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Abstract
Linear structural causal models (SCMs) are used to express
and analyse the relationships between random variables. Di-
rect causal effects are represented as directed edges and con-
founding factors as bidirected edges. Identifying the causal
parameters from correlations between the nodes is an open
problem in artificial intelligence. In this paper, we study
SCMs whose directed component forms a tree. Van der Zan-
der et al. give a PSPACE-algorithm for the identification
problem in this case, which is a significant improvement
over the general Gröbner basis approach, which has doubly-
exponential time complexity in the number of structural pa-
rameters. However, they do not show that their algorithm is
complete. In this work, we present a randomized polynomial-
time algorithm, which solves the identification problem for
tree-shaped SCMs. For every structural parameter, our algo-
rithms decides whether it is generically identifiable, generi-
cally 2-identifiable, or generically unidentifiable. (No other
cases can occur.) In the first two cases, it provides one or two
fractional affine square root terms of polynomials (FASTPs)
for the corresponding parameter, respectively. In particular,
our algorithm is not only polynomial time, but also complete
for for tree-shaped SCMs.

Introduction
Linear structural causal models (SCMs) model relationships
between random variables (Bollen 1989; Duncan 1975). We
are given random variables V0, V1, . . . , Vn, which depend
linearly on the other variables and an additional error term
ϵi, that is, we can write Vi =

∑
j λj,iVj + ϵi. The error

terms are normally distributed with zero mean and covari-
ances between the terms given by some matrix Ω = (ωi,j).
We consider only recursive models, i.e., for all j > i, we
have λj,i = 0. Such a model can be represented by a so-
called mixed graph: The nodes 0, . . . , n correspond to the
variables V0, . . . , Vn. Directed edges represent a linear influ-
ence λj,i of a parent node j on its child i. Bidirected edges
represent an additional correlation ωi,j ̸= 0 between the er-
ror terms.

Figure 1 shows a classical example of an SCM M1. A
change of V0 by 1 implies a change of λ0,1 of V1 and a
change of λ01λ12 of V2. The covariance σ01 between V0 and
V1 is thus λ01 and between V0 and V2, it is λ01λ12.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: SCM M1, a
classical IV example
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Figure 2: Tree-shaped SCM

More general, we write the coefficients of all directed
edges as a matrix Λ = (λi,j) and the coefficients of all bidi-
rected edges as Ω = (ωi,j). Then the matrix Σ = (σi,j) of
covariances between the variables Vi and Vj is given by

Σ = (I − Λ)−1Ω(I − Λ)−T , (1)

see e.g. Drton (2018). The reverse problem, the identifica-
tion of causal effects, is a major open problem. Given the
mixed graph and the matrix of covariances Σ, calculate the
matrix Λ. (By (1), this also identifies Ω.) We here deal with
what is called the identification problem: Is the number of
solutions for a particular λi,j finite and if yes, provide cor-
responding symbolic expressions for λi,j . If there is exactly
one solution for λi,j , we call λi,j identifiable, if there are k
solutions, we call it k-identifiable, and if there is an infinite
number of solutions, we call it unidentifiable.

There has been a considerable amount of research on
identification in linear SCMs in economics, statistics, and
artificial intelligence. Of particular interest here is the pio-
neering work by Pearl (2009) on the computational aspects
of identification and subsequent works. Most approaches are
based on instrumental variables (Bowden and Turkington
1990). In Figure 1, one can calculate λ1,2 =

λ0,1λ1,2

λ0,1
=

σ0,2

σ0,1
.

V0 is called an instrumental variable (IV) in this case. Since
IVs are not complete, that is, not all identifiable parame-
ters can be identified with IVs, more complex generaliza-
tions of IVs have been developed, for instance conditional
instrumental variables (Bowden and Turkington 1990; Pearl
2001; van der Zander, Textor, and Liśkiewicz 2015), instru-
mental sets (Brito and Pearl 2002a; Brito 2010; Brito and
Pearl 2002b; van der Zander and Liśkiewicz 2016), half-
treks (Foygel, Draisma, and Drton 2012), auxiliary instru-
mental variables (Chen, Pearl, and Bareinboim 2015), de-
terminantal instrumental variables (Weihs et al. 2018), in-
strumental cutsets (Kumor, Chen, and Bareinboim 2019), or
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auxiliary cutsets (Kumor, Cinelli, and Bareinboim 2020).
A major drawback of all criteria mentioned above is that

they are not complete, that is, there are examples where they
fail to identify a parameter that in principle is identifiable.
An alternative approach is to solve the system of polynomial
equations (1) using Gröbner bases (Garcı́a-Puente, Spielvo-
gel, and Sullivant 2010). By the properties of Gröbner bases,
this approach is complete, that is, it identifies all parameters
that are identifiable. However, Gröbner base algorithms typ-
ically have a doubly exponential running time and are often
too slow to be used in practice once the SCMs get larger.

