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Abstract

The recent end-to-end neural solvers have shown promise for
small-scale routing problems but suffered from limited real-
time scaling-up performance. This paper proposes GLOP
(Global and Local Optimization Policies), a unified hierar-
chical framework that efficiently scales toward large-scale
routing problems. GLOP partitions large routing problems
into Travelling Salesman Problems (TSPs) and TSPs into
Shortest Hamiltonian Path Problems. For the first time, we
hybridize non-autoregressive neural heuristics for coarse-
grained problem partitions and autoregressive neural heuris-
tics for fine-grained route constructions, leveraging the scal-
ability of the former and the meticulousness of the latter. Ex-
perimental results show that GLOP achieves competitive and
state-of-the-art real-time performance on large-scale routing
problems, including TSP, ATSP, CVRP, and PCTSP. Our code
is available at: https://github.com/henry-yeh/GLOP.

Introduction
Routing problems pervade logistics, supply chain, trans-
portation, robotic systems, etc. Modern industries have wit-
nessed ever-increasing demands for the massive and expe-
ditious routing of goods, services, and people. The tradi-
tional solvers based on mathematical programming or itera-
tive heuristics struggle to keep pace with such growing com-
plexity and real-time requirements.

Recent advances in Neural Combinatorial Optimization
(NCO) (Bogyrbayeva et al. 2022) seek end-to-end solutions
for routing problems, where neural solvers are exploited and
empowered by massive training while enjoying potentially
efficient inference. However, most existing NCO methods
still struggle with real-time scaling-up performance; they are
unable to solve routing problems involving thousands or tens
of thousands of nodes in seconds, falling short of the need
of modern industries (Hou et al. 2023).

In answer to that, this work proposes GLOP (Global
and Local Optimization Policies) which partitions a large
routing problem into sub-Travelling Salesman Problems
(TSPs) and further partitions potentially large (sub-)TSPs
into small Shortest Hamiltonian Path Problems (SHPPs).

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

GLOP hybridizes non-autoregressive (NAR) global parti-
tion and autoregressive (AR) local construction policies,
where the global policy learns the first partition and the lo-
cal policy learns to solve SHPPs. We intend to integrate the
strengths while circumventing the drawbacks of NAR and
AR paradigms (further discussed in Appendix B). In par-
ticular, partitioning nodes into subsets (each corresponding
to a TSP) well suits NAR heuristics, because it is a large-
scale but coarse-grained task agnostic of within-subset node
ordering. On the other hand, solving SHPPs could be effi-
ciently handled with the AR heuristic because it is a small-
scale but fine-grained task.

The solution pipeline of GLOP is applicable to variations
of routing problems, such as those tackled in (Li et al. 2021a;
Zhang et al. 2022a, 2021; Alesiani, Ermis, and Gkiotsali-
tis 2022; Miranda-Bront et al. 2017; Li et al. 2021b). We
evaluate GLOP on canonical TSP, Asymmetric TSP (ATSP),
Capacitated Vehicle Routing Problem (CVRP), and Prize
Collecting TSP (PCTSP). GLOP for (A)TSP, as opposed
to most methods that require scale-specific and distribution-
specific training, can perform consistently and competitively
across scales, across distributions, and on real-world bench-
marks, using the same set of local policies. Notably, it is the
first neural solver to effectively scale to TSP100K, obtain-
ing a 5.1% optimality gap and a 174× speedup compared
with 1-run 1-trial LKH-3. GLOP for CVRP clearly outper-
forms prior state-of-the-art (SOTA) real-time solvers (Hou
et al. 2023) while using 10× less execution time. On PCTSP,
GLOP surpasses both recent neural solvers and conventional
solvers.

Accordingly, we summarize our contributions as follows:
• We propose GLOP, a versatile framework that extends

existing neural solvers to large-scale problems. To our
knowledge, it makes the first effective attempt at hy-
bridizing NAR and AR end-to-end NCO paradigms.

• We propose to learn global partition heatmaps for decom-
posing large-scale routing problems, leveraging NAR
heatmap learning in a novel way.

• We propose a one-size-fits-all real-time (A)TSP solver
that learns small SHPP solution construction for arbitrar-
ily large (A)TSP. We dispense with learning upper-level
TSP policies suggested in (Kim, Park, and Kim 2021;
Pan et al. 2023) while achieving better performance.
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• On (A)TSP, GLOP delivers competitive scaling-up and
cross-distribution performance and is the first neural
solver to scale to TSP100K effectively. On CVRP and
PCTSP, GLOP achieves SOTA real-time performance.

Background and Related Work
Neural Combinatorial Optimization (NCO)
Recent advances in NCO show promise for solving com-
binatorial optimization problems in an end-to-end manner
(Bogyrbayeva et al. 2022; Mazyavkina et al. 2021; Berto
et al. 2023). The end-to-end neural routing solvers can be
categorized into two paradigms: AR solution construction
and NAR heatmap generation coupled with subsequent de-
coding. We defer further discussions to Appendix C.

