
Backward Responsibility in Transition Systems Using General Power Indices
Christel Baier1,2, Roxane van den Bossche3, Sascha Klüppelholz1,

Johannes Lehmann1,2, Jakob Piribauer1 *

1TU Dresden, Germany
2Centre for Tactile Internet with Human-in-the-Loop (CeTI)

3Université Paris-Saclay, ENS Paris-Saclay, France
{christel.baier, sascha.klueppelholz, johannes alexander.lehmann, jakob.piribauer}@tu-dresden.de,

roxane.van den bossche@ens-paris-saclay.fr

Abstract

To improve reliability and the understanding of AI systems,
there is increasing interest in the use of formal methods, e.g.
model checking. Model checking tools produce a counterex-
ample when a model does not satisfy a property. Understand-
ing these counterexamples is critical for efficient debugging,
as it allows the developer to focus on the parts of the program
that caused the issue.
To this end, we present a new technique that ascribes a re-
sponsibility value to each state in a transition system that
does not satisfy a given safety property. The value is higher
if the non-deterministic choices in a state have more power
to change the outcome, given the behaviour observed in the
counterexample. For this, we employ a concept from cooper-
ative game theory – namely general power indices, such as the
Shapley value – to compute the responsibility of the states.
We present an optimistic and pessimistic version of responsi-
bility that differ in how they treat the states that do not lie on
the counterexample. We give a characterisation of optimistic
responsibility that leads to an efficient algorithm for it and
show computational hardness of the pessimistic version. We
also present a tool to compute responsibility and show how a
stochastic algorithm can be used to approximate responsibil-
ity in larger models. These methods can be deployed in the
design phase, at runtime and at inspection time to gain in-
sights on causal relations within the behavior of AI systems.

1 Introduction
Due to the ever-growing demand for reliable, trustworthy AI
systems, research on ways to incorporate formal methods
for the verification of such systems is becoming more and
more important (see e.g. Seshia, Sadigh, and Sastry (2022)).
AI systems are in general instances of parallel systems that
operate in complex environments. As such, techniques such
as model checking are suitable for this setting. The aim of
model checking is to analyse a given system to prove auto-
matically that this system satisfies some property. For exam-
ple, we might require certain states to never be reached, be-
cause they correspond to an undesired event. When a model
does not satisfy a safety property, the model checker returns
a counterexample, which is an execution of the model that

*Authors are listed in alphabetical order
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

violates the property (see Baier and Katoen (2008) for more
details). While this demonstrates that an error exists, it is not
obvious which part of the model is responsible for the error.
Some states in the counterexample may be unable to change
the outcome, whereas others can ensure that the safety prop-
erty is satisfied.

We distinguish between forward and backward respon-
sibility (Van de Poel 2011). In the forward case, responsi-
bility depends only on the model, whereas in the backward
case, it also takes a specific counterexample into account.
Existing causality-based approaches to backward responsi-
bility include the use of distance metrics (Groce et al. 2006),
mutation-based techniques (Beer et al. 2012), event-order
logic (Leitner-Fischer and Leue 2013) and hyperproperties
(Coenen et al. 2022).

In this paper, we introduce an intuitive, game-based ap-
proach to compute backward responsibility. Our approach
is inspired by Mascle et al. (2021) where the Shapley value
(Shapley et al. 1953) is used to determine a numeric value
of forward responsibility. For a more recent discussion of
the Shapley value, we refer the reader to Laruelle and Va-
lenciano (2001). The Shapley value is also used for respon-
sibility attribution by Baier, Funke, and Majumdar (2021),
who present a technique that operates on game trees.

Incorporating a counterexample allows us to analyse a
specific fault in the system. Moreover, we extend our defi-
nitions to general power indices, also known as semivalues
(Dubey, Neyman, and Weber 1981), of which the Shapley
value is an instance.

To illustrate our scenario, consider the railway network
depicted in Figure 1 with three switches s1, s2 and s3. The
goal is to route the train to the destination ✓. However, it
can also be routed to the unfinished line ✗, which causes an
accident. We investigate how the switches share the respon-
sibility for the outcome.

s1

s2

s3

✓

✗

Figure 1: Railway network with three switches s1, s2 and s3.
If a train is routed to ✗, an accident occurs.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20320

In the forward responsibility, s2 and s3 would have the
same responsibility due to the symmetry of the system. Now
consider a scenario where an accident has occurred after the
train took the path s1s2✗. It is now desirable to ascribe more
responsibility to s2 than to s3.

To compute the exact responsibility, we determine which
coalitions of states can ensure that ✗ is not reached. For ex-
ample, given that the train travelled from s1 to s2, {s2} suf-
fices: if it routes the train to ✓ instead of ✗, the accident is
averted. For {s1}, the answer is less clear. It can route the
train to s3 instead, but we have not observed the behaviour
of s3 in the system. We therefore distinguish between two
types of responsibility: For optimistic responsibility, we as-
sume that these states help us in trying to satisfy the safety
property. For pessimistic responsibility, on the other hand,
we assume that they attempt to violate the property. For op-
timistic responsibility, {s1} can avoid ✗, whereas for pes-
simistic responsibility, it cannot (but {s1, s3} can). We anal-
yse both types of backward responsibility in this article.