Our Results
Since it seems to be difficult to find criteria that are complete
in general and can be decided in polynomial time, we restrict
the underlying graph class. Van der Zander et al. (2022) con-
sider tree-shaped SCMs M = (V,D,B). Here, the graph
(V,D) of directed edges forms a directed tree with root 0.
Figure 2 shows an example, but also Figure 1 is one with the
tree being a path. Van der Zander et al. (2022) propose an al-
gorithm for tree-shaped SCMs called TreeID, which works
by algebraically solving systems of equations. They prove
that their algorithm is a PSPACE algorithm (with potentially
exponential running time), a vast improvement over the gen-
eral Gröbner basis approach. However, they do not show that
their algorithm is complete.

In this work, we provide an algorithm which solves the
identification problem in tree-shaped SCMs in random-
ized polynomial time. Hence the problem can be solved in
BPP. For each variable λi,j , we can decide in randomized
polynomial time whether it is generically identifiable, 2-
identifiable, or unidentifiable. No other cases can occur. In
the first two cases, we present one or two rational expres-
sions that might contain a square root (a so-called FASTP).
Generically here means that the denominators are non-zero
expressions but can become zero when plugging in concrete
values. Generic identifiability is also called almost every-
where identifiability, see e.g. Garcı́a-Puente, Spielvogel, and
Sullivant (2010); Foygel, Draisma, and Drton (2012).

Every missing bidirected edge in M gives rise to a bilin-
ear equation. Van der Zander et al. (2022) show that if we
have a cycle of missing edges, then one can potentially iden-
tify or 2-identify the parameters of the directed edges enter-
ing the missing cycle. (Note that as the directed edges form
a tree, for every node i in V , there is exactly one directed
edge with head i. We will often relate the parameter λp,i of
the unique edge entering i to i itself and say that i is identi-
fiable.) However, one can be unlucky, and the missing cycle
does not identify any parameter. Therefore, van der Zander
et al. (2022) need to enumerate all cycles of missing edges,
which can be exponentially many.

As our first contribution, we present an algorithm which
can find an identifying missing cycle in randomized polyno-
mial time, avoiding the need to enumerate all cycles. This
is crucial to achieve polynomial running time. Second, we
relate the concept of missing cycles to the theory of resul-
tants. The crucial point here is that all equations that arise
from the missing edges have only two variables, which is es-
sentially the theory of plane algebraic curves, which is well

understood. This allows us to show the completeness of our
algorithm for tree-shaped models. Thus, tree-shaped SCMs
are a class of graphs with an identification algorithm that is
complete and has polynomial running time.

Due to space limitations, some proofs are omitted, which
is indicated by a “▷” at the end of a lemma or theorem.
Missing proofs can be found in the full version (Gupta and
Bläser 2023). A “□” at the end means that the proof has been
given in the text before the lemma or theorem.

Preliminaries
We consider mixed graphs M = (V,D,B) with n + 1
nodes V = {0, 1, . . . , n}. With each node we associate a
random variable Vi. D is the set of directed edges. We de-
note directed edges either by (i, j) or i → j. B is the set of
bidirected edges, which we denote by {i, j} or i ↔ j. We
only consider the case when M is acyclic, that is, (V,D) is
a directed acyclic graph. With each directed edge i → j,
we associate a variable λi,j and with every bidirected edge
u ↔ v a variable ωu,v . Let Λ and Ω be the corresponding
(n + 1) × (n + 1)-matrices. Since M is acyclic, we can
always assume that Λ is upper triangular. The matrix Ω is
symmetric. Let σi,j be the covariance between the random
variables corresponding to nodes i and j and Σ be the cor-
responding matrix. It is well known that the σi,j are polyno-
mials in the parameters λi,j and ωi,j , see (1). Since the σi,j

are polynomials in the λi,j and ωi,j , they are not indepen-
dent variables but might fulfill polynomial relations, which
we will explore.

For a given mixed graph M , the identification problem
asks to express the parameters λi,j in terms of the σi,j . We
consider the generic version of the problem, that is, the ex-
pressions that we provide for the λi,j have only to be defined
on an open set. A parameter λi,j is generically identifiable if
there is only one solution for λi,j , k-identifiable, if there are
k different solutions, and unidentifiable, if there is an infinite
number of solutions.

An important tool is Wright’s trek rule (Wright 1921,
1934): A trek in M between two nodes i and j is a path
(with edges from D and B) such that no two arrow heads
collide, that is, it is of the form i ← i1 ← · · · ← u ↔ v →
· · · → j1 → j or i← i1 ← · · · ← u→ · · · → j1 → j. The
part containing the i-nodes is the left part of the trek, the part
containing the j-nodes is the right part of the trek. With each
trek τ with associate a monomial M(τ), which is the prod-
uct of the edge labels. In the second case, we also multiply
the monomial with ωu,u. Wright’s rule says that the covari-
ances satisfy σi,j =

∑
τ M(τ), where the sum is taken over

all treks between i and j.

