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Abstract

Many decision and optimization problems have natural exten-
sions as counting problems. The best known example is the
Boolean satisfiability problem (SAT), where we want to count
the satisfying assignments of truth values to the variables,
which is known as the #SAT problem. Likewise, for dis-
crete optimization problems, we want to count the states on
which the objective function attains the optimal value. Both
SAT and discrete optimization can be formulated as selective
marginalize a product function (MPF) queries. Here, we show
how general selective MPF queries can be extended for model
counting. MPF queries are encoded as tensor hypernetworks
over suitable semirings that can be solved by generic tensor
hypernetwork contraction algorithms. Our model counting
extension is again an MPF query, on an extended semiring,
that can be solved by the same contraction algorithms. Model
counting is required for uniform model sampling. We show
how the counting extension can be further extended for model
sampling by constructing yet another semiring. We have im-
plemented the model counting and sampling extensions. Ex-
periments show that our generic approach is competitive with
the state of the art in model counting and model sampling.

Introduction
The marginalize a product function (MPF) framework was
formally introduced by Aji and McEliece (2000) who had
observed that surprisingly many applications in signal pro-
cessing (Kalman 1960; Viterbi 1967; Kschischang and Frey
1998; Aji 2000), probabilistic and causal inference (Baum
1972; Pearl 1993), and natural language processing (Sutton
and McCallum 2012) fall within the same algorithmic mes-
sage passing framework. The MPF framework is also known
as algebraic model counting (Kimmig, Van den Broeck, and
De Raedt 2017).

The prototypical MPF query is computing marginals of
discrete Markov random fields. A Markov random field is a
multivariate probability distribution p on a discrete sample
space that factors as

ppx1, . . . , xnq “
m
ź

j“1

qjpx|Jq,
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where x|J is the projection of px1, . . . , xnq onto its elements
indexed by J Ă rns “ t1, . . . , nu. The marginal of p on the
index set I is given by the following sum over a product of
functions,

pIpx|Iq “
ÿ

x1:x1
|I
“x|I

m
ź

j“1

qj
`

x1|J
˘

.

A different, but closely related type of inference query asks
for the probability of a most likely element in the sample
space, that is,

max
x

m
ź

j“1

qjpx|Jq,

which, as it turns out, is also an MPF query, when we re-
place additions by maximizations. In the MPF abstraction,
computations are on semirings pS,‘,bq, which generalize
the standard sum-product semiring pR,`, ¨q. Here, the stan-
dard sum-product semiring is used for computing marginals,
and the maximization query is using the Viterbi semiring
`r0, 1s,max, ¨˘.

There are, however, problems that can not be directly
solved by MPF queries. For instance, the maximization
query for Markov random fields is often not the query we are
most interested in. Instead of the maximum value we typi-
cally want to get a model, that is, an element x from the sam-
ple space that maximizes the function. Therefore, we want
to answer the query

argmaxx
m
ź

j“1

qjpx|Jq,

which is not an MPF query. For solving this query, the algo-
rithms for answering MPF queries need to be adapted. The
adaptions exploit the fact that the max-operation is selective,
that is, it always returns one of its arguments.

Here, we show that adapting the algorithms can be
avoided. We present a general framework for lifting MPF
queries over selective semirings into MPF queries for model
counting and model sampling. The framework is sketched
in Figure 1. It builds on a construction scheme for semiring
extensions that combines a selective semiring on which we
want to serve an MPF query with a second semiring that

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20395



Semirings:

MPF queries:

Algorithm:

Results:

pS,‘,bq pS ˆ Nˆ X ,‘,bq
ψ ψ‹

black-box algorithm

solution in S solution in S
model count in N

model sample in X

lifting

Figure 1: A generic framework for lifting MPF queries ψ
over selective semirings pS,‘,bq into MPF queries ψ‹ for
model counting and sampling. The lifted queries can be an-
swered by the same black box algorithm that is used for an-
swering the original MPF query. Only the semiring S needs
to be replaced by the extended semiring pSˆNˆX ,‘,bq.

is used to track additional information like sets of models
or numbers of models. Model counting and sampling then
themselves become MPF queries over extended semirings.
Therefore, the algorithms for answering MPF queries can
also be used for model counting and sampling without
changes. The (black-box) algorithms just need to be instan-
tiated with the appropriate semiring.

