. When DM’s preferences are more complex
and may include interaction among attributes, a more elabo-
rate model is needed, as illustrated in the introduction. This
motivates the introduction of GAI decompositions:
Definition 1 Let F be a collection of subsets of 𝑁 =

{1, . . . , 𝑛}. A utility function 𝑢(·) is GAI-decomposable w.r.t.
F if there exist functions 𝑢𝑆 : 𝑋𝑆 → R, 𝑆 ∈ F such that:

𝑢(𝑥1, ..., 𝑥𝑛) =
∑︁
𝑆∈F

𝑢𝑆 (𝑥𝑆), for all (𝑥1, . . . , 𝑥𝑛) ∈ X,

where 𝑥𝑆 is the tuple formed by the 𝑥 𝑗 ’s, 𝑗 ∈ 𝑆.
Note that, in the above definition, the condition 𝑁 =⋃
𝑆∈F 𝑆 is not required because some components 𝑥𝑖 in the

model may appear to be unessential to explain the available
preference information and could be removed to produce a
more compact model.

Given a multiattribute utility function 𝑢 defined onX there
may exist multiple distinct GAI decompositions of this func-
tion. This raises a problem of identifiability (Rothenberg
1971), as shown in the following example:
Example 1 Function 𝑢(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1−𝑥2)2+2𝑥1 (𝑥2+
𝑥3)+𝑥4 could be seen as the sum of the three following factors:
𝑢12 (𝑥1, 𝑥2) = (𝑥1−𝑥2)2, 𝑢1,2,3 (𝑥1, 𝑥2, 𝑥3) = 2𝑥1 (𝑥2 +𝑥3) and
𝑢4 (𝑥4) = 𝑥4 or rewritten as the sum of four smaller factors,
e.g., 𝑢′1 (𝑥1) = 𝑥2

1, 𝑢′2 (𝑥2) = 𝑥2
2, 𝑢′13 (𝑥1, 𝑥3) = 2𝑥1𝑥3 and

𝑢′4 (𝑥4) = 𝑥4. The latter decomposition is simpler because it
includes factors of smaller arity that are subsets of the factors
used in the former decomposition.

In order to further specify what would be a suitable repre-
sentation of utilities and preferences we might consider well-
formed decompositions as proposed in (Grabisch, Labreuche,
and Ridaoui 2022).
Definition 2 A GAI decomposition is well-formed if each
term 𝑢𝑆 appearing in the decomposition satisfies the follow-
ing conditions:
• each variable in 𝑆 is active, i.e., the derivative of 𝑢𝑆 w.r.t.

this variable is not identically 0,
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• 𝑢𝑆 cannot be further decomposed into terms involving a
proper subset of variables

Coming back to Example 1, the decomposition of 𝑢 into
𝑢′1+𝑢

′
2+𝑢

′
13+𝑢

′
4 is well-formed and refines the decomposition

𝑢 = 𝑢12 + 𝑢123 + 𝑢4 that is therefore not-well formed.
Unfortunately, there may exist multiple well-formed de-

compositions of the same GAI utility function due to pos-
sible utility transfers from a factor to another. This is well
illustrated by the following example:

Example 2 𝑢(𝑥1, 𝑥2) = 𝑥1 + 𝑥2 can be rewritten as 𝑢𝛼1 (𝑥1) +
𝑢𝛼2 (𝑥2) with 𝑢𝛼1 (𝑥1) = (𝑥1 − 𝛼) and 𝑢𝛼2 (𝑥2) = (𝑥2 + 𝛼)
for any constant 𝛼, thus providing an infinity of possible
decompositions of the same utility function.

In order to avoid such utility transfers and obtain a uniquely
defined decomposition of the utility function, we shall con-
sider the ANOVA decomposition as suggested in (Sobol’
2001):

Definition 3 An ANOVA decomposition of a function
𝑢(𝑥1, . . . , 𝑥𝑛) defined on [0, 1]𝑛 and integrable on this do-
main is a representation of 𝑢 in the form:

𝑢(𝑥) = 𝑓∅ +
∑︁

𝑆⊆𝑁\∅
𝑓𝑆 (𝑥𝑆) (1)

where 𝑓𝑆 are factors such that
∫ 1
0 𝑓𝑆𝑑𝑥𝑖 = 0 for all non-empty

𝑆 in 𝑁 and all 𝑖 ∈ 𝑆.

In this definition, the multiattribute space 𝑋 is identified to
[0, 1]𝑛 for simplicity, as in (Sobol’ 2001). This is not restric-
tive since the attribute domains 𝑋𝑖 , 𝑖 ∈ 𝑁 can be numerically
encoded and normalized. Thus, in the following, the integrals
are always computed between 0 and 1.

The name ANOVA comes from ANalysis Of VAriance.
Indeed, if 𝑢 is square integrable and the attributes 𝑥𝑖 are
random variables uniformly distributed in [0, 1], the ANOVA
representation of 𝑢 allows deriving a decomposition of the
variance of 𝑢(𝑥).

It is important to note that the ANOVA decomposition
of a utility function is uniquely defined, which guarantees
its identifiability without any ambiguity. We indeed have
𝑓∅ =

∫
𝑢(𝑥)𝑑𝑥1 . . . 𝑑𝑥𝑛 by integrating Equation 1 on [0, 1]𝑛.