Main Contributions: The main contributions of this
paper are: We give a definition of backward responsibility
based on Mascle et al. and define the novel notion of opti-
mistic responsibility in Section 3. We analyse the complex-
ity of pessimistic and optimistic responsibility in Section 4.
We provide an implementation, show how a stochastic algo-
rithm can be used to analyse large models and evaluate our
implementation with several experiments in Section 5. A full
version of this paper including detailed proofs is available at
Baier et al. (2024).

Other Related Work: There are several other ap-
proaches to assess backward responsibility. In addition to
a counterexample, many of these require one or more pass-
ing runs, which are then compared. An example of this is
Delta debugging (Zeller 2002). Ball, Naik, and Rajamani
(2003) take an intraprocedural approach and also use the in-
formation to identify multiple errors that may be present in
a single model. Groce et al. (2006) use distance metrics to
identify the differences between passing runs and a failing
run and present them to the user as an explanation. A simi-
lar approach using nearest-neighbor queries is presented by
Renieres and Reiss (2003).

On the other hand, the technique of Wang et al. (2006)
does not require additional runs and instead analyses the
counterexample using weakest-precondition reasoning.

Similar to our technique and to Mascle et al. (2021),
Baier, Funke, and Majumdar (2021) use the Shapley value
and game theory to analyse responsibility. They operate on
games in tree form and also distinguish between forward and
backward responsibility.

A related concept is blameworthiness as defined by
Halpern and Kleiman-Weiner (2018) is a notion aiming to
define moral responsibility of agents. Our notion of respon-
sibility does not include any moral considerations. Never-
theless, notions of blameworthiness can be defined using the
technical vehicle of power indices as used for our notion of
responsibility, such as the Shapley value used in Friedenberg
and Halpern (2019).

2 Preliminaries
Transition systems. A transition system is a tuple TS =
(S,→, s0,) where S is a finite set of states, → is the tran-
sition relation on S, s0 ∈ S is the initial state and ⊆ S
is the set of bad states. A run on TS is an infinite sequence
of states ρ = ρ0ρ1 . . . ∈ Sω , where ρ0 = s0 and ∀i ∈ N
ρi → ρi+1.

We call ρ = ρ0 . . . ρk ∈ S∗ a counterexample if it is the
prefix of a run, ρk ∈ , ρi ̸∈ for all i ∈ {0, . . . , k − 1}
and ρi ̸= ρj for all i ̸= j, i.e. they are loop-free.

Cooperative games. Let X be a finite set of players. A
cooperative game on X is a function v : 2X → R that as-
sociates a value to each subset of X . We call C ⊆ X a
coalition and v(C) the gain of the coalition C. The set of
games on X is denoted by GX .

We call v simple if v(C) ∈ {0, 1} for all C ⊆ 2X . A
coalition C ⊆ 2X is winning if v(C) = 1. (C, s) forms a
critical pair if C ∪ {s} is winning and C is not.

General power indices. We call p = (p0, . . . , pn−1) a
weight vector if

∑n−1
k=0

(
n−1
k

)
pk = 1.

Let X be a finite set of players with n := |X|. Then
R : GX → X → R is a general power index if there ex-
ists a weight vector p = (p0, . . . , pn−1) such that, for any
game v ∈ GX and player i ∈ X , we have

R(v, i) =
∑

C⊂X\{i}

p|C|[v(C ∪ {i})− v(C)]

where we write R(v, i) instead of (R(v))(i).
We note that for every general power index R, only one

such weight vector p = (p0, . . . , pn−1) exists and define
Weightsi(R) = pi.

This definition corresponds to the characterisation of
semivalues for games on finite sets of players given by
Dubey, Neyman, and Weber (1981). The linear games they
use are isomorphic to functions from X to R, so our defini-
tion is equivalent to their definition and characterisation.

Shapley value, Banzhaf value. Let X be a finite set of
players and let v be a game on S. The Shapley value is
the general power index S with Weightsi(S) =

(n−i−1)!i!
n! .

The Banzhaf value is the general power index B with
Weightsi(B) = 1

2n−1 .
We use the following well-known characterisation of the

Shapley value in several proofs.

Lemma 1. Let X be a finite set of players. We have
S(v, x) =

∑
π∈ΠX

(v(π≥x)− v(π>x)) for any v ∈ GX

and x ∈ X , where ΠX is the set of permutations of X and
π▷x := {y ∈ X | π(y) ▷ π(x)} for ▷ ∈ {≥, >}.

Games. A game arena is a tuple (SSafe, SReach,→, s0)
where SSafe is the set of states controlled by Safe, SReach is
the set of states controlled by Reach (and we write S :=
SSafe∪̇SReach), → is the transition relation on S and s0 ∈ S
is the initial state.