For the experimental evaluation of our generic model
counting and sampling framework, we have implemented
the semiring extension and used it together with a vanilla
tensor network contraction algorithm. With this implemen-
tation we can improve the virtual best solver on the actively
researched model counting and sampling problems for the
Boolean satisfiability problem.

Related work. Generalizations of the MPF framework
such as functional aggregate queries (FAQ) and aggrega-
tions and joins over annotated relations (AJAR), which use
more than one aggregation operation, have been discussed
by Khamis, Ngo, and Rudra (2016) and Joglekar, Putta-
gunta, and Ré (2016), respectively. Our selective semiring
extension can be used also with selective aggregation op-
erations in these frameworks. Other frameworks that are
parameterized by semirings are path problems in net-
works (Baras and Theodorakopoulos 2010) and semiring-
based constraint satisfaction problems (Bistarelli, Monta-
nari, and Rossi 1997; Kohlas and Wilson 2008). Both frame-
works can also be used with our selective semiring exten-
sion, when they are instantiated with a selective semiring,
such as the min-norm semiring (Sanmartín, Damrich, and
Hamprecht 2022) for path problems.

MPF Queries
We need the following notation to formally introduce MPF
queries. Throughout this article, D is a tuple pd1, . . . , dnq of
natural numbers, rdis denotes the set t1, . . . , diu, and rDs
denotes the Cartesian product rd1s ˆ ¨ ¨ ¨ ˆ rdns. For a sub-
set J Ď rns, DJ is the projection of D onto its compo-
nents indexed by J . MPF queries are performed on discrete
functions f : rDs Ñ S, where pS,‘,bq is a commuta-

tive semiring. We call ‘ the aggregation and b the com-
bination operation on S. A formal definition of commuta-
tive semirings is included in the supplemental material. For
brevity, in the following, semiring always means commuta-
tive semiring.
Definition 1 (MPF Query (Aji and McEliece 2000)). Let
f : rDs Ñ S be a function that decomposes as

fpxq “
m
â

j“1

fjpxq,

where each fj is a function defined on a projection rDJ s of
rDs and x is implicitly projected to x|J . For a non-empty
subset I Ď rns and y P rDrnszI s, a marginalize a product
function (MPF) query asks to compute the aggregation

ψpyq “ à

xPrDI s

m
â

j“1

fj
`

y, x
˘

.

Here, we only consider the case I “ rns, which means
that the result ψ “ À

x

Âm
j“1 fjpxq of the MPF query is

a scalar, that is, an element in S. We also assume that the
functions fj have unique domains, which is not a restric-
tion, because if two functions have the same domain, then
we can just replace them by their combination. Furthermore,
we only consider selective semirings. The aggregation oper-
ation ‘ in selective semirings always satisfies
s1 ‘ s2 P ts1, s2u.

For MPF queries on selective semirings, not only the
query result ψ is of interest, but also the elements in the do-
main rDs on which ψ attains this value. These elements are
called models. Selective MPF queries can have more than
one model, which also makes model counting and model
sampling interesting problems.

Formally, given a selective MPF query ψ, the model count
of ψ is given as

MCpψq “
ÿ

x

1

«

m
â

j“1

fjpxq “
à

x1

m
â

j“1

fjpx1q
ff

,

where the symbol 1 rxs denotes the indicator function,
which evaluates to 1 if x is a true statement, and to 0 other-
wise.

It is instructive to consider the example of model count-
ing for the Boolean satisfiability problem (SAT). A SAT in-
stance ϕ “ Źm

j“1 ϕj in conjunctive normal form (CNF) is
a conjunction of clauses ϕj , which are disjunctions of liter-
als. A literal is a Boolean variable or its negation. Any CNF
problem can be phrased as an MPF query over the Boolean
semiring, where S “ t0, 1u, ‘ :“ _, and b :“ ^, as fol-
lows

ϕ “à

x

m
â

j“1

1 rϕjpxqs :“
ł

x

m
ľ

j“1

ϕjpxq,

In this special case, the model counting problem can be di-
rectly formulated as an MPF query itself (Khamis, Ngo, and
Rudra 2016), namely, as

MCpψq “
ÿ

x

m
ź

j“1

1 rϕjpxqs
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over the semiring pN,`, ¨q. This works, because there is
only one non-zero element, namely, 1, in the Boolean
semiring. In general, however, when there is more than one
non-zero element, this construction does not work anymore.
A proof is included in the supplemental material.