Results by Van der Zander et al.
For a mixed graph M = (V,D,B), the missing edge graph
is the undirected graph Mmiss = (V, B̄). (Here, B̄ denotes
the complement of B.) An edge e of Mmiss, i.e., e /∈ B, is
called a missing edge. Foygel, Draisma, and Drton (2012)
show that the missing edges are crucial for identification.
More precisely, in the case of tree-shaped mixed graphs with
0 ∈ V being the root, van der Zander et al. (2022, Lemma
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5) prove that a parameter λx,y is generically identifiable (k-
identifiable) iff the system of equations

λp,iλq,jσp,q − λp,iσp,j − λq,jσi,q + σi,j = 0 (2)
λp,iσ0,p − σ0,i = 0 (3)

has a unique solution for λx,y (k solutions, respectively).
Above, there is an equation for each missing edge i ↔ j
not involving the root and each missing edge 0↔ i. In each
equation, p denotes the unique parent of i and q the unique
parent of j in the tree (V,D). We will use this convention
frequently in the following. If there is a missing edge 0↔ i,
then λp,i is generically identifiable as λp,i = σ0,i/σ0,p.

Polynomial Identity Testing
We consider multivariate polynomials in indeterminates
x1, . . . , xn over some field. An arithmetic circuit is an
acyclic graph. The nodes with indegree 0 (input gates) are
labelled with variables or constants from a given field. The
inner nodes are either labelled with + (addition gate) or ∗
(multiplication gate). There is one unique node with out-
degree 0, the output gate. An arithmetic circuit computes a
polynomial at the output gate in the natural way, see Sapthar-
ishi et al. (2021) for more background. Such arithmetic cir-
cuits occur in our setting for instance as iterated matrix prod-
ucts or determinants with polynomials as entries.

Given a polynomial computed by an arithmetic circuit,
we want to know whether it is identically zero. This prob-
lem is known as polynomial identity testing (PIT). Note that
we cannot check this efficiently by simply computing the
polynomial at the output gate explicitly, since it can have
an exponential number of monomials. The Schwartz-Zippel
lemma provides an efficient randomized solution for PIT.

Lemma 1 (Schwartz 1980; Zippel 1979). Let p(x1, ..., xn)
be a non-zero polynomial of total degree≤ d over a field K.
Let S ⊆ K be a finite set and let a1, ..., an ∈ S be selected
uniformly at random. Then Pr(p(a1, a2, ..., an) ̸= 0)) ≥
1− d

|S| .

The error probability introduced by the Schwartz-Zippel
lemma can be easily controlled. Assume that the final algo-
rithm calls the Schwartz-Zippel lemma T times. Then we
choose a set S of size dT/ϵ. By the union bound, the overall
error probability is ≤ T · d

|S| = ϵ.
Besides polynomials, we will also consider fractional

affine square-root terms of polynomials (FASTP), as defined
by van der Zander et al. (2022). A FASTP is an expression
of the form p+q

√
s

r+t
√
s

, where p, q, r, t, s are polynomials given
by arithmetic circuits. Van der Zander et al. (2022, Lemma
2) prove that we can test whether a FASTP is the root of
a quadratic polynomial with polynomials as coefficients in
randomized polynomial time by reduction to Lemma 1.

The Rank of Edges
Let Mmiss = (V, B̄) denote the graph of missing bidirected
edges. Let i↔ j ∈ B̄ and consider the corresponding equa-
tion (2). We write the coefficients in this equations as a 2×2-
matrix

( σp,q σi,q
σp,j σi,j

)
.

Definition 2. The rank of a missing bidirected edge is the
rank of the corresponding 2× 2-matrix.

Recall that the σx,y are polynomials in the λx,y and ωx,y .
Above, by rank, we mean the rank over the corresponding
rational function field.

It turns out that rank-1 and rank-2 edges provide different
kind of equations. (We can ignore potential rank-0 edges,
since they only give trivial equations.) We will show in the
subsequent sections that rank-1 edges uniquely identify one
of the two parameters, but need not tell anything about the
other. Rank-2 edges do not identify any of the parameters
directly but can be used to transfer known values for one of
the parameters to the other parameter and vice versa.

Rank-1 Edges
If a missing edge i ↔ j has rank 1, then the left-hand side
of the corresponding equation (2) factorizes into two linear
terms.