A game consists of a game arena (SSafe, SReach,→, s0) and
a winning condition Ω ⊆ Sω . A play ρ ∈ Sω is an infinite
sequence ρ0ρ1 . . . such that ρ0 = s0 and (ρi, ρi+1) ∈→ for

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20321

all i ∈ N. A play ρ is winning for Safe if ρ ∈ Ω, other-
wise it is winning for Reach. A strategy for Safe is a func-
tion σ : SSafe → S with (s, σ(s)) ∈→ for all s ∈ SSafe
(and strategies for Reach are defined similarly). A pair of
strategies (σSafe, σReach) for Safe and Reach induces a play
ρ = ρ0ρ1 . . . with ρi+1 = σSafe(ρi) if ρi ∈ SSafe and
ρi+1 = σReach(ρi) otherwise. A strategy for Safe is winning
if, for all strategies of Reach, the induced play is winning
for Safe (and winning strategies for Reach are defined simi-
larly).

Given ⊆ S, a safety winning condition has the form
Ω = {ρ | ∀i ∈ N : ρi ̸∈ }. A safety game consists of a
game arena and ⊆ S and we write (SSafe, SReach,→, s0,)
instead of ((SSafe, SReach,→, s0) ,Ω).

3 Optimistic and Pessimistic Responsibility
To use general power indices, we must formulate the respon-
sibility problem as a cooperative game. Therefore, we need
to define a value function which takes a coalition of states C
and returns 0 or 1 depending on whether C can avoid .

First, we define a safety game where the run of the coun-
terexample is engraved: For every state that is on the run and
not in C, we remove the outgoing transitions except for the
transition that follows the run.

Definition 2 (From transition systems to safety games). Let
TS = (S,→, s0,) be a transition system, ρ = ρ0 . . . ρk
a counterexample and C ⊆ S. We define GTS

ρ (C) =
(C, S \ C,→′, s0,), where ρi →′ ρi+1 for i ∈ {0, . . . , k−
1} if ρi ̸∈ C and s →′ s′ if s → s′ and if s /∈ ρ or s ∈ C.

We now use this to define a cooperative game.

Definition 3 (Optimistic and pessimistic cooperative
games). Let TS = (S,→, s0,) be a transition system, ρ
a counterexample and C ⊆ S. Then the optimistic coopera-
tive game vTS ,ρ

opt is defined as

vTS ,ρ
opt (C) =

{
1 if player Safe wins GTS

ρ (C ∪ (S \ ρ))
0 otherwise

and the pessimistic cooperative game vTS ,ρ
pes is defined as

vTS ,ρ
pes (C) =

{
1 if player Safe wins GTS

ρ (C)
0 otherwise.

In the following, let TS = (S,→, s0,) be a transi-
tion system and ρ = ρ0 . . . ρk a counterexample. We set
n := |S|. We write vopt instead of vTS ,ρ

opt and vpes instead of
vTS ,ρ
pes .

Example 4. Consider the railway network from Figure 1
with = {✗} and ρ = s1s2✗. Let C = ∅ (and thus C ∪
(S\ρ) = {s3,✓}). In both GTS

ρ (C) and GTS
ρ (C ∪ (S \ ρ)),

the only transition from s1 goes to s2 and the only transi-
tion from s2 goes to ✗. Therefore, Safe cannot win and thus
vopt(C) = vpes(C) = 0.

Now let C ′ = {s1} and therefore C ′ ∪ (S \ ρ) =
{s1, s3,✓}. Then Safe wins GTS

ρ (C ′ ∪ (S \ ρ)) by play-

ing s1s3✓ω , which are all states controlled by her. How-
ever, she loses GTS

ρ (C ′), because either s2 or s3 is reached.
Reach can then move to ✗. Therefore, vopt(C ′) = 1 and
vpes(C

′) = 0.

Proposition 5. Let C ⊆ S and s ∈ S. Then we have
vopt(C) ≥ vpes(C).

Proof. If vpes(C) = 1, then Safe wins GTS
ρ (C). Be-

cause reachability games are monotonic, Safe also wins
GTS
ρ (C ∪ (S \ ρ)) and thus vopt(C) = 1. If vpes(C) = 0,

then the inequality holds for every value of vopt(C).

The forward view, as presented by Mascle et al. (2021), is
closely related to our pessimistic definition. This is because
the optimistic definition does not work without a counterex-
ample. Every state in C would belong to Safe, but every state
not in C would also be given to Safe under the optimistic as-
sumption, so the outcome of the game would not be affected
by the value of C.

Definition 6 (Responsibility). Let R be a general power in-
dex on GS . The optimistic responsibility of state s with re-
spect to R is R(vopt, s) and the pessimistic responsibility of
state s with respect to R is R(vpes, s).

For example, the pessimistic responsibility of s with re-
spect to the Banzhaf value is B(vpes, s).