In this article, we show how to formulate model counting
problems and model sampling problems for general selec-
tive MPF queries again as MPF queries. For doing so, we
introduce a framework for non-trivially combining a selec-
tive semiring with any other semiring into a new semiring.
We call the framework the selective semiring extension.

Selective Semiring Extension
The idea behind the selective semiring extension framework
is to combine a selective semiring on which we want to serve
MPF queries with a second semiring that is used to track
additional information like partial models or the number of
partial models. To that end, the first semiring needs to share
information with the second semiring. We implement this
information sharing in the aggregation operation of the com-
bined semiring.
Definition 2 (Selective Semiring Extension). For a selec-
tive semiring pS,‘S,bSq and a semiring pR,‘R,bRq with
neutral elements 0R, 1R, the selective semiring extension de-
fines the following combination operation b on the Carte-
sian product S ˆR,

ps1, r1qb ps2, r2q “ ps1 bS s2, r1 bR r2q,
and the aggregation operation ‘ ,

ps1, r1q‘ ps2, r2q “
`

s1 ‘S s2,

pr1 bR 1 rs1 “ s1 ‘S s2sq
‘R pr2 bR 1 rs2 “ s1 ‘S s2sq

˘

,

where 1 rxs “
"

1R : x is a true statement
0R : x is a false statement.

Unfortunately, the selective semiring extension is not al-
ways a semiring itself, because the distributive law, which is
exploited in efficient MPF query answering algorithms, may
not hold. It is, however, a semiring if the aggregation oper-
ation on the selective semiring is consistent. The concept of
consistency is captured in the following definition.
Definition 3 (Consistent Semirings). A semiring pS,‘,bq
is consistent if

s1 “ s1 ‘ s2, if and only if s1 b s3 “ ps1 ‘ s2q b s3
for all s1, s2, s3 P S with s3 ‰ 0, where 0 is the neutral
element for ‘.

Any semiring with multiplicative inverses, such as the
sum-product semiring, the Viterbi semiring, and the tropi-
cal semiring, is consistent. Examples of consistent semirings
without multiplicative inverses are the Boolean semiring and
the min-norm semiring (Kim and Choi 2013; Sanmartín,
Damrich, and Hamprecht 2022). Consistency proofs are
given in the supplement.

For consistent selective semirings S and semirings R in
the definition of the selective semiring extension, we can
prove that the extension is again a semiring.

Theorem 1. For consistent selective semirings S, the selec-
tive semiring extension is again a semiring.

Proof. Included in the supplement.

In the following sections, we will use the selective
semiring extension as a template to construct new semirings
for model counting, model sets, and model sampling.

Model Counting
The model counting semiring pS ˆ N,‘,bq is an instantia-
tion of the abstract selective semiring extension framework.
It keeps the consistent selective semiring S in Definition 2,
but instantiates the semiring R by the sum-product semiring
pN,`, ¨q.

We will show that for a given MPF query on S, a corre-
sponding lifted query on SˆN gives the result of the original
MPF query in its first component and the model count in its
second component. The lifted query is formally defined as
follows.

Definition 4 (Model Counting Query). For an MPF query

ψ “à

x

m
â

j“1

fjpxq

on a consistent selective semiring S, the lifted query on the
model counting semiring is defined as

ψc “ð

x

m
ò

j“1

f cj pxq

with f cj : rDJ s Ñ S ˆ N, z ÞÑ `

fjpzq, 1
˘

.

The number of component functions fj and their domains
are not affected by lifting the query. Therefore, the struc-
ture of the queries ψ and ψc is the same. In particular, the
treewidth, which determines the asymptotic computational
complexity of the queries, remains the same. Also, an op-
timal junction tree for ψ is also an optimal junction tree
for ψc.