Lemma 3. det
( σp,q σi,q
σp,j σi,j

)
= 0 if and only if λp,iλq,jσp,q −

λp,iσp,j − λq,jσi,q + σi,j factorizes. ▷

Rank-2 Edges
If a missing edge has rank 2, then λq,jσp,q − σp,j ̸= 0 as
a polynomial. If it were identically 0, then by plugging this
into (2), we get that λq,jσi,q − σi,j = 0, too. This is how-
ever a contradiction, since it yields a linear dependence be-
tween the two columns of

( σp,q σi,q
σp,j σi,j

)
. Thus, we can write

λp,i =
λq,jσi,q−σi,j

λq,jσp,q−σp,j
in the rank-2 case. The same is true

when we exchange the roles of λp,i and λq,j . This shows the
following:

Lemma 4. Let i ↔ j be a missing edge of rank two. Then
λp,i is generically identifiable (2-identifiable, unidentifiable)
if and only if λq,j is generically identifiable (2-identifiable,
unidentifiable, respectively).

Remark 5. If λq,j is determined by a rational expression, so
is λp,i. If λq,j is determined by a FASTP, so is λp,i. More-
over, the square root term is the same for λp,i and λq,j . ▷

Computing the Rank of an Edge
How do we check whether a matrix of the form

( σp,q σi,q
σp,j σi,j

)
has rank 1 or 2? We can compute the entries of this ma-
trix by computing (I −Λ)−1Ω(1−Λ)−T and then compute
the determinant, which will be a polynomial in the λs,t and
ωs,t. This can be done using a polynomial-sized arithmetic
circuit. However, we cannot compute this polynomial ex-
plicitly, since intermediate results might have an exponential
number of monomials.

Luckily, this is an instantiation of the polynomial identity
testing problem, and by Lemma 1, it is sufficient to replace
the indeterminates by random numbers chosen from a large
enough set. The resulting determinant can be computed in
polynomial time, since the numbers are all small. We get:

Lemma 6. Given a mixed graph M = (V,B,D) and a
missing edge i ↔ j, there is a randomized polynomial time
algorithm that determines the rank of i↔ j.
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Composition and Elimination
Van der Zander et al. (2022) show that each missing edge
not involving the root 0 gives a bilinear equation in λp,i and
λq,j , see (2). In the following three sections, we study this
problem in a more abstract setting: We are given a set of in-
determinates X and a set of bilinear equations such that each
equation contains exactly two indeterminates. For each pair
of variables, there is at most one such equation. Therefore,
we can view the problem as an undirected graph G with node
set X and there is an edge connecting two nodes iff there is
an equation involving these two variables. We will assume
that G is connected, since if not, we can treat each connected
component separately.

Let

axy − bx+ cy − d = 0, (4)
Ayz −By + Cz −D = 0 (5)

be two such bilinear equations, sharing the indeterminate y.
If we want to eliminate y, we can write (assuming all de-
nominators are nonzero)

y =
bx+ d

ax+ c
, z =

By +D

Ay + C

and obtain by plugging the first equation into the second

z =
(Bb+Da)x+ (Bd+Dc)

(Ab+ Ca)x+ (Ad+ Cc)
. (6)

The new coefficients are given by the entries of the matrix
product (B D

A C ) ( b d
a c ) =

(
Bb+Da Bd+Dc
Ab+Ca Ad+Cc

)
. This is the well-

known composition of Möbius transforms, see e.g. Krantz
(1999). The definition of a Möbius transform requires that
the 2× 2-matrix is invertible, that is, we have a rank-2 edge.

We can get a meaningful interpretation even in the case of
rank-1 edges if we use the language of resultants (Gelfand,
Kapranov, and Zelevinsky 1994; Cox, Little, and O’Shea
1997), a standard tool for solving polynomial equations.
Write both equations as polynomial equations in the vari-
able y with coefficients in R[x, z]:

f(y) = (ax+ c)y − (bx+ d) = 0,

g(y) = (Az −B)y + (Cz −D) = 0.

The resultant w.r.t. y of the two polynomials is

Resy(f, g) = det

(
−(bx+ d) ax+ c
Cz −D Az −B

)
= −(Ab+ Ca)xz + (Bb+Da)x

− (Ad+ Cc)z +Bd+Dc.

The fact that Resy(f, g) = 0 can be rewritten as

(Ab+ Ca)xz + (Ad+ Cc)z = (Bb+Da)x+Bd+Dc,

which is equivalent to (6).
When eliminating the variable y in (4) and (5) we implic-

itly assume a “direction” in the process, the starting variable
is x and we want to express z in terms of x. We can also
do the opposite and express x in terms of z. In this case all
matrices are replaced by their adjoints.

y

x

u

z

M(z,x) = ( 1 0
0 1 )

M(x,y) = ( 1 0
2 1 ) M(x,u) = ( 1 2

2 1 )

M(y,z) =
(

1 0
−2 1

)
M(u,z) =

(
1 −1
0 1

)
Figure 3: An example of the graph G⃗. For simplicity, we
show only one weight for each pair of edges between two
nodes. The other edge has the corresponding adjoint matrix
as weight.