Then, by integrating the same equation over all variables
except 𝑥𝑖 we obtain 𝑓𝑖 (𝑥𝑖) =

∫
𝑢(𝑥)Π𝑘≠𝑖𝑑𝑥𝑘 − 𝑓∅ . Now, if

we integrate Equation 1 on all variables except 𝑥𝑖 and 𝑥 𝑗 we
obtain 𝑓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) =

∫
𝑢(𝑥)Π𝑘≠𝑖, 𝑗𝑑𝑥𝑘 − 𝑓𝑖 (𝑥𝑖) − 𝑓 𝑗 (𝑥 𝑗 ) − 𝑓∅ .

The process can be continued similarly to identify the factors
of higher arity. For instance, the ANOVA decomposition of
the utility function introduced in Example 2 is:

𝑓∅ =

∫ 1

0

∫ 1

0
(𝑥1 + 𝑥2)𝑑𝑥1𝑑𝑥2 = 1

𝑓1 (𝑥1) =

∫ 1

0
(𝑥1 + 𝑥2)𝑑𝑥2 − 𝑓∅ = 𝑥1 −

1
2

𝑓2 (𝑥2) = 𝑥2 −
1
2

𝑓12 (𝑥1, 𝑥2) = 𝑥1 + 𝑥2 − 𝑓1 (𝑥1) − 𝑓2 (𝑥2) − 𝑓∅ = 0

Now, if we consider the model given in Example 1, the
same process leads to the following ANOVA decomposition:

𝑓∅ =
5
3
, 𝑓1 (𝑥1) = 𝑥1 + 𝑥2

1 −
5
6
, 𝑓2 (𝑥2) = 𝑥2

2 −
1
3

(2)

𝑓3 (𝑥3) = 𝑥3 −
3
7
, 𝑓4 (𝑥4) = 𝑥4 −

1
2

(3)

𝑓13 (𝑥1, 𝑥3) = 2𝑥1𝑥3 − 𝑥1 − 𝑥3 +
3
7

(4)

In the next section, we propose a method for learning a
sparse GAI decomposition of a utility function based on the
identification of its ANOVA decomposition. To this end, we
use the framework of multiple kernel learning (MKL) that
we introduce hereafter.

A MKL Algorithm for Learning a GAI
Decomposition

We want to learn utility function 𝑢 from a set of examples
{(𝑥 𝑗 , 𝑦 𝑗 ), 𝑗 ∈ E} where 𝑥 𝑗 ∈ X is an alternative and 𝑦 𝑗 ∈
R denotes its overall evaluation. An efficient approach to
learn a multivariate function from regression examples is to
use a Support Vector Regression (SVR) algorithm (Smola
and Schölkopf 2004). This algorithm consists in searching
𝑢 as a linear model in some high-dimensional space H ,
attached to a mapping function 𝜙 : R𝑛 → H such that 𝑢(𝑥) =
⟨𝑤, 𝜙(𝑥)⟩ + 𝑏. Function 𝜙 makes it possible to go beyond the
linear model and to fit more complex utility shapes. The
learning is performed by minimizing both the error on the
regression examples and the oscillation of the utility function
(to maximize flatness) in the space generated by 𝜙. This can
be achieved by minimizing the 𝐿2 norm of 𝑤 along with the
𝜖−sensitive loss as follows:

(P𝑆𝑉𝑅) min 𝐶
∑︁
𝑗∈E

(𝜖+𝑗 + 𝜖−𝑗 ) +
1
2
∥𝑤∥2

2

𝑦 𝑗 − ⟨𝑤, 𝜙(𝑥 𝑗 )⟩ − 𝑏 ≤ 𝜖 + 𝜖+𝑗 , 𝑗 ∈ E
⟨𝑤, 𝜙(𝑥 𝑗 )⟩ + 𝑏 − 𝑦 𝑗 ≤ 𝜖 + 𝜖−𝑗 , 𝑗 ∈ E

𝜖+𝑗 , 𝜖
−
𝑗 ≥ 0, 𝑗 ∈ E

where 𝐶 > 0 controls the tradeoff between flatness and data
fitting and 𝜖 > 0 is a tolerance threshold.

The efficiency of this method is due to the compact dual
formulation of P𝑆𝑉𝑅, the size of which only depends on the
number of regression examples |E |. It can be obtained using
Lagrangian duality and reads as follows:

(D𝑆𝑉𝑅) max −
∑︁
𝑗 ,𝑙∈E

(𝛼+𝑗 − 𝛼−
𝑗 ) (𝛼+𝑙 − 𝛼

−
𝑙 )𝐾 (𝑥 𝑗 , 𝑥𝑙)