Theorem 2 (Model Counting as MPF Query). Let ψ be an
MPF query on a consistent selective semiring S and let ψc
be its lifting to the model counting semiring. Then the first
component of ψc is the result of ψ, that is,

À

x

Âm
j“1 fjpxq,

and the second component of ψc is the corresponding model
count

MCpψq “
ÿ

x

1

«

m
â

j“1

fjpxq “ ψ

ff

.

Proof. By the definition of b and of the tuples f cj pxq with
pf cj pxqq1 “ fjpxq and pf cj pxqq2 “ 1, we have

ð

x

m
ò

j“1

f cj pxq “
ð

x

˜

m
â

j“1

´

f cj pxq
¯

1
,
m
ź

j“1

´

f cj pxq
¯

2

¸

“ð

x

˜

m
â

j“1

fjpxq,
m
ź

j“1

1

¸

“ð

x

˜

m
â

j“1

fjpxq, 1
¸

.
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From the definition of ‘ we get for the first component
of ψc,

˜

ð

x

ˆ m
â

j“1

fjpxq, 1
˙

¸

1

“à

x

m
â

j“1

fjpxq “ ψ,

and for the second component,
˜

ð

x

ˆ m
â

j“1

fjpxq, 1
˙

¸

2

“
ÿ

x

1 ¨ 1
«

m
â

j“1

fjpxq “ ψ

ff

.

The second component thus counts the x P rDs for which
Âm

j“1 fjpxq “ ψ, that is, the model count of ψ.

In the supplement, we generalize the construction from
model counting to weighted model counting.

Model Set
Another instantiation of the selective semiring extension is
the model set semiring, which can be used to compute the
set of all models for an MPF query. An element x1 P rDs is
a model of an MPF query ψ “ ‘xbmj“1 fjpxq on a selective
semiring S if

m
â

j“1

fjpx1q “
à

x

m
â

j“1

fjpxq.

Therefore, the model set for ψ, that is, the set of all its mod-
els, is given as

MSpψq “
!

x1 P rDs
ˇ

ˇ

ˇ

m
â

j“1

fjpx1q “
à

x

m
â

j“1

fjpxq
)

.

To be able to construct the model set by answering an MPF
query, we need to extend S by a semiring that allows us to
track partial models. To that end, we first need to construct
an appropriate semiring which we then use in the selective
semiring extension of S for the model set extension. We
call the constructed semiring the semiring of sets of partial
states.

Semiring of Sets of Partial States
The model set is a subset of the domain rDs of the product
function

Âm
j“1 fj . We also call the domain rDs the set of

states. The factors fj of the product function are defined on
projections rDJ s of the domain rDs. We call the elements of
projected domains partial states. The set

Ť

IĎrns rDI s con-
tains all possible partial states, and the semiring of sets of
partial states is defined on the power set of this set. That is,
the semiring is defined on

XD “ P
´

ď

IĎrns
rDI s`

¯

,

where rDI s` is rDI s, with the only difference that each
element in rDI s` also has a reference to the index set I ,
which we call axis identifier. That is, the axis identifier of
x P rDI s refers the index set I . The model set is an ele-
ment MSpψq P XD that only contains states x P rDs, but

not partial states. However, while computing the model set,
we need to track sets of partial models, that is, sets of partial
states in XD. In the following, whenever the set D is clear
from the context, we omit the subscript D.

We need some additional notation, especially for the defi-
nition of the combination operation on X P X . Partial states
xi, xj P X can have different axis identifiers, and only share
the axes in the intersection of the axis identifiers. Two par-
tial states xi and xj are called compatible, if they coincide
on the intersection I X J of their axis identifiers, that is, if
xi|IXJ “ xj |IXJ . Remember that x|K denotes the projec-
tion of x P rDI s onto its elements indexed by K Ď I , that
is, x|K “ pxk | k P Kq. If I X J “ H, then xi and xj are
always compatible.