This suggests the following modelling as an edge labeled
directed graph G⃗. The node set is again the set of variables
X . Assume there is an equation involving x and y like in
(4). We add a directed edge (x, y) with weight ( b d

a c ) and the
reverse edge (y, x) with weight

(
c −d

−a b

)
. Call the resulting

set of directed edges E. For an edge e ∈ E, let Me denote
the corresponding weight. The corresponding polynomial is
called fe. Note that the polynomial is the same irrespective
of the direction of the edges, but the weights are different,
they are the adjoint matrices of each other. Figure 3 shows
an example of such a graph G⃗.

Lemma 7. Let x1, . . . , xt be a simple directed path in G⃗.
Then the coefficients of

Resxt−1(. . .Resx3(Resx2(f(x1,x2), f(x2,x3)),

f(x3,x4)), . . . , f(xt−1,xt)).

are given by M(xt−1,xt) · · ·M(x2,x3) ·M(x1,x2). ▷

Identification Using Cycles
We can identify a variable, if we close the path in Lemma 7
by adding an edge (xt, x1), obtaining a (simple) cycle. This
corresponds to an equation

x1 =
bx1 + d

ax1 + c
or ax2

1 + (c− b)x1 − d = 0

where the coefficients are given by the matrix product
M(xt,x1) ·M(xt−1,xt) · · ·M(x2,x3) ·M(x1,x2).

Lemma 8. Let G⃗ be as above and let x1, . . . , xt, x1 be a
directed cycle in G⃗. Let ( b d

a c ) be the product M(xt,x1) ·
M(xt−1,xt) · · ·M(x2,x3) ·M(x1,x2).
1. If a ̸= 0, then x1 has at most two solutions (depending

on the discriminant).
2. If a = 0 but c− b ̸= 0, then x1 has exactly one solution.
3. If a = c− b = 0 but d ̸= 0, then there is no solution.
4. If a = c − b = d = 0, then x1 has infinitely many solu-

tions. ▷
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(In our application, case 3 cannot happen, since we as-
sume that the covariances are in accordance with the model.)
Remark 9. a = c − b = d = 0 in item 4 of Lemma 8 is
equivalent to the statement that ( b d

a c ) is a multiple of the
identity matrix.

Definition 10. We call a cycle in Lemma 8 that satisfies the
first or second condition identifying.

Example 11. The cycle x → z → y → x in Figure 3 is
not identifying, since M(z,x)M(y,z)M(x,y) = ( 1 0

0 1 ). On the
other hand, the cycle x → u → z → x is identifying, since
M(z,x)M(u,z)M(x,u) =

(−1 1
2 1

)
Now assume that the system of polynomial equations of

G has a finite number of solutions. Then there is a subset
of size n of these equations, such that this system has a fi-
nite number of solutions, where n := |X| is the number of
variables. Graph-theoretically, a graph on n nodes with n
edges consists of connected components such that each con-
nected component has the same number of nodes and edges.
A connected component with c nodes and c edges is an undi-
rected tree with one additional edge which creates a cycle.
The system of the equations which belong to the edges of the
cycle has a finite number of solutions, too. (This follows eas-
ily, since every variable not in the cycle appears in only one
equation.) It is well-known (Cox, Little, and O’Shea 1997)
that such a system of polynomial equations has a finite num-
ber of solutions if the iterated resultant of the polynomials
(as in Lemma 7) is nonzero. By the correspondence between
resultants and matrix products (Lemma 7) we get:

Lemma 12. If the system of equations given by G has
finitely many solutions, then G⃗ has an identifying cycle.

We also have a converse in the case when all edges in G
are rank-2 edges.

Lemma 13. Let all edges in G be rank-2 edges. If there is
an identifying cycle in G⃗, then the system of equations given
by G has a finite number of solutions. ▷

Remark 14. Note that from the proof of Lemma 13 it even
follows that the number of total solutions is the number of
solutions for x1.

Finding Identifying Cycles
A directed walk in a directed graph G⃗ = (X,E) is a se-
quence of nodes x0, . . . , xt (potentially with repetitions)
such that (xi, xi+1) is an edge in G⃗ for all 0 ≤ i < t. t is
the length of the walk. A walk with no repetitions is called a
path. A walk is closed if x0 = xt.

Now assume that each edge e in G⃗ has a weight we. Let
W be the weighted adjacency matrix, that is, the entry in
position (i, j) is w(vi,vj) if (vi, vj) ∈ E and 0 otherwise.
(We assume w.l.o.g. that X = {v1, . . . , vn}.) For a walk
p consisting of nodes x1, . . . , xt, the weight p is defined
as w(p) = w(x1,x2) · · ·w(xt−1,xt), that is, the product of
the edge weights. The weights can come from any ring. In
the light of the previous section, we will choose the ring
R[σi,j ]

2×2, the ring of 2 × 2-matrices with polynomials in
the σi,j as entries, which are itself polynomials in the λi,j

u(0)

x(0)

y(0)

z(0)

u(1)

x(1)

y(1)

z(1)

u(2)

x(2)

y(2)

z(2)

u(3)

x(3)

y(3)

z(3)

Figure 4: The layered graph G⃗(3) corresponding to G⃗ from
Figure 3. Weights are not drawn for simplicity. The bold blue
path in this graph corresponds to the identifying cycle x →
u→ z → x.

and ωi,j . Note that this ring is not commutative, so the order
in which we multiply the weights matters.