Example 7. We omit ✓ and ✗ from the coalitions, as con-
trol over them never affects the outcome. In the pessimistic
case, (C, s2) forms a critical pair for C ∈ {∅, {s1}, {s3}}.
Therefore, the Shapley responsibility of s2 is S(vpes, s2) =
1 · Weights0(S) + 2 · Weights1(S) = 2

3 . For s1, only
({s3}, s1) forms a critical pair and for s3, only ({s1}, s3)
forms a critical pair, so we have S(vpes, s1) = S(vpes, s3) =
1 · Weights1(S) = 1

6 . The full responsibility values for the
optimistic and pessimistic case are given in Table 1. While it
may seem counterintuitive that s3 has positive responsibil-
ity even though it was not involved in reaching ✗, this makes
sense upon closer inspection: s1 can only avoid ✗ if s3 helps,
so it is natural that they share the responsibility.

State s s1 s2 s3 ✓ ✗
S(vpes, s) 1/6 2/3 1/6 0 0
S(vopt, s) 1/2 1/2 0 0 0

Table 1: Optimistic and pessimistic Shapley responsibilities
for the train example from Figure 1.

Note that the sum of the responsibility of s1, s2 and s3
is 1. This is a general property of the Shapley value (but not
of other general power indices, such as the Banzhaf value).

Proposition 8. If there exists a path in TS which does not
reach , then we have∑

s∈S

S(vopt, s) =
∑
s∈S

S(vpes, s) = 1.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20322

Proof. Let v ∈ {vopt, vpes}. By Lemma 1, we have
S(v, s) =

∑
π∈ΠS

(v(π≥s)− v(π>s)). Because ρ is a coun-
terexample, we have v(∅) = 0 and because there exists a
path that does not reach , we have v(S) = 1. As v is mono-
tonic, for each permutation π, there is exactly one state s
with v(π≥s) − v(π>s) = 1. We call this state Swi(π). For
all other states, the difference is 0. Therefore, we have∑
s∈S

S(v, s) =
∑
s∈S

1

n!

∑
π∈ΠS

(v(π≥s)− v(π>s))

=
1

n!

∑
π∈ΠS

∑
s∈S

(v(π≥s)− v(π>s))

=
1

n!

∑
π∈ΠS

(
v(π≥Swi(π))− v(π>Swi(π))

)
=

1

n!

∑
π∈ΠS

1 = 1.

States that only have a single outgoing transition always
have responsibility 0. On the other hand, there can be states
with multiple outgoing transitions that have responsibility 0,
e.g. if all outgoing paths from a state eventually reach .

4 Algorithms
We investigate the complexity of two decision problems and
one counting problem. Each problem has an optimistic vari-
ant (where vTS ,ρ = vTS ,ρ

opt) and a pessimistic variant (where
vTS ,ρ = vTS ,ρ

pes). A general power index R is encoded by
encoding Weightsi(R) for i ∈ {0, . . . , n− 1}.

Positivity Problem
Input: TS = (S,→, s0,) , counterexample ρ,

s ∈ S, general power index R
Output: Is R(vTS ,ρ, s) > 0?

Threshold Problem
Input: TS = (S,→, s0,) , counterexample ρ,

s ∈ S, general power index R, t ∈ [0, 1)

Output: Is R(vTS ,ρ, s) > t?

Computation Problem
Input: TS = (S,→, s0,) , counterexample ρ,

s ∈ S, general power index R
Output: What is the value of R(vTS ,ρ, s)?

Optimistic Responsibility
We show that the optimistic responsibility is characterised
by a simple function. This characterisation then yields an
efficient algorithm for computing optimistic responsibility.

For the characterisation, we first define the sets of winning
and responsible states.

Definition 9 (WSopt, RSopt(R)). Let R be a general power
index. The set of winning states is WSopt = {s ∈ S |
vopt({s}) = 1}, i.e. the set of the states that can win on

their own. The set of responsible states is RSopt(R) = {s ∈
S | R(vopt, s) > 0}, i.e. the set of the states that have a
strictly positive responsibility.

The following lemma relates states that can win on their
own and states with positive responsibility.

Lemma 10. Let R be a general power index. For any s ∈ S,
we have R(vopt, s) > 0 =⇒ vopt({s}) = 1, i.e.
RSopt(R) ⊆ WSopt.

If Weights0(R) > 0, the converse implication
R(vopt, s) > 0 ⇐= vopt({s}) = 1 also holds and thus
RSopt(R) = WSopt.

Corollary 11. If Weightsi(R) > 0 for i ∈ {0, . . . , n− 1},
then R(vopt, s) > 0 =⇒ R(vpes, s) > 0.

Using Lemma 10, the following theorem then shows that
responsibility in the optimistic case is a yes-or-no question.

Theorem 12 (Characterisation of optimistic responsibility).
Let R be a general power index, then we have

R(vopt, s) =

{
K if s ∈ WSopt

0 otherwise

with K =

n−w∑
i=0

(
n− w

i

)
· Weightsi(R) and w := |WSopt|.

Additionally, we have WSopt ⊆ ρ.

The relevant question in the optimistic case is therefore
“Is s in WSopt?”, i.e. “Can s win on its own?”.

Proof. Let s ∈ WSopt and let p = (p0, . . . , pn−1) with pi =
Weightsi(R). Then

R(vopt, s) =
∑

C⊆S\{s}

p|C|[vopt(C ∪ {s})− vopt(C)].