+
∑︁
𝑗∈E

(𝛼+𝑗 − 𝛼−
𝑗 )𝑦 𝑗 − 𝜖

∑︁
𝑗∈E

(𝛼+𝑗 + 𝛼−
𝑗 )∑︁

𝑗∈E
𝛼+𝑗 − 𝛼−

𝑗 = 0

𝛼+𝑗 , 𝛼
−
𝑗 ∈ [0, 𝐶], 𝑗 ∈ E

where 𝐾 (𝑥 𝑗 , 𝑥𝑙) = ⟨𝜙(𝑥 𝑗 ), 𝜙(𝑥𝑙)⟩ and 𝐾 is referred to as the
kernel associated with 𝜙. This approach relies on polyno-
mial computations of the values 𝐾 (𝑥, 𝑥′) that do not require
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the computation of the high dimensional vectors 𝜙(𝑥). For
instance, a widely used kernel is the Gaussian radial basis
function (RBF) kernel. While involving a projection func-
tion 𝜙 of infinite dimension, it can be simply computed as
follows: 𝐾 (𝑥, 𝑥′) = 𝑒−∥𝑥−𝑥′ ∥2

2/2𝜎
2 . More generally, any sym-

metric positive definite bi-variate function 𝐾 can be used
since they always represent a scalar product in some fea-
ture space H (Schölkopf and Smola 2002). Finally, using the
KKT conditions, the coefficients 𝑤 and the intercept 𝑏 can be
recovered from the dual optimal variables, and the learned
utility function is: 𝑢(𝑥) = ∑

𝑗∈E (𝛼+𝑗 − 𝛼−
𝑗
)𝐾 (𝑥 𝑗 , 𝑥) +𝑏.

Such kernel-based machine learning methods have proved
to be effective for utility elicitation from preference state-
ments (Domshlak and Joachims 2012; Lahaie 2010; Chapelle
and Harchaoui 2004). In our case, we propose to use the par-
ticular framework of multiple kernel learning (MKL) (Bach,
Lanckriet, and Jordan 2004) to derive a GAI-decomposition
of the utility function 𝑢. In general, MKL methods replace the
kernel 𝐾 with a convex combination of kernels 𝑲 =

∑
𝑙 𝑑𝑙𝐾𝑙

(the weights 𝑑𝑙 are positive and preserve the property of def-
inite positiveness), in order to either combine multiple ker-
nels with different properties or combine different sources of
information. Here, we consider a basis of kernel functions
(𝐾𝑆)𝑆⊆𝑁 where for any 𝑆 ⊆ 𝑁 \ ∅, 𝐾𝑆 is a kernel attached to
the sub-utility 𝑢𝑆 depending on, and only on, the attributes
in 𝑆. By convention, 𝐾∅ is a constant function equal to one.
Let 𝑑 = (𝑑𝑆)𝑆⊆𝑁\∅ denote the kernel weights and 𝑑∅ the
intercept of the model. Since the product of positive defi-
nite kernels is also a positive definite kernel, this basis can
be constructed using a univariate kernel 𝑘 : R × R → R
and defining 𝐾𝑆 (𝑥, 𝑥′) as the product

∏
𝑗∈𝑆 𝑘 (𝑥 𝑗 , 𝑥′𝑗 ) for any

𝑥, 𝑥′ ∈ X and any 𝑆 ⊆ 𝑁 \ ∅.
Note that for 𝑑 = (1, . . . , 1), the kernel 𝑲 =

∑
𝑆⊆𝑁\∅ 𝐾𝑆

coincides with the well-known ANOVA kernel (Stitson et al.
1999; Saunders, Gammerman, and Vovk 1998). However, if
the name is related to the ANOVA’s core idea of decompos-
ing a function in terms depending on subsets of variables,
this kernel does not provide an ANOVA decomposition since
nothing guarantees that

∫
𝑢𝑆𝑑𝑥𝑖 = 0, for any 𝑆 ⊆ 𝑁 \ ∅ and

𝑖 ∈ 𝑆 (See Definition 3). Also, the ANOVA kernel uses all
the possible subsets of 𝑁 (or all until a given size 𝑝) and does
not perform a selection of the most important subsets. In or-
der to select the most useful coalitions and provide a simple
ANOVA decomposition, we need to learn a sparse represen-
tation of the weight vector 𝑑. The objective of selecting only
a few kernels in the kernel basis is at the core of MKL and
the need for a simultaneous optimization over the weights
𝑑 and the dual variables 𝛼+

𝑗
, 𝛼−

𝑗
has led to the development

of many optimization algorithms (see (Gönen and Alpaydın
2011) for an overview). Here, we use 𝐿1 regularization to
obtain sparsity in 𝑑, as in (Varma and Ray 2007; Gunn and
Kandola 2002).

In order to implement the multiple kernel learning ap-
proach on problem P𝑆𝑉𝑅 with the kernel 𝑲 =

∑
𝑆⊆𝑁\∅ 𝑑𝑆𝐾𝑆

and the intercept 𝑏 = 𝑑∅ , we first make explicit the associ-
ated mapping function of 𝑲. Let 𝜙𝑆 denote the mapping
function attached to the kernel 𝐾𝑆 for any 𝑆 ⊆ 𝑁 \ ∅, then
𝝓 = (

√
𝑑𝑆𝜙𝑆)𝑆⊆𝑁\∅ is the mapping function associated to

𝑲. Indeed, for any 𝑥, 𝑥′ ∈ X, we have:

𝑲 (𝑥, 𝑥′) =
∑︁

𝑆⊆𝑁\∅
𝑑𝑆𝐾𝑆 (𝑥, 𝑥′) =

∑︁
𝑆⊆𝑁\∅

𝑑𝑆 ⟨𝜙𝑆 (𝑥), 𝜙𝑆 (𝑥′)⟩

=
∑︁

𝑆⊆𝑁\∅
⟨
√︁
𝑑𝑆𝜙𝑆 (𝑥),

√︁
𝑑𝑆𝜙𝑆 (𝑥′)⟩ = ⟨𝝓(𝑥), 𝝓(𝑥′)⟩

Thus, using the kernel 𝑲 amounts to searching a util-
ity function of the form 𝑢(𝑥) = ⟨𝒘, 𝝓(𝑥)⟩ + 𝑑∅ =∑

𝑆⊆𝑁\∅
√
𝑑𝑆 ⟨𝑤𝑆 , 𝜙𝑆 (𝑥)⟩ + 𝑑∅ where 𝒘 = (𝑤𝑆)𝑆⊆𝑁\∅ . Fi-

nally, we introduce an 𝐿1-regularization term on weight vec-
tor 𝑑 in the initial problem P𝑆𝑉𝑅. Since the weights are
positive, the 𝐿1-penalty is simply the sum of the weights.
Then, the obtained approximation problem, denoted P, is
the following:

(P) min 𝐶
∑︁
𝑗∈E

(𝜖+𝑗 + 𝜖−𝑗 ) +
∑︁

𝑆⊆𝑁\∅

1
2
∥𝑤𝑆 ∥2

2 + 𝜆
∑︁

𝑆⊆𝑁\∅
𝑑𝑆

𝑦 𝑗 −
∑︁

𝑆⊆𝑁\∅

√︁
𝑑𝑆 ⟨𝑤𝑆 , 𝜙𝑆 (𝑥 𝑗 )⟩ − 𝑑∅ ≤ 𝜖 + 𝜖+𝑗 , 𝑗 ∈ E (5)∑︁

𝑆⊆𝑁\∅

√︁
𝑑𝑆 ⟨𝑤𝑆 , 𝜙𝑆 (𝑥 𝑗 )⟩ + 𝑑∅ − 𝑦 𝑗 ≤ 𝜖 + 𝜖−𝑗 , 𝑗 ∈ E (6)

𝜖+𝑗 , 𝜖
−
𝑗 ≥ 0, 𝑗 ∈ E, 𝑑𝑆 ≥ 0, 𝑆 ⊆ 𝑁 \ ∅ (7)

where 𝜆 > 0 is a regularization hyper-parameter that controls
the level of sparsity we want to enforce on 𝑑.

Similarly to the SVR algorithm, one can apply Lagrangian
duality to recover a dual formulation of this problem. Let
𝛼+ = (𝛼+

𝑗
) 𝑗∈E , 𝛼− = (𝛼−

𝑗
) 𝑗∈E denote the positive dual vari-

ables respectively attached to the sets of constraints (5) and
(6) and 𝛽+ = (𝛽+

𝑗
) 𝑗∈E , 𝛽− = (𝛽−

𝑗
) 𝑗∈E , 𝜇 = (𝜇𝑆)𝑆⊆𝑁\∅ the

positive dual variables respectively attached to the sign con-
straints on the primal variables 𝜖+ = (𝜖+

𝑗
) 𝑗∈E , 𝜖− = (𝜖−

𝑗
) 𝑗∈E

and 𝑑 (constraints (7)). Let 1 denote the vector whose com-
ponents are all equal to one. Then, the vectorial formula-
tion of the Lagrangian function is L = 𝐶⟨1, 𝜖+ + 𝜖−⟩ +
1
2 ∥𝒘∥2

2+𝜆⟨1, 𝑑⟩+ ⟨𝛼
+,−𝜖1−𝜖++𝑌 − 𝝓̃𝒘−𝑑∅1⟩+ ⟨𝛼− ,−𝜖1−

𝜖− − 𝑌 + 𝝓̃𝒘 + 𝑑∅1⟩ − ⟨𝛽+, 𝜖+⟩ − ⟨𝛽− , 𝜖−⟩ − ⟨𝜇, 𝑑⟩ with
𝝓̃ = (𝝓(𝑥 𝑗)) 𝑗∈E the matrix that vertically stacks the vectors
𝝓(𝑥 𝑗) and 𝑌 = (𝑦 𝑗 ) 𝑗∈E . Also, the dual problem, denoted D,
is the following problem:

(D) max
(𝛼+ ,𝛼− ,𝛽+ ,𝛽− ,𝜇) ∈ (R+ ) 𝑡

min
𝜖 + , 𝜖 − ,𝒘,𝑑,𝑑∅

L

where 𝑡 = 4|E | + 2𝑛 − 1 is the number of dual variables. Due
to the square roots

√
𝑑𝑆 present in the mapping function 𝝓,

L is not differentiable w.r.t. 𝑑. However, since L is differen-
tiable w.r.t 𝜖+, 𝜖− , 𝒘 and 𝑑∅ , we have the following necessary
optimality conditions:

𝜕L
𝜕𝒘

= 𝒘 − 𝝓̃
⊺ (𝛼+ − 𝛼−) = 0 (8)