Fact 15. The entry of W t in position (i, j) is the sum of the
weights of all directed walks of length t from vi to vj .

For a proof, see Stanley (2018). If the edge weights for
instance are all 1, then the entry of the matrix power W t

in position (i, j) just counts all walks of length t from vi to
vj . However, the weights of different paths might not simply
add up as in this simple case, but the weights of the all walks
from vi to vj may add up to 0. So the entry of W t in position
(i, j) is zero, but there are walks from vi to vj . Therefore,
we extend the weights to make every walk unique. Given the
directed graph G⃗ = (X,E), we construct a layered version
G⃗(t) = (X(t), E(t)) of it. For every node vi ∈ V , there are
t+ 1 copies v(0)i , . . . , v

(t)
i . And for each edge (vi, vj) ∈ E,

there are t copies (v
(k)
i , v

(k+1)
j ), 0 ≤ k < t. We call all

nodes with superscript k the kth layer of G⃗(t). Edges only
go from one layer to the next. One can think of the layers as
being time steps. In G⃗(t), every walk is necessarily a path,
since we cannot take an edge twice due to the layered struc-
ture. Figure 4 shows the layered graph corresponding to the
graph in Figure 3.

Observation 16. There is a one to one correspondence be-
tween walks of length t from vi to vj in G⃗ and paths from
v
(0)
i to v

(t)
j in G⃗(t).

If (vi, vj) has weight w(vi,vj) in G⃗, then all edges

(v
(k)
i , v

(k+1)
j ), 0 ≤ k < t, have weight w(vi,vj) in G⃗(t).

For a walk p in G⃗ of length t, let q be the corresponding
path in G⃗(t). We have w(p) = w(q), so the cancellation
problem is still there. We resolve this problem by extend-
ing the weight function of G⃗(t). Let x(k)

i,j , 1 ≤ i, j ≤ n,
1 ≤ k ≤ t, be new indeterminates. The new weight of the
edge (v

(k)
i , v

(k+1)
j ) is ŵ(v

(k)
i , v

(k+1)
j ) = x

(k+1)
i,j w(vi, vj)

So if the original weights are from some ring R, the new
weights are now from the polynomial ring R̂ := R[x

(k)
i,j ].
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Observation 17. Let p be a walk in G⃗ that visits the nodes
vi0 , . . . , vit in G⃗ in this order. Let q be the correspond-
ing path in G⃗(t). Then ŵ(q) =

∏t
k=1 x

(k)
ik−1,ik

w(p). In this
way, each path q with w(p) ̸= 0 gets a unique weight (in
R̂), since the monomial

∏t
k=1 x

(k)
ik−1,ik

exactly describes the
edges taken in q.

Example 18. If we identify the nodes u, x, y, z with
v1, v2, v3, v4 in Figure 4, then the bold blue path has weight
x
(1)
2,1x

(2)
1,4x

(3)
4,2 ·

(−1 1
2 1

)
.
(−1 1

2 1

)
is the original weight in G⃗ and

x
(1)
2,1x

(2)
1,4x

(3)
4,2 is the unique label of the path.

Let Ŵ be the weighted adjacency matrix of G⃗(t) using the
weights ŵ. By Fact 15 and Observation 17 we have:

Lemma 19. The entry of Ŵ t corresponding to the nodes
v
(0)
i and v

(t)
j is the sum of all

∏t
k=1 x

(k)
ik−1,ik

w(p) over all

walks p of length t from vi to vj in G⃗ (interpreted as a path
in G⃗(t) using Observation 16).

The matrix Ŵ has size (t+1)n. However, due to the lay-
ered structure of G(t), it has a special structure: It has a block
structure with Ŵ1, . . . , Ŵt being the only nonzero n × n

blocks above the main diagonal. Each block Ŵk contains the
weights of the edges between layer k− 1 and k. It is easy to
check that Ŵ t has only non-zero block, which is in the top
right and contains the matrix Ŵ1 . . . Ŵt. Therefore, instead
of raising Ŵ to the tth power, we can simply compute the
iterated product Ŵ1 . . . Ŵt, which is more efficient.

Polynomial Identity Testing
Checking whether some entry in the iterated product
Ŵ1 . . . Ŵt is nonzero is an instance of PIT. Note that in
Lemma 7, the weights are multiplied from the left. This is
not a problem, since we can simply transpose all 2 × 2-
matrices and use the fact that (AB)T = BTAT .