For defining a combination operation on X , we first define
a fusion operation on X . The fusion of compatible models
xi P rDI s` and xj P rDJ s` is the unique partial state

z “ xi d xj P rDIYJ s`
with z|I “ xi and z|J “ xj . Since the fusion operation
works on partial states, but not on sets of partial states, it is
not yet a combination operation on X . However, the fusion
operation can be used to define a combination operation on
X . This leads us to the following definition.
Definition 5 (Semiring of Partial States). The semiring of
partial states pX ,‘X ,bX q is given by the aggregation op-
eration

‘X : X ˆ X Ñ X , pX1, X2q ÞÑ X1 YX2,

and the combination operation bX : X ˆ X Ñ X ,

pX1, X2q ÞÑ
 

x1 d x2 | x1 P X1, x2 P X2 compatible
(

.

Of course, we need to prove that pX ,‘X ,bX q is a
semiring, which we do in the following theorem.
Theorem 3. pX ,‘X ,bX q is indeed a semiring with neutral
elements 0X “ H and 1X “ tpqu, where pq P rDHs` is the
empty tuple.

Proof. Included in the supplement.

Model Set Semiring
The model set semiring is now just the selective semiring ex-
tension of a consistent selective semiring pS,‘,bq, where
the second semiring R is instantiated by the semiring
pX ,‘X ,bX q of partial states. Similar to the model count-
ing extension, we can again lift an MPF query ψ on S to the
model set extension.
Definition 6 (Model Set Query). For an MPF query

ψ “à

x

m
â

j“1

fjpxq

on a consistent selective semiring S, the lifted query on the
model set semiring is defined as

ψs “ð

x

m
ò

j“1

fsj pxq

with fsj : rDJ s Ñ S ˆ X , z ÞÑ `

fjpzq, tzu
˘

.
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With this definition, we can prove that the lifted MPF
query does indeed provide the answer to the original MPF
query and the corresponding model set.

Theorem 4 (Model Set Construction as MPF query). Let ψ
be an MPF query on a consistent selective semiring S and
let ψs be its lifting to the model set semiring. Then the first
component of ψs is the result of ψ, that is,

À

x

Âm
j“1 fjpxq,

and the second component of ψs is the corresponding model
set

!

x P rDs
ˇ

ˇ

ˇ

m
â

j“1

fjpxq “ ψ
)

.

Proof. Included in the supplement.

As for the model counting query, the structure of the query
ψ is unchanged by lifting it to the model set semiring. How-
ever, when there are many models, tracking the model set
quickly dominates the computation. In the next section, we
tackle this issue by sampling only one model uniformly at
random instead of constructing the full model set.

Model Sampling
The model set of a selective MPF query can be so large that
enumerating all models explicitly can be computationally in-
feasible. Therefore, instead of computing the full model set,
we compute an element from the model set uniformly at ran-
dom. For sampling uniformly we need information about the
model count and the model set. To this end, we first combine
the model counting and the model set extensions into a sin-
gle extension, which we call the sampling semiring.

Model Sampling Semiring
The model sampling semiring is just the selective semiring
extension of a consistent selective semiring S and the prod-
uct of the sum-product semiring pN,`, ¨q and the semiring
of sets of partial states pX ,‘X ,bX q. That is, R in the def-
inition of the selective semiring extension (Definition 2) is
the product semiring of pN,`, ¨q and pX ,‘X ,bX q. There-
fore, the combination operation b on the model sampling
semiring is defined as

ps1, w1, X1qbps2, w2, X2q “
`

s1bs2, w1 ¨w2, X1bXX2

˘

,

and the aggregation operation ‘ on the model sampling
semiring is defined as

ps1, w1, X1q‘
`

s2, w2, X2q “ ps1 ‘ s2, w,X
˘

,

where

w “ `

w1 ¨1N rs1 “ s1 ‘ s2s
˘``

w2 ¨1N rs2 “ s1 ‘ s2s
˘

and

X “ `

X1¨1X rs1 “ s1 ‘ s2s
˘Y`X2¨1X rs2 “ s1 ‘ s2s

˘

.

As we have done before for the model counting semiring
and the model set semiring, we can lift an MPF query on
a consistent selective semiring S to the model sampling
semiring S ˆ Nˆ X .