Let C ⊆ S \{s}. Lemma 10 implies that vopt(C∪{s})−
vopt(C) = 1 if and only if C ∩ WSopt = ∅ and vopt(C ∪
{s}) − vopt(C) = 0 otherwise. In the former case, C ⊆
S \ WSopt and

∣∣S \ WSopt
∣∣ = n − w. Therefore, there are(

n−w
i

)
coalitions of size i that fulfil the condition and we

have

R(vopt, s) =
∑

C⊂S\WSopt

p|C|[vopt(C ∪ {s})− vopt(C)]

=
∑

C⊂S\WSopt

p|C| =
n−w∑
i=0

(
n− w

i

)
pi.

We now show that WSopt ⊆ ρ. By Lemma 10, if
Weights0(R) > 0 and R(vopt, s) > 0, then s can avoid
reaching on its own. If s ̸∈ ρ, this is impossible.

In the case of the Shapley and Banzhaf values, we can
give a closed form for the constant K:

Proposition 13. For any s ∈ WSopt, we have

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20323

S(vopt, s) =
1

|WSopt|
and B(vopt, s) =

1

2|WSopt|−1
.

Table 1 shows that pessimistic responsibility does not sat-
isfy this property, as s1 and s2 have different positive re-
sponsibilities.

This characterisation now yields an efficient algorithm
for optimistic responsibility. We compute the set of win-
ning states WSopt as follows. For each state s ∈ S, we de-
termine whether {s} is a winning coalition by construct-
ing GTS

ρ ({s}) and solving it with the attractor algorithm
(Grädel, Thomas, and Wilke 2002), which has linear run-
time. We invoke it |S| times, yielding quadratic runtime. Due
to Lemma 10, if s ̸∈ WSopt, the responsibility of s is 0. Oth-
erwise, we can compute the responsibility constant K from
Theorem 12 and return it. This yields the following theorem.

Theorem 14. The optimistic positivity, threshold and com-
putation problems are solvable in polynomial time.

Pessimistic Responsibility
Computing pessimistic responsibility is more difficult:

Proposition 15. The pessimistic positivity problem is NP-
complete.

Proof sketch. To show inclusion in NP, we nondeter-
ministically guess a coalition C and then verify that
Weights|C|(R)(vpes(C ∪ {s}) − vpes(C)) > 0. This re-
quires polynomial time and thus, the problem is in NP.

To show NP-hardness, we give a reduction from the for-
ward responsibility positivity problem, which Mascle et al.
(2021) have shown to be NP-hard. For this, we take the given
transition system TS and and construct a new transition sys-
tem TS ′ with new initial state s′0 and edges from s′0 to s0 and
 . We choose ρ = s′0s̄ for some s̄ ∈ . Then a coalition C
is winning in TS if and only if C ∪ {s′0} is winning in TS ′

and thus, a state has positive responsibility in TS if and only
if it has positive responsibility in TS ′.

Proposition 16. The pessimistic threshold problem is NP-
hard and in PSPACE.

Proof sketch. NP-hardness follows from the NP-hardness of
the positivity problem shown in Proposition 15 by choosing
threshold t = 0.

To show inclusion in PSPACE, we construct an algorithm
that computes the responsibility in polynomial space. For
this, we count the number of coalitions of each size that
are significant, multiply the counts by the corresponding
weights, and then output the sum.

The pessimistic threshold problem thus lies between NP
and PSPACE, but the precise complexity is still open.

Proposition 17. The pessimistic computation problem is
#P-hard and can be solved in polynomial space.

Proof sketch. A polynomial-space algorithm is given in
Proposition 16. #P-hardness can be shown by reduction

from the forward computation problem (Mascle et al. 2021),
which is #P-complete. We perform the same construction
as in Proposition 15 and show that there is a bijection be-
tween winning coalitions in the forward and in the backward
view.

5 Implementation
We have developed a tool that computes optimistic and pes-
simistic backward responsibility1 (Lehmann 2024). Our tool
implements three techniques for this: It supports exact com-
putation of responsibility, which works well on small mod-
els, but has exponential runtime. It can also use a stochastic
algorithm that produces a good approximation of responsi-
bility for larger models with thousands of states. Finally, it is
possible to group states, which makes results less cluttered
and improves runtime significantly.

All benchmarks were run on a MacBook Pro running ma-
cOS 13.3 with an 8-core M2 chip and 24 GB of memory.
The experiments were conducted using the Shapley value,
as it is the most widely-used general power index.

Exact Algorithm
To compute responsibility exactly, our tool uses the model
checker PRISM (Kwiatkowska, Norman, and Parker 2011)
to build the model and check the safety property. PRISM pro-
duces a transition system and counterexample as output. Al-
ternatively, this raw model and counterexample can be pro-
vided directly by the user. For every coalition and state, we
then check whether they form a critical pair. If they do, we
increment the result by the value given by the general power
index.

We found that, in practice, it is faster to first compute the
minimal winning coalitions of the game and then analyse
the coalitions. This way, each coalition is only solved once.
Both steps can be parallelised with minimal overhead.