Lemma 20. There is a randomized polynomial time algo-
rithm which given a node vi checks whether vi lies on an
identifying closed walk of length at most t. ▷

Selfreducibility
Note that while we now have an algorithm to test whether
there is an identifying closed walk, this algorithm does not
construct the identifying closed walk. Furthermore, an iden-
tifying closed walk is not necessarily a simple cycle. How-
ever, our interpretation in terms of resultants in Lemma 7 is
only valid for simple cycles.

The first problem can be solved using a technique called
selfreducibility. We remove an arbitrary edge from the graph
and check whether there is still an identifying closed walk.
If yes, we can safely remove the edge. If not, we know that
the edge is in every remaining identifying closed walk and
we keep it. The edges that remain will form an identifying
closed walk.

The second problem will be solved by the following
lemma:

Algorithm 1: Finding identifying cycles

Input: A graph G⃗ = (X,E)
Output: An identifying cycle

1: for t = 1, . . . , n do
2: Build the corresponding graph G⃗(t) and matrix Ŵ .
3: Replace all indeterminates by random values accord-

ing to the Schwartz-Zippel lemma.
4: Compute Ŵ1 · · · Ŵt.
5: Check whether there is an identifying closed walk us-

ing Lemma 20 for i = 1, . . . , n.
6: if there is such a walk then
7: Compute such a walk p using selfreducibility.
8: return p
9: return no solution

Lemma 21. The shortest identifying closed walk in G is
always a cycle. ▷

An Algorithm for Finding Identifying Cycles
Algorithm 1 summarizes the results of this section.

Lemma 22. Algorithm 1 finds an identifying cycle if there
is one. It runs in randomized polynomial time. ▷

Identification Using Rank-1 Edges
We consider a missing edge i↔ j of rank 1. Again, p is the
parent of i and q of j in the directed graph (V,D). We will
show that a rank-1 edge always uniquely identifies one of
the nodes (and need not provide any information about the
other node, since when we plug in the unique value in the
equation, the equation will be identically 0).

Definition 23. Let U,W be two sets of nodes. A pair (S, T )
of sets of nodes trek-separates U and W if every trek from
any i ∈ U to any j ∈W intersects S on its left side or T on
its right side.

Theorem 24 (see Drton 2018, Theorem 11.1). The subma-
trix with rows corresponding to U and columns correspond-
ing to W has (generic) rank≤ r if there is a pair (S, T ) with
|S|+ |T | ≤ r such that (S, T ) trek-separates (U,W ).

In our case U = {i, p} and W = {j, q} (p and q can
be potentially the same). We are interested when

( σp,q σi,q
σp,j σi,j

)
has rank 1. In this case either S or T consists of one node
and the other set is empty. The situation is symmetric, so we
assume that |T | = 1. T cannot be {j}, since then the trek
from i to q (consisting only of directed edges) is not sep-
arated. Let 0, p1, . . . , pt, p, i be the directed path from the
root 0 to i. The trek consisting of the left side being any suf-
fix of this path starting in node x ∈ {0, p1, . . . , pt, p, i} and
the bidirected edge x ↔ j is not trek-separated by (S, T ).
Therefore, all bidirected edges x↔ j are missing! See Fig-
ure 5 for an illustration.

We will now prove that all these missing edges are useless
for identifying any of the λ-parameter in the directed path.
• As 0↔ j is missing, we can identify λq,j =

σ0,j

σ0,q
.
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λ0,p1

λq,j

Figure 5: If the missing edge i ↔ j has rank 1, then all the
other blue edges have to be missing by trek-separability. The
best choice for T is T = {q} (drawn yellow).

• Since p1 ↔ j is missing, we get by (2)

λ0,p1λq,jσ0,q − λ0,p1σ0,j − λq,jσp1,q + σp1,j = 0.

Plugging in λq,j =
σ0,j

σ0,q
, we get σ0,jσp1,q − σ0,qσp1,j =

0. Thus this edges does not yield any information about
λ0,p1

(and we already identified λq,j). Furthermore, the
equation means that the missing edge p1 ↔ j is rank-1,
too, and we get that λq,j =

σ0,j

σ0,q
=

σp1,j

σp1,q
.

• We can go on inductively until we reach the node p and
get λq,j =

σ0,j

σ0,q
= · · · = σp,j

σp,q
.

• Finally, since the edge i↔ j is missing,

λp,iλq,jσp,q − λp,iσp,j − λq,jσi,q + σi,j = 0.

Plugging in λq,j =
σp,j

σp,q
, we get σp,jσi,q − σp,qσi,j = 0

and the equation does not depend on λp,i.
There is the special case that p = q. Then q lies on any

directed path to i. However, this does not matter in the def-
inition of trek-separation, since the set T = {q} can only
intersect the right side of a trek. Finally i could be a prede-
cessor of j (or vice versa). This is treated similarly.