Definition 7 (Lifted Model Sampling Query). For an MPF
query

ψ “à

x

m
â

j“1

fjpxq

on a consistent selective semiring S, the lifted query on the
model sampling semiring S ˆ Nˆ X is defined as

ψ‹ “ð

x

m
ò

j“1

f‹j pxq

with f‹j : rDJ s Ñ S ˆ Nˆ X , z ÞÑ `

fjpzq, 1, tzu
˘

.
It follows directly from Theorems 2 and 4 that the model

sampling query ψ‹ computes the result of the original MPF
query in its first component, the model count in its second
component, and the model set in its third component.

Uniform Model Sampling
For sampling uniformly at random from the model set, we
need to specify the algorithm for evaluating ψ‹. Therefore,
we introduce a sampling representation of the elements of
the semiring pX ,‘X ,bX q of sets of partial states. From the
sets X P X we only consider one representative element
x P X . In the sampling representation, we need to adapt the
combination and aggregation operations. The adapted opera-
tions work on the representative elements, and compute rep-
resentative elements of the results of the corresponding oper-
ations on the sets of partial states. This can be accomplished
as follows: either one of the representative elements xi P Xi

and xj P Xj is a representative element of Xi ‘X Xj . If
xi and xj are compatible, then xi d xj is a representative
element of the combination Xi bX Xj . As we have pointed
out in the proof of Theorem 4 (see the supplement), when
evaluating the lifted MPF query ψs, we only combine differ-
ent projections tx|Ju of the same element x P rDs, which
are always compatible. This observation also holds for ψ‹,
and therefore, the requirement of compatibility in the defi-
nition of the combination operation on X is not a restriction
when evaluating model sampling queries. Thus, we can al-
ways choose a representative element of the aggregation and
combination operations from the representative elements of
their arguments. In the supplemental material, we provide a
formal proof of this claim.

Working with representative elements has the advantage
that it grants us the freedom to choose them. Here, we want
to choose representative elements such that we can make
sure to sample models from the model set uniformly at ran-
dom. This can be achieved through the following probabilis-
tic implementation of the combination and aggregation oper-
ations: In the implementation of the combination operation,
the two representative elements x1 P X1 and x2 P X2 are
simply fused into a representative of X1bX X2. The imple-
mentation of the aggregation operation is more interesting,
where a representative x P tx1, x2u of X1 ‘X X2 is cho-
sen at random depending on the result of the aggregation of
s1, s2 in S. In the case s1 ‰ s2 we always want x “ xi if
si “ s1‘ s2 since in accordance with the selective semiring
extension, the aggregation only keeps the set Xi that cor-
responds to the selected element si. The interesting case is
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when s1 “ s2, where x is chosen with probability propor-
tional to the cardinalities w1, w2 of X1 and X2. Therefore,
we have for i P t1, 2u,

ppx “ xiq “
"

1N rsi “ s1 ‘ s2s if s1 ‰ s2
wi{pw1 ` w2q if s1 “ s2.

Now, when we use representative elements instead of the
sets of partial states, the model sampling query computes
in its third element only one representative element of the
model set, that is, only one model x P MSpψq. Using the
probabilistic implementation of the aggregation operation
on X , the lifted model sampling query returns a model from
the model set that is chosen uniformly at random. We for-
malize this claim in the following theorem.

Theorem 5 (Uniform Model Set Sampling). Let ψ be an
MPF query on a consistent selective semiring S and let ψ‹
be its lifting to the model sampling semiring S ˆ N ˆ X .
Using the probabilistic implementation of the aggregation
operation on X , the third component of ψ‹ is an element
x‹ P rDs such that for all x P rDs holds

ppx‹ “ xq “
"

1{MCpψq if x is a model of ψ
0 otherwise.

That is, x‹ is drawn uniformly from all models of ψ.

Proof. We prove by induction over the size of the domain
rDs that x‹ is drawn uniformly at random from the model
set of ψ, which is subset of rDs.

For the base case, assume that rDs has only one element
z (with n components). The lifted query ψ‹ evaluates to

ps‹, w‹, x‹q “ ð

xPrDs

m
ò

j“1

f‹j pxq “
ð

xPtzu

m
ò

j“1

f‹j pxq

“
m
ò

j“1

f‹j pzq “
m
ò

j“1

`

fjpzq, 1, z|J
˘

.

Now consider the combination. By definition, b reuses the
multiplication on N in the second component, which gives
w‹ “ MCpψq “ 1, and b uses the fusion operation in the
third component, which gives

x‹ “
m
ä

j“1

z|J “ z.