Example: Peg Solitaire In the single-player board game
Peg Solitaire (Bell 2007), the player is presented with a grid
of holes (in our case, the grid is triangle-shaped). All but
one of the holes are filled with a peg. In each move, the
player may pick any peg and jump over an adjacent peg-
filled hole into an empty hole behind that. After that, the peg
they jumped over is removed. The goal is to remove all but
one of the pegs. It is possible to lose by reaching a configu-
ration with multiple pegs where none of the pegs can jump.
Such a configuration is depicted in Figure 2a.

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

(a) Final, losing configura-
tion of the game

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

(b) Last configuration with
positive responsibility

Figure 2: Analysis of a Peg Solitaire game.

1Available at https://github.com/johannesalehmann/backward-
responsibility

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20324

Given a play that reached such a configuration, a natu-
ral question is to find the last state from which the game
was still winnable. One can use optimistic responsibility to
determine this. Consider the configuration from Figure 2a,
which was the result starting with Hole 1 empty and playing
4→ 1, 6→ 4, 1→ 6, 12→ 5, 14→ 12, 6→ 13, 12→ 14,
15→13, 7→2, 2→9, 10→8, 13→4. A graphical depiction
of the full game is given in the appendix. Computing opti-
mistic responsibility reveals that the configuration depicted
in Figure 2b is the last state with positive responsibility. If
15→13 is played in this state, all further states have respon-
sibility 0, which tells us that the game is unwinnable. On the
other hand, if 7 → 2, 2 → 9, 15 → 6, 6 → 13, 14 → 12,
11→ 13 is played from the configuration in Figure 2b, the
game is won. This demonstrates that optimistic responsibil-
ity is useful when only a qualitative analysis is desired.

Example: Misrouted Train We modelled Dresden Cen-
tral Station to analyse a misrouted train. The train was sup-
posed to arrive at Platform 12 but instead arrived at Plat-
form 13. Our goal is to determine how much responsibility
each switch in the train station has for this misrouting. The
relevant fragment of the station is depicted in Figure 3. The
path taken by the train is indicated in bold.

34

39 40 41

36 37

35

42

P12

P13

.

. . .

Figure 3: A train misrouted to Platform P12 instead of P13
in Dresden Central Station and the path the train took.

As we are interested in a quantitative analysis of responsi-
bility, we choose pessimistic responsibility. This yields four
responsible states: 35 has responsibility 3/4, whereas 36, 37
and 42 have responsibility 1/12 each. The reason for 35’s
high responsibility is that it can route the train to the correct
track without any cooperation from other switches. On the
other hand, 36, 37 and 42 need to all be in the correct po-
sition to achieve the same result. As the default assumption
in pessimistic responsibility is that other switches do not co-
operate, this three-way cooperation only occurs in few coali-
tions and therefore, the total responsibility of the three states
is lower than that of 35.

Another possible route to Platform 13 is 34→39→40→
41→ 35→ P13. Note however that 34, 39, 40 and 41 have
responsibility 0. This is because the route relies on 35 coop-
erating. As 35 can route the train correctly on its own, there
is no benefit in also changing the route at the other switches.

Stochastic Algorithm
The stochastic algorithm uses the following transformation.

R(v, s) =
∑

C⊆S\{s}

Weights|C|(R)(v(C ∪ {s})− v(C))

=
n−1∑
i=0

Weightsi(R) ·
∑

C⊆S\{s},
|C|=i

(v(C ∪ {s})− v(C)).

As each summand of the inner sum is either 0 or 1, it is suf-
ficient to count for how many coalitions the summand is 1.
The stochastic algorithm estimates this count by uniformly
sampling coalitions of size i. If x out of y coalitions have
value 1, then the expected count for size i is (x/y) ·

(
n
i

)
. As

long as each size is sampled at least once, the algorithm is
an unbiased estimator for R(v, s).

The number of samples for size i should be proportional
to

(
n
i

)
·Weightsi(R). In the case of the Shapley value, each

size should therefore get the same number of samples.
We have evaluated this on a collection of benchmarks.

alternating bit is a simple message transition pro-
tocol, brp is a protocol to transfer files consisting of N
chunks (with MAX attempts), crowds models anonymised
message routing through a group of size CS (with TR total
runs), dining philosophers models the well-known
dining philosophers problem, dresden railways mod-
els the switches in Dresden Central Station, where a train has
to be routed to a specific platform and generals models
the n-generals problem, who have to decide independently
whether to attack or not.The benchmarks brp and crowds
are taken from Kwiatkowska, Norman, and Parker (2012).

For each model, we have sampled for t seconds (where
t ∈ {1, 10, 60}) and then computed the responsibility of all
states using these samples. To evaluate the quality of our
samples, we have repeated this procedure 20 times and de-
termined the standard deviation of the estimated responsibil-
ity from the actual value2. Table 2 presents the results. The
number of states of each model is given and for each run, n
indicates the average number of samples and σ the standard
deviation of the samples from the reference value.

Parentheses indicate insufficient coverage, which we de-
tect by analysing the sum of the responsibilities. If it is con-
sistently much smaller than 1, coverage is likely insufficient.