Lemma 25. For every missing rank-1 edge i↔ j, the edges
0 ↔ i or 0 ↔ j (or both) are missing. The corresponding
expressions satisfy the equation of the edge i↔ j.

Corollary 26. Let C be a connected component of the miss-
ing edge graph. If C contains a rank-1 edge, then C also
contains the root.

The Final Algorithm
Algorithm 2 solves the identification problem. For each
λp,i is decides in randomized polynomial time whether λp,i

is generically identifiable, 2-identifiable, or unidentifiable.
(Other cases cannot occur.)

Theorem 27. Algorithm 2 is correct.

Proof. Consider a variable λp,i. First assume that i is con-
tained in a rank-1 missing edge i ↔ j. If i is connected to
the root in Mmiss, then i is identified by (3). If i is not con-
nected to the root, then j is. The solution for j satisfies the
equation by Lemma 25. Therefore, it will not be useful for
identifying λp,i. Thus we can safely remove all rank-1 edges
in step 3. Assume that λp,i is not identified by a rank-1 edge.

Algorithm 2: Identification
Input: A tree-shaped mixed graph M = (V,D,B)
Output: For each λp,i, we decide whether it is generically
identifiable, 2-identifiable, or unidentifiable. In the first two
cases, we output FASTPs for λp,i.

1: Find all rank-1 edges in the missing edge graph (V, B̄)
(using Lemma 6).

2: For each missing rank-1 edge i ↔ j, check which
of the parameters λp,i or λq,j we can identify (using
Lemma 25). Mark the node i or j, respectively, and
compute a corresponding rational expression.

3: Remove all rank-1 edges from the missing edge graph.
Call the resulting graph H . Let C1, . . . , Ct be the con-
nected components of H .

4: for each connected component Ci do
5: if Ci contains a marked node then
6: Propagate the result to all unidentified nodes in Ci

and produce corresponding rational expressions.
7: else
8: Find an identifying cycle in Ci (by Algorithm 1).
9: If no such cycle is found, report that all nodes of

Ci are unidentifiable.
10: If the cycle produces one solution, then progagate

it to all the nodes of Ci and compute corresponding
rational expressions.

11: If the cycle produces two solutions, then propagate
it to all the nodes of Ci and compute corresponding
FASTPs.

12: Plug the FASTPs into the equations of Ci and use
PIT to check whether all equations are satisfied. If
yes, keep the solution, otherwise, drop it.

If the rank-2 component of λp,i contains a marked node,
which is identifiable, then each node in this component is
identifiable by Lemma 4. And by the subsequent Remark 5,
we also get a rational expression.

If there is no marked node in the component, then the
nodes in the component are k-identifiable iff there is an iden-
tifying cycle by Lemmas 12 and 13. If such a cycle is found,
it can have either one or two solutions by Lemma 8. These
one or two solutions can be propagated using Lemma 4 and
Remark 5. Note that we get in total at most two solutions for
the component, given by FASTPs (see Remark 14). If there
is only one solution, then we are done. If there are two so-
lutions, we plug them into all equations of the component
and see whether they both satisfy all equations or just one of
them. In the second case, λp,i is identifiable. In the first case,
it is 2-identifiable, but not identifiable. (Note that we do not
have to check equations of other components, since they do
not contain any variables of the present component). We can
check whether two FASTPs satisfy a bilinear equation using
the test by van der Zander et al. (2022, Lemma 2), since both
FASTPs have the same square root term by Remark 5.

If there is no identifying cycle, then the nodes are uniden-
tifiable by Lemma 12. Thus the algorithm is correct.

The running time of Algorithm 2 is clearly polynomial.
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Liskiewicz, M. 2022. Identification in Tree-shaped Lin-
ear Structural Causal Models. In Camps-Valls, G.; Ruiz, F.
J. R.; and Valera, I., eds., International Conference on Artifi-
cial Intelligence and Statistics, AISTATS 2022, 28-30 March
2022, Virtual Event, volume 151 of Proceedings of Machine
Learning Research, 6770–6792. PMLR.
Weihs, L.; Robinson, B.; Dufresne, E.; Kenkel, J.; McGee II,
K. K. R.; Reginald, M. I.; Nguyen, N.; Robeva, E.; and Dr-
ton, M. 2018. Determinantal generalizations of instrumental
variables. Journal of Causal Inference, 6(1).
Wright, S. 1921. Correlation and causation. J. Agricultural
Research, 20: 557–585.
Wright, S. 1934. The method of path coefficients. The An-
nals of Mathematical Statistics, 5(3): 161–215.
Zippel, R. 1979. Probabilistic algorithms for sparse polyno-
mials. Symbolic and algebraic computation, 216–226.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20411