Therefore, ppx‹ “ zq “ 1 “ 1{MCpψq, and the claim holds
for the base case.

For the induction hypothesis, assume that the claim holds
for any query on domains rDs with k elements, that is, for
any query

ψ‹k “
ð

xPtz1,...,zku

m
ò

j“1

f‹j pxq, where zi P rDs, i P rks.

For the inductive step, let rDs “ tz1, . . . , zk, zk`1u be a
domain with k ` 1 elements. By the induction hypothesis,

we have

ψ‹k`1 “
ð

xPtz1,...,zku

m
ò

j“1

f‹j pxq
looooooooooomooooooooooon

“ψ‹k

‘
m
ò

j“1

f‹j pzk`1q

“ `

s1, w1, x1
˘

‘ ps, 1, zk`1q
where s1 is the value of the MPF query ψk on the selec-
tive semiring S, w1 “ MCpψkq is the corresponding model
count, and, by the induction hypothesis, x1 is a sample from
the corresponding model set MSpψkq that has been drawn
with probability ppx‹k “ x1q “ 1{MCpψkq “ 1{w1.
It remains to compute the result of the final aggregation

ps‹, w‹, x‹q “ `

s1, w1, x‹k “ x1
˘

‘ ps, 1, zk`1q.
We distinguish the two cases s1 ‰ s and s1 “ s. First, let
s1 ‰ s. If s‹ “ s1, then the claim holds by the induction
hypothesis. Otherwise, if s‹ “ s, then the claim is equiva-
lent to the base case. Therefore, the claim holds true in both
cases.

Second, let s1 “ s “ s‹. By the definition of ‘, we have
MCpψk`1q “ w‹ “ w1 ` 1, and

ppx‹ “ zk`1q “ 1

w1 ` 1
“ 1{MCpψk`1q

and

ppx‹ “ x1|x‹k “ x1q “ w1{pw1 ` 1q.
Since ppx‹ “ x1|x‹k ‰ x1q “ 0 and, by the induction hy-
pothesis, ppx‹k “ x1q “ 1{w1, we have

ppx‹ “ x1q “
ÿ

x:x‰zk`1

ppx‹ “ x1|x‹k “ xqppx‹k “ xq

“ ppx‹ “ x1|x‹k “ x1qppx‹k “ x1q
“ w1

w1 ` 1
¨ 1

w1
“ 1

MCpψk`1q .

Therefore, we get for x P MSpψk`1q,

ppx‹ “ xq “
$

&

%

1{MCpψk`1q if x P MSpψkq,
1{MCpψk`1q if x “ zk`1,

0 otherwise,

and thus ppx‹ “ xq “ 1{MCpψ‹k`1q if x P MSpψ‹k`1q and
ppx‹ “ xq “ 0, otherwise. Therefore, also in this case, the
claim holds true, which concludes the proof.

The model sampling semiring can be adapted for
weighted sampling from a discrete graphical model by im-
plementing the probabilities similar to the variable weights
in weighted model counting (Darwiche 2009). Also, the
sampling semiring extends naturally to a semiring on
S ˆ Nˆ X k, which can be used to compute k-many inde-
pendent samples with a single MPF query.
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Implementation and Experiments
Here, we compare our semiring extension approach with
state-of-the-art methods for the model counting and sam-
pling problems for Boolean formulas, because for these
problems, mature implementations of problem specific al-
gorithms are publicly available.

The experiments were performed on an Intel i9-10980XE
18-core processor machine running Ubuntu 20.04.1 LTS
with 128 GB of RAM. Each core has a base frequency of
3.0 GHz, a max turbo frequency of 4.6 GHz, and supports
the AVX-512 vector instruction set.

Implementation of MPF by Tensor Networks
Aji and McEliece (2000) propose a junction tree algorithm
for serving MPF queries. For our experiments, however, we
build on the observation that MPF queries are just tensor hy-
pernetwork expressions, which describe the computation of
a tensor from its decomposition into smaller tensors. There-
fore, generic tensor network contraction algorithms can be
used for answering MPF queries. Since tensor expressions
are ubiquitous in modern machine learning, many program-
ming languages and frameworks support tensor computa-
tions, among them the Python package NumPy (Harris et al.
2020) and the framework PyTorch (Paszke et al. 2019),
which both provide an implementation of the einsum inter-
face to express tensor computations.