As expected, the standard deviation decreases if we sam-
ple for longer. Furthermore, bigger models show a bigger
deviation than smaller models for the same sampling dura-
tion. This is to be expected as each sample takes longer for
bigger models.

State Grouping
State grouping works by partitioning the set of states S into
groups G1, . . . , Gm. Instead of analysing all subsets C ⊆ S,
we instead analyse C =

⋃
i∈I Gi for all I ⊆ {1, . . . ,m},

i.e. if two states are in the same state group, they are either
both included in the coalition or neither of them is.

2For the larger models, we cannot compute the exact respon-
sibility. We therefore used the average of all runs with t = 60 as
reference value, as this is the best approximation we have.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20325

t = 1s t = 10s t = 60s
name states n σ n σ n σ
alternating bit 297 38.4k 0.0304 335.1k 0.0091 1844.0k 0.0038
brp, N = 4, MAX = 2 173 685.4k 0.0015 6963.9k 0.0005 41754.6k 0.0002
brp, N = 16, MAX = 3 886 71.2k 0.0087 663.5k 0.0028 3826.8k 0.0011
crowds, TR = 3, CS = 5 1198 49.3k 0.0120 372.3k 0.0041 2177.8k 0.0018
dining philosophers, N = 3 36 1606.6k 0.0015 16145.9k 0.0005 95952.8k 0.0002
dining philosophers, N = 5 393 35.5k 0.0135 321.9k 0.0049 1865.5k 0.0022
dresden railways 54 1286.8k 0.0009 12537.2k 0.0003 76475.9k 0.0001
generals, N = 3 20 2055.2k 0.0017 20655.9k 0.0005 117232.9k 0.0002
generals, N = 5 112 50.8k 0.0166 603.8k 0.0049 3626.3k 0.0019
generals, N = 8 1280 (7.9k) (0.0909) 69.9k 0.0242 313.6k 0.0104

Table 2: Evaluation of the stochastic algorithm, where n is the number of samples per run and σ is the standard deviation of the
result from each run from the reference value.

s1

s2

t1...
tn

✓

✗

Figure 4: Railway network similar to that from Figure 1, but
with multiple switches t1, . . . , tn.

To give an intuition for state groups, recall the example
from Figure 1. We can increase the complexity of the model
by replacing s3 with several switches t1, . . . , tn, as shown
in Figure 4. Running our tool for n = 5 reveals that each
ti has responsibility 0.0238, whereas s1 has a responsibility
of 0.3571 and s2 has a responsibility of 0.5238 (all values
rounded to four decimal places). If we do not want to anal-
yse individual responsibility of the switches t1 to t5 (per-
haps because they are switched by the same controller, or
because we want to reduce the complexity of the model), we
can use the state groups {s1}, {s2}, {t1, . . . , t5}. With these
state groups, the responsibilities are now equal to those in
Table 1, i.e. {s1} has responsibility 1/6, {s2} has responsi-
bility 2/3 and {t1, . . . , t5} has responsibility 1/6.

In addition to simplifying the results, state groups also
decrease runtime, as the algorithm is exponential only in the
number of groups, but linear in the number of states.

Example: Dining Philosophers Consider an implementa-
tion of the dining philosophers with a simple scheduler. For
four philosophers, this model has 180 states, which cannot
be analysed with the exact algorithm. If we group the states
by whose turn it is, we can compute responsibility values in
less than a millisecond (and it is revealed that, in our case,
all philosophers are equally responsible for the deadlock).

Example: BRP It is also possible to combine the stochas-
tic algorithm with state grouping. For example, consider the
brp model from Table 2. If we increase the parameters to
N = 64,MAX = 5, the model has 5192 states and even
60s of sampling result in insufficient coverage for individual
responsibility (as the sum of responsibilities is consistently
below 1). If we instead group states by which chunk is be-
ing processed, we get 64 groups and after running for 1s, the
tool is able to approximate the responsibility values with a

standard deviation of 0.0006.

6 Conclusion
We have presented two notions of backward responsibility.
For optimistic responsibility, every state with positive re-
sponsibility has the same amount of responsibility. The char-
acterisation provides a simple test to find the states with pos-
itive responsibility by computing whether they can change
the outcome by themselves. While this makes computation
straight-forward, it also means that it does not rank states by
responsibility in the way pessimistic responsibility does.

Pessimistic responsibility, on the other hand, is harder to
compute, but can give positive responsibility both to states
on the counterexample and to states that are not. Further-
more, not all responsible states have the same responsibility.

We have demonstrated that our technique works in prac-
tice and that a stochastic algorithm can be used to analyse
much larger models than would otherwise be feasible.

Future Work: Our investigation was restricted to safety
games. As our definitions can readily be adapted to other
classes of games, such as Büchi games, it is of interest to
determine whether our results still hold for these classes and
to analyse the complexity of the algorithms for them.

Another avenue for future work is the presentation of the
data to the user. Our tool gives the responsibility values for
each state. To facilitate debugging, it would be useful to take
this state-based responsibility and map it back to the speci-
fication language (in our case, this is the PRISM language).
However, such a mapping is non-trivial, as there is no direct
correspondence between states and source-code lines.