𝜕L
𝜕𝜖+

= 𝐶1 − 𝛼+ − 𝛽+ = 0,
𝜕L
𝜕𝜖−

= 𝐶1 − 𝛼− − 𝛽− = 0 (9)

𝜕L
𝜕𝑑∅

= ⟨1, 𝛼+ − 𝛼−⟩ = 0 (10)
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Using Equations 8, 9 and 10, we obtain that for any 𝑑:
𝑔(𝑑) = min𝜖 + , 𝜖 − ,𝒘,𝑑∅ L = ⟨𝛼+ − 𝛼− , 𝑌⟩ − 𝜖 ⟨1, 𝛼+ + 𝛼−⟩ +∑

𝑆⊆𝑁\∅ 𝑑𝑆 (𝜆 − 𝜇 − 1
2 (𝛼

+ − 𝛼−)⊺𝐾𝑆 (𝛼+ − 𝛼−)) with 𝐾̃𝑆 =

(𝐾𝑆 (𝑥 𝑗 , 𝑥𝑙)) 𝑗 ,𝑙∈E for any 𝑆 ⊆ 𝑁 \ ∅. Function 𝑔 is differen-
tiable w.r.t 𝑑, and thus for any 𝑆 ⊆ 𝑁 \ ∅, we can derive the
last necessary conditions:

𝜕𝑔

𝜕𝑑𝑆
= 𝜆 − 𝜇𝑆 − 1

2
(𝛼+ − 𝛼−)⊺𝐾𝑆 (𝛼+ − 𝛼−) = 0 (11)

Then, using Equations 8, 9, 10 and 11, and the positivity of
𝜇, 𝛽+, 𝛽− , the dual Problem D boils down to the following
optimization problem:

(D) max⟨𝛼+ − 𝛼− , 𝑌⟩ − 𝜖 ⟨1, 𝛼+ + 𝛼−⟩

𝜆 − 1
2
(𝛼+ − 𝛼−)⊺𝐾̃𝑆 (𝛼+ − 𝛼−) ≥ 0, 𝑆 ⊆ 𝑁 \ ∅ (12)

⟨𝛼+ − 𝛼− , 1⟩ = 0, (13)
𝛼+𝑗 , 𝛼

−
𝑗 ∈ [0, 𝐶], 𝑗 ∈ E

Provided that the kernel basis (𝐾𝑆)𝑆⊆𝑁\∅ is constructed with
a positive definite univariate kernel 𝑘 , the matrices 𝐾̃𝑆 are
positive semi-definite, and the dual problem is convex. Then
it is a convex quadratically constrained optimization prob-
lem and thus can be solved in polynomial time with interior
points methods using standard solvers. We can recover the
optimal weight values 𝑑𝑆 for any 𝑆 ⊆ 𝑁 \ ∅ and the inter-
cept 𝑑∅ by respectively accessing the dual values of the set
of constraints (12) and (13). Finally, using Equation 8, we
recover the learned utility function as follows:

𝑢(𝑥) =
∑︁

𝑆⊆𝑁\∅
𝑑𝑆

∑︁
𝑗∈E

(𝛼+𝑗 − 𝛼−
𝑗 )𝐾𝑆 (𝑥 𝑗𝑆 , 𝑥𝑆) + 𝑑∅

=
∑︁

𝑆⊆𝑁\∅
𝑢𝑆 (𝑥𝑆) + 𝑑∅

with 𝑢𝑆 (𝑥𝑠) = 𝑑𝑆
∑

𝑗∈E (𝛼+𝑗 − 𝛼−
𝑗
)𝐾𝑆 (𝑥 𝑗𝑆 , 𝑥𝑆), the sub-utility

attached to the group of attributes 𝑆. Then the presence of
a sub-utility 𝑢𝑆 in the decomposition of the utility function
𝑢 is equivalent to a non-null weight 𝑑𝑆 . We thus recover
simple decompositions by increasing the 𝐿1-penalty hyper-
parameter 𝜆 in problem D.

Retrieving an ANOVA Decomposition
Finally, we guarantee the identification of an ANOVA de-
composition by constraining the model so that

∫
𝑢𝑆𝑑𝑥𝑖 = 0

holds for all sub-utility factors 𝑢𝑆 , 𝑆 ⊆ 𝑁 \ ∅ and all 𝑖 ∈ 𝑆.
This is achieved by constructing an univariate kernel 𝑘0 (𝑥, 𝑦)
the integral of which (w.r.t 𝑥 or 𝑦) equals zero, as proposed
in (Durrande et al. 2013):

𝑘0 (𝑥, 𝑦) = 𝑘 (𝑥, 𝑦) −
∫
𝑠
𝑘 (𝑠, 𝑦)𝑑𝑠

∫
𝑡
𝑘 (𝑥, 𝑡)𝑑𝑡∫

𝑠

∫
𝑡
𝑘 (𝑠, 𝑡)𝑑𝑠𝑑𝑡

(14)

Then for any 𝑥 ∈ R,
∫
𝑘0 (𝑥, 𝑠)𝑑𝑠 = 0. Also, under mild

hypothesis on kernel 𝑘 , it can be shown that the attached ker-
nel 𝑘0 is still positive definite (Durrande et al. 2013). Then,

we can construct the associated basis of kernels (𝐾0
𝑆
)𝑆⊆𝑁\∅ ,

defined by:
𝐾0
𝑆 (𝑥𝑠 , 𝑦𝑠) =

∏
𝑖∈𝑆

𝑘0 (𝑥𝑖 , 𝑦𝑖)