We implemented the semiring extension as a stand-alone
datatype in Python 3.9 and Cython 3.0. In our implementa-
tion, tensors are represented by NumPy 1.25.1 nd-arrays,
and the contraction order of the tensors is computed by
opt_einsum 3.3.0 (Smith and Gray 2018). We refer to
our implementation as MCSSE (model counting and sam-
pling semiring extension). The code and more details about
the experiments are provided in the supplement.

Model Counting
We evaluated the performance of MCSSE on the 200 prob-
lems of the 2022 Model Counting Competition for Boolean
formulas in conjunctive normal form (CNF)1. We pre-
processed the problems with Arjun (Soos and Meel 2022),
which renders 23 of them trivial.

We compared our semiring extension to the direct MPF
model counting query from the MPF queries section, and
to three state-of-the-art model counting softwares, namely,
SharpSAT-TD (Korhonen and Järvisalo 2021, 2023),
the Python model counter PySDD (Darwiche 2011), and
D4 (Lagniez and Marquis 2017). SharpSAT-TD with
Arjun pre-processing is the winner of the 2022 model
counting competition. If applicable, we always used default
settings for these softwares.

The direct MPF model counting was faster on 18 of the
non-trivial 177 instances than any of the three state-of-the-
art model counters, while our semiring extension was still
faster on four instances. That is, both the direct MPF model
counter and our semiring extension can improve the virtual
best solver, when added to the three state-of-the-art model
counters.

1https://mccompetition.org/past_iterations

Model Sampling
We have evaluated the performance of MCSSE for model
sampling by comparing it with the recent WAPS model sam-
pler (Gupta et al. 2019), which builds on a connection be-
tween knowledge compilation and sampling. Another recent
sampler, DPSampler (Dudek, Shrotri, and Vardi 2022),
uses dynamic programming and algebraic decission dia-
grams, but was not available in an executable form.

For the comparison we used a data set of 773 CNF formu-
las, which has been constructed by Gupta et al. (2019) from a
wide range of publicly available benchmarks. For each CNF
formula in the data set, we measured the time to get one
sample. Since WAPS is based on knowledge compilation, we
measured compile and sample time separately for WAPS.

Out of the 773 instances, there were 583 instances where
at least one of the algorithms was able to return a sample
within our time limit of 30 seconds. On 293 out of the 591
instances, the time used by MCSSE to return one sample was
less then the total time used by WAPS. Furthermore, on 258
out of these 293 instances, MCSSE used less time than WAPS
used only for sampling. On average, MCSSE was 49.5 times
faster than WAPS on these instances, which means that the
compilation approach does not pay off on these instances.
On the remaining instances, WAPSwas on average 7.5 times
faster than MCSSE.

Discussion
Generic frameworks such as MPF separate the interface
from algorithmic details and their implementation. This has
the advantage that the same algorithm, even the same im-
plementation, can be used directly for different applications
within the same framework. However, the advantage can
also be a disadvantage, because it can be difficult to exploit
application specific information algorithmically. Neverthe-
less, our generic tensor network based implementation is
able to compete with application specific implementations
for model counting and sampling on Boolean formulas.

We observe that our prototypical implementation is
slower than the state of the art on two kinds of problem in-
stances. On many small instances the overhead of setting up
the tensor network is dominating. And on larger instances,
large intermediate tensors can be created during the tensor
network evaluation. However, there is significant potential
to further improve the performance of MPF based model
counting and sampling. The creation of large intermediate
tensors can sometimes be avoided by switching to a differ-
ent tensor contraction order. Moreover, large intermediate
tensors tend to be sparse. In our implementation, we used a
dense tensor format, because there are no established imple-
mentations of einsum for sparse tensors.

Conclusion
We have extended the marginalize a product function (MPF)
framework for model counting and sampling on selective
semirings. Although our extension is generic, it shows com-
petitive performance on the special case of model counting
and sampling for Boolean formulas, using a non-optimized
implementation.
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