Acknowledgements
Funded by the German Research Foundation (DFG,
Deutsche Forschungsgemeinschaft) as part of Germany’s
Excellence Strategy – EXC 2050/1 – Project ID 390696704
– Cluster of Excellence “Centre for Tactile Internet
with Human-in-the-Loop” (CeTI) of Technische Univer-
sität Dresden, by DFG Grant 389792660 as part of TRR
248 (Foundations of Perspicuous Software Systems) and
by BMBF (Federal Ministry of Education and Research)
in DAAD project 57616814 (SECAI, School of Embedded
Composite AI) as part of the program Konrad Zuse Schools
of Excellence in Artificial Intelligence.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20326

References
Baier, C.; Funke, F.; and Majumdar, R. 2021. A Game-
Theoretic Account of Responsibility Allocation. In IJCAI,
1773–1779. International Joint Conferences on Artificial In-
telligence Organization.
Baier, C.; and Katoen, J. 2008. Principles of model checking.
MIT Press.
Baier, C.; van den Bossche, R.; Klüppelholz, S.; Lehmann,
J.; and Piribauer, J. 2024. Backward Responsibility in Tran-
sition Systems Using General Power Indices. arXiv preprint.
Ball, T.; Naik, M.; and Rajamani, S. K. 2003. From symp-
tom to cause: localizing errors in counterexample traces. In
Proceedings of the 30th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, 97–105. As-
sociation for Computing Machinery.
Beer, I.; Ben-David, S.; Chockler, H.; Orni, A.; and Trefler,
R. 2012. Explaining counterexamples using causality. For-
mal Methods in System Design, 40: 20–40.
Bell, G. I. 2007. Solving triangular peg solitaire. arXiv
preprint math/0703865.
Coenen, N.; Finkbeiner, B.; Frenkel, H.; Hahn, C.; Metzger,
N.; and Siber, J. 2022. Temporal causality in reactive sys-
tems. In International Symposium on Automated Technology
for Verification and Analysis, 208–224. Springer.
Dubey, P.; Neyman, A.; and Weber, R. J. 1981. Value Theory
without Efficiency. Mathematics of Operations Research,
6(1): 122–128.
Friedenberg, M.; and Halpern, J. Y. 2019. Blameworthiness
in multi-agent settings. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, 525–532.
Grädel, E.; Thomas, W.; and Wilke, T., eds. 2002. Automata,
Logics, and Infinite Games: A Guide to Current Research
[outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer.
Groce, A.; Chaki, S.; Kroening, D.; and Strichman, O. 2006.
Error explanation with distance metrics. International Jour-
nal on Software Tools for Technology Transfer, 8: 229–247.
Halpern, J.; and Kleiman-Weiner, M. 2018. Towards formal
definitions of blameworthiness, intention, and moral respon-
sibility. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.
Kwiatkowska, M.; Norman, G.; and Parker, D. 2011. PRISM
4.0: Verification of Probabilistic Real-time Systems. In
Gopalakrishnan, G.; and Qadeer, S., eds., Proc. 23rd In-
ternational Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, 585–591. Springer.
Kwiatkowska, M. Z.; Norman, G.; and Parker, D. 2012. The
PRISM Benchmark Suite. In QEST, 203–204. IEEE Com-
puter Society.
Laruelle, A.; and Valenciano, F. 2001. Shapley-Shubik and
Banzhaf Indices Revisited. Mathematics of Operations Re-
search, 26(1): 89–104.
Lehmann, J. 2024. Tool to compute backward responsibility
in transition systems using general power indices.

Leitner-Fischer, F.; and Leue, S. 2013. Causality checking
for complex system models. In International Workshop on
Verification, Model Checking, and Abstract Interpretation,
248–267. Springer.
Mascle, C.; Baier, C.; Funke, F.; Jantsch, S.; and Kiefer, S.
2021. Responsibility and verification: Importance value in
temporal logics. In LICS, 1–14. IEEE.
Renieres, M.; and Reiss, S. P. 2003. Fault localization with
nearest neighbor queries. In 18th IEEE International Con-
ference on Automated Software Engineering, 2003. Proceed-
ings., 30–39. IEEE.
Seshia, S. A.; Sadigh, D.; and Sastry, S. S. 2022. Toward
verified artificial intelligence. Communications of the ACM,
65(7): 46–55.
Shapley, L. S.; et al. 1953. A value for n-person games.
Contributions to the Theory of Games, 2.
Van de Poel, I. 2011. The relation between forward-looking
and backward-looking responsibility. In Moral responsibil-
ity: Beyond free will and determinism, 37–52. Springer.
Wang, C.; Yang, Z.; Ivančić, F.; and Gupta, A. 2006. Who-
dunit? causal analysis for counterexamples. In International
Symposium on Automated Technology for Verification and
Analysis, 82–95. Springer.
Zeller, A. 2002. Isolating cause-effect chains from computer
programs. In SIGSOFT FSE, 1–10. ACM.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20327