For any 𝑥, 𝑦 ∈ [0, 1]𝑛, 𝑆 ⊆ 𝑁 \ ∅ and 𝑖 ∈ 𝑆 we have:∫
𝐾0
𝑆 (𝑥𝑆 , 𝑦𝑆)𝑑𝑦𝑖 =

∏
𝑗∈𝑆\{𝑖}

𝑘0 (𝑥 𝑗 , 𝑦 𝑗 )
∫

𝑘0 (𝑥𝑖 , 𝑦𝑖)𝑑𝑦𝑖 = 0

Then, using the centered kernel basis (𝐾0
𝑆
)𝑆⊆𝑁\∅ , each sub-

utility 𝑢𝑆 (𝑥𝑆) = 𝑑𝑆
∑

𝑗∈E (𝛼+𝑗 −𝛼−
𝑗
)𝐾0

𝑆
(𝑥 𝑗

𝑆
, 𝑥𝑆) is guaranteed

to have a zero integral with respect to 𝑥𝑖 whatever 𝑖 ∈ 𝑆. Thus,
the obtained decomposition is an ANOVA decomposition.

Remark that, in addition to be positive definite, the uni-
variate kernel 𝑘 is now required to verify

∫
𝑘 (𝑠, 𝑥)𝑑𝑠 < ∞

for any 𝑥 ∈ X and
∫ ∫

𝑘 (𝑠, 𝑡)𝑑𝑠𝑑𝑡 < ∞ so that 𝑘0 is well
defined (See Equation 14). Also, in practice, these inte-
grals have to be approximated with numerical integration.
To avoid unnecessary repeated computations, we use a dis-
cretized representation of function 𝑥 ↦→

∫
𝑘 (𝑠, 𝑥)𝑑𝑠 that

has been computed beforehand. Standard examples of uni-
variate kernels that can be used here are the Gaussian RBF
kernel 𝑘 (𝑥, 𝑦) = 𝑒−(𝑥−𝑦)2/2𝜎2 , the odd order B-spline kernel
𝑘 (𝑥, 𝑦) = 𝐵2𝑚+1 (𝑥−𝑦), 𝑚 ∈ N or the first order infinite spline
kernel 𝑘 (𝑥, 𝑦) = 1 + 𝑥𝑦 + 1

2 |𝑥 − 𝑦 | min(𝑥, 𝑦)2 + 1
3 min(𝑥, 𝑦)3

(Schölkopf and Smola 2002; Izmailov, Vapnik, and Vashist
2013).

As mentioned before, the advantage of the ANOVA de-
composition is that it is uniquely defined for a given 𝑢 and its
factors can be learned from examples as explained above.
However, although the use of penalization promotes the
emergence of sparse ANOVA representations, the obtained
representation can be further simplified by keeping only the
maximal factors (i.e., factors having a maximal scope with
respect to set inclusion), the others being included as subsets.
More precisely, the non-maximal factors can be aggregated
with the maximum factors containing them to reduce the
number of factors without loosing the well-formed nature of
the decomposition (see Definition 2). In the presence of two
or more maximal factors with a non-empty intersection 𝑆,
the factors whose scope is included in 𝑆 could be indiffer-
ently aggregated to any maximal factor containing them or
spread into all or part of them. Whatever the chosen option, it
yields to a well-formed GAI decomposition of 𝑢 that is possi-
bly more compact than the learned ANOVA decomposition.
Multiple GAI representations are therefore possible, sharing
the same maximal factors as ANOVA decomposition.

For the sake of illustration, let us come back to Example 1
and consider the ANOVA decomposition given in Equations
(2-4). By aggregating 𝑓1 (𝑥1) and 𝑓3 (𝑥3) to 𝑓13 (𝑥1, 𝑥3) and re-
marking that the sum of constant terms equals zero, function
𝑢 can be rewritten, after simplification, as the sum of 3 terms:
𝑢′′2 (𝑥2) = 𝑥2

2, 𝑢
′′
4 (𝑥4) = 𝑥4 and 𝑢′′13 (𝑥1, 𝑥3) = 𝑥2

1 + 2𝑥1𝑥3.

Numerical Experiments
This section presents the results of numerical tests performed
on synthetic and real-world preference data. We implement
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our method, called SMKGAI for Sparse Multiple Kernel
GAI, with the Gaussian RBF kernel using 𝜎 = 1. The toler-
ance threshold 𝜖 is set to 0.01 and the regularization hyper-
parameters 𝐶 and 𝜆 are selected by cross-validation using
a number of folds equal to 3. All tests are conducted on a
2.8 GHz Intel Core i7 processor with 16GB RAM and we
used the mathematical programming Gurobi solver (version
9.1.2).

Synthetic Data
We first show the result of the learning on synthetic data gen-
erated using a 6-dimensional model 𝑢(𝑥) = 𝑢1 (𝑥1) +𝑢2 (𝑥2) +
𝑢34 (𝑥3, 𝑥4) + 𝑢45 (𝑥4, 𝑥5). The factors 𝑢1 and 𝑢2 are taken as
quadratic spline functions and 𝑢34 and 𝑢45 are bivariate ten-
sor products of quadratic splines. To generate the factors we
use a basis of B-splines functions of zero integral forming
an ANOVA decomposition of 𝑢. We generate a set E of over-
all evaluations of size 70 from the hidden utility function 𝑢,
with a random uniform draw of alternatives 𝑥 𝑗 in [0, 1]𝑛. The
data is then perturbated with a centered Gaussian noise with
standard error 𝜎 = 0.05. In Figure 1 we represent the ground
truth utility factors in grey and the learned utility factors in
green.

Figure 1: Learned and ground truth utility factors 𝑢1(top left),
𝑢2 (top right), 𝑢34 (bottom left) and 𝑢45 (bottom right).

Secondly, we conduct an experiment using a model with a
high degree of interaction: 𝑢(𝑥) = ∑𝑛

𝑖=1 𝑥𝑖 +1000
∏𝑛

𝑖=1 𝑥𝑖 for
𝑛 = 6. In order to assess the benefit of allowing high inter-
actions in the learning of a GAI decomposition, we compare
SMKGAI with 𝑝-additive GAI utilities that do not use 𝐿1
regularization to select the most useful factors but that in-
clude factors of size at most 𝑝 for 𝑝 ∈ {1, 2, 3, 4}. The case
𝑝 = 1 corresponds to the learning of an additive utility. This
is done using the SVR algorithm, i.e., by solving the dual for-
mulation of the initial problem P𝑆𝑉𝑅, and using the ANOVA
kernel of degree 𝑝: 𝐾 =

∑
𝑆⊆𝑁, |𝑆 | ≤𝑝 𝐾

0
𝑆
. As in the previous

experiment, we generate, from the hidden utility function 𝑢,
random training sets E of noisy overall evaluations of size
70. In Table 1, we compare the generalizing performances of
SMKGAI and the one obtained with dense 𝑝-additive GAI
models (𝑝-GAI) over 20 simulations. The generalized per-
formances are measured as the mean absolute errors (MAE),
i.e. the average absolute differences between the normalized
ground truth utility and the predicted utility over test sets of
size 150. We also provide the computing times (sec.) for all
the methods. We observe that SMKGAI, by capturing the
interaction of size 𝑛, nearly divides by 10 the MAE com-
pared to the 𝑝-additive models. This is achieved for a time
that is only multiplied by 2 compared to the additive model
(1-GAI).

Finally, we perform an experiment on synthetic data gen-
erated with more general models for 𝑛 = 10. The models
are randomly generated as sums of 10 tensor products of
quadratic splines. In order to increase the complexity of the
hidden models, the maximal size of the factors (max. size)
is increased from 1 (additive utility) to 5. We perform 20
simulations and each time, we generate a set E of overall
evaluations of size 140 perturbated with a Gaussian centered
noise of standard error 𝜎 = 0.05. In Table 3 is represented
the MAE on test sets of size 150 along with the maximal size
of the learned factors and the False Discovery Rate (FDR),
which is computed as the percentage of selected factors in
the learned ANOVA decomposition that are not included in
any of the factors of the hidden function. We consider that
a factor 𝑆 ⊆ 𝑁 is selected as soon as the attached weight
𝑑𝑆 is higher than 0.01. As expected, we observe that the
MAE increases as the interaction degree (max size) of the
hidden model increases. However, our learning approach is
able to capture these interactions since the maximal size of
the learned factors increases similarly to the ground truth,
with a percentage of false inclusion (FDR) in the model that
stays below 20%.

Real-world Datasets
In this subsection, we test our method on real preference
datasets. We use standard multi-criteria decision-making
benchmarks containing overall evaluations of alternatives
described by continuous or discrete attributes. We use Em-
ployee Selection (ESL) which contains profiles and overall
psychological evaluations of job candidates, Lecture Evalua-
tion (LEV), containing examples of anonymous lecturer eval-
uations and Employee Rejection/Acceptance (ERA)1, which
contains the judgment of a decision-maker w.r.t candidate
profiles. Then from the UCI repository, we use CPU and Car
MPG (MPG) which respectively contain the performances
of CPU and the fuel consumption of cars, along with at-
tributes describing the objects. Finally, we use the Movehub
city ranking2 (CITY) dataset which contains overall evalua-
tions of cities quality. The number of evaluations |E | and the
number of attributes 𝑛 of each dataset is given in Table 4.

We compare SMKGAI to standard baselines from prefer-
ence modeling such as the linear regression, the 2-additive

1www.openml.org (ESL, LEV and ERA)
2www.kaggle.com/datasets/blitzr/movehub-city-rankings
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SMKGAI 1-GAI 2-GAI 3-GAI 4-GAI
MAE 0.0065 ± 0.0016 0.0381 ± 0.0088 0.0456 ± 0.0106 0.0560 ± 0.0129 0.0543 ± 0.0121

Training time (sec.) 75.48 ± 6.78 34.89 ± 2.35 42.92 ± 3.35 58.01 ± 4.73 70.75 ± 7.06

Table 1: Comparisons of the generalizing performances (MAE) and training times over 20 simulations for the product model.

Dataset Linear Regression 2-add Choquet Integral 1-GAI 2-GAI SMKGAI
ESL 0.08198 ± 0.00588 0.08488 ± 0.00498 0.08266 ± 0.00619 0.08426 ± 0.00725 0.08419 ± 0.00697
LEV 0.23540 ± 0.00551 0.25417 ± 0.01449 0.23163 ± 0.01295 0.17093 ± 0.01212 0.12381 ± 0.02662
ERA 0.24255 ± 0.00536 0.24256 ± 0.00698 0.20071 ± 0.01115 0.11817 ± 0.00932 0.04749 ± 0.00200
CPU 0.02795 ± 0.00357 0.01792 ± 0.00654 0.00888 ± 0.00209 0.00796 ± 0.00475 0.00805 ± 0.00455
MPG 0.06399 ± 0.00331 0.10113 ± 0.00557 0.05628 ± 0.01115 0.05355 ± 0.00656 0.05212 ± 0.00666
CITY 0.06282 ± 0.00861 0.06707 ± 0.00768 0.04855 ± 0.00916 0.05127 ± 0.00899 0.05054 ± 0.00893

Table 2: Mean absolute error (MAE) averaged over 20 random splits for SMKGAI and baseline methods.

Max size MAE Max size FDR
(true)

1 0.026 ± 0.012 1.0 ± 0.0 0.0 ± 0.0
2 0.036 ± 0.012 2.0 ± 0.4 0.011 ± 0.033
3 0.067 ± 0.013 3.0 ± 1.4 0.078 ± 0.115
4 0.085 ± 0.020 4.1 ± 1.0 0.198 ± 0.165
5 0.082 ± 0.015 4.2 ± 1.2 0.156 ± 0.124

Table 3: Model recovery assessment for growing interaction
degree of the hidden models in average over 20 simulations.

Dataset ESL LEV ERA CPU MPG CITY
𝑛 4 4 4 6 7 5
|E | 488 1000 1000 209 392 216

Table 4: Datasets’ number of attributes 𝑛 and examples E.

Choquet Integral (Grabisch and Labreuche 2010), and 𝑝-
additive GAI (𝑝-GAI) for 𝑝 = 1 and 𝑝 = 2. The attribute
values are normalized using a linear max-min normaliza-
tion. Each dataset is split to produce a training set containing
80% of the examples and a test set with the 20% left. For
20 random splits, we compute the MAE obtained on the test
set for each method and present the averaged results in Table
2. For each dataset, the best result is displayed in bold and
if there is another performance close to this result, it is also
displayed in bold. We can see that SMKGAI is attached to
the best average MAE or is very close to the optimal result,
except on the dataset ESL where the linear regression and
the additive utility (1-GAI) provide the best results. In partic-
ular, for the datasets LEV and ERA, SMKGAI outperforms
the baseline methods, showing the presence of interactions
between more than two attributes in the data. Also, for the
datasets CPU, MPG and CITY, it seems that SMKGAI is
able to adapt its complexity to the underlying data since it
provides results similar to the additive utility (1-GAI) or 2-
additive GAI (2-GAI) depending on the case.

Conclusion
We have presented a multiple kernel learning approach that
constructs a sparse GAI model from evaluation examples to

describe and explain the value system of a decision maker.
The core of the approach relies on the determination of a
sparse ANOVA decomposition of utilities obtained thanks
to the use of zero integral kernels. This decomposition can
be simplified afterward to produce a more compact and still
well-formed GAI decomposable utility that well fits the avail-
able preference information. The advantage of the proposed
approach is to be able to capture general interactions among
continuous or discrete attributes without prior restrictions on
the size of interacting factors. It makes it possible to fit model
complexity to the available preference information. The reg-
ularization used in the objective function ensures that model
complexity is kept as low as possible, given the descrip-
tive constraints imposed by preference data. As far as we
know, this is the first learning method able to learn both the
structure of the GAI decomposition (by identification of the
factors that really matter), and the utility functions defined
on these factors, that can handle continuous attributes and
that does not use prior restrictions on the cardinality of the
interactions. Also, note that the same approach can be eas-
ily implemented to extract the utility function from pairwise
preference/indifference examples.

In order to go further, some directions are worth inves-
tigating. In particular, for an interaction term 𝑓𝑆 present in
the ANOVA decomposition, it is likely that the subterms 𝑓𝑆′

for 𝑆′ ⊆ 𝑆 also appear in the ANOVA decomposition. Thus,
it could be of interest to implement a grouped hierarchical
regularization (Bach 2008) that would simultaneously cancel
𝑓𝑆 and its sub terms 𝑓𝑆′ , 𝑆′ ⊆ 𝑆, as suggested in (Durrande
et al. 2013). Another direction is to enhance the scalability of
the method w.r.t the number of attributes, since the number
of possible factors grows exponentially. One path could be
to bound from above the size of possible interacting factors.
Another possible path is to use an iterative optimization pro-
cedure based on projected gradient descent that successively
optimizes over the variables 𝛼+

𝑗
, 𝛼−

𝑗
and the weights 𝑑, as

proposed in (Rakotomamonjy et al. 2007).
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