Divide and Conquer for VRP
The idea of “divide and conquer” has long been applied to
VRP variants in traditional (meta) heuristics (Zhang et al.
2021; Alesiani, Ermis, and Gkiotsalitis 2022; Xiao et al.
2019; Taillard and Helsgaun 2019). Recently, such an idea
has been introduced in neural routing solvers. Li, Yan, and
Wu (2021) propose learning to delegate (L2D) the improve-
ment of subtours to LKH-3 (Helsgaun 2017). Zong et al.
(2022) introduce Rewriting-by-Generating (RBG) frame-
work that involves repeated learning-based merging and
rule-based decomposition. However, both methods rely on
iterative refinement, therefore holding back the real-time
performance. More related to GLOP, Hou et al. (2023)
present a Two-stage Divide Method (TAM), the prior SOTA
real-time neural solver for large-scale CVRP, where a divid-
ing model learns to partition CVRP into sub-TSPs autore-
gressively, and the sub-TSPs are then solved by sub-solvers
such as Attention Model (AM) (Kool, van Hoof, and Welling
2019) or LKH-3. Unlike other prior works, both TAM and
GLOP target large-scale CVRP under real-time settings. By
comparison, GLOP outperforms TAM on CVRP by leverag-
ing more effective global representations and better neural
sub-TSP solvers, and can also handle routing problems that
TAM does not address.

Local Construction for TSP
Learning local subtour reconstruction for TSP is initially in-
troduced by Kim, Park, and Kim (2021) in Learning Collab-
orative Policy (LCP). LCP generates diversified initial solu-
tions (seeds) with neural models (seeders), then repeatedly
decomposes and reconstructs them. However, LCP, limited
mainly by the design of seeders, can hardly scale up to TSP
with hundreds of nodes. More recently, Pan et al. (2023) pro-
pose H-TSP, a hierarchical TSP solver interleaving forming
open-loop TSP (a.k.a., SHPP) with upper-level policies and
conquering it. By comparison, GLOP dispenses with learn-
ing any upper-level TSP policy but is able to outperform H-
TSP. Another concurrent work, namely select-and-optimize
(SO) (Cheng et al. 2023), utilizes a TSP solution pipeline
similar to GLOP. But SO heavily relies on sophisticated
heuristics specific to TSP, resulting in prolonged computa-
tional time. By comparison, GLOP achieves competitive so-
lutions while being hundreds of times more efficient.

Methodology Overview
GLOP is schematically illustrated in Figure 1. It aims to pro-
vide a unified and scalable framework for heterogeneous ve-
hicle routing problems. To this end, our design targets three
representative problem settings: (1) large-scale TSP alone,
(2) large-scale CVRP requiring problem partitioning and
solving multiple small sub-TSPs, and (3) large-scale PCTSP
requiring problem partitioning and solving a single large
sub-TSP. We defer the detailed explanations of these prob-
lems to Appendix D.

In general, GLOP learns local policies for (sub-)TSP and
global policies for partitioning general routing problems into
sub-TSPs. Our (sub-)TSP solver generates initial TSP tours
using Random Insertion, divides the complete tours into in-
dependent subtours, and learns to reconstruct them for im-
provements. Our general routing solver additionally learns
to perform node clustering or subsetting that generates sub-
TSP(s). We elaborate on our local policy and global policy
below and provide more details in Appendix A.

(Sub-)TSP Solver
Inference Pipeline
GLOP learns local policies to improve a TSP solution by
decomposing and reconstructing it.

Initialization GLOP generates an initial TSP tour with
Random Insertion (RI), a simple and generic heuristic. RI
greedily picks the insertion place that minimizes the inser-
tion cost for each node.

Then, GLOP performs improvements on the initial tour.
Following Kim, Park, and Kim (2021), we refer to a round
of improvement as a “revision”; we refer to a local policy
parameterized by an autoregressive NN and trained to solve
SHPPn (SHPP of n nodes) as “Reviser-n”. A revision in-
volves decomposing and reconstructing the initial tour, com-
prising four sequential steps outlined below.

Decomposition When improved by Reviser-n, a complete
tour with N nodes is randomly decomposed into ⌊N

n ⌋ sub-
tours, each with n nodes. There is no overlap between ev-
ery two subtours. A “tail subtour” with N mod n nodes, if
any, is left untouched until composition. Each subtour cor-
responds to an SHPP graph, and reconstructing a subtour
is equivalent to solving an SHPP instance. We pick the de-
composition positions uniformly when performing repeated
revisions.

Transformation and augmentation To improve the pre-
dictability and homogeneity of the model inputs, we ap-
ply Min-max Normalization and an optional rotation to the
SHPP graphs. They scale the x-axis coordinates to the range
[0, 1] and set the lower bound of the y-axis to 0. In addi-
tion, we augment the SHPP instances by flipping the node
coordinates to enhance the model performance.

Solving SHPPs with local policies We autoregressively
reconstruct the subtours (i.e., solve the SHPP instances) with
trainable revisers. Any SHPP solutions that are worse than
the current ones will be discarded. This key step is detailed
below.
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Figure 1: The pipeline of GLOP.

Composition The ⌊N
n ⌋ reconstructed (or original) sub-

tours and a tail subtour, if any, compose an improved com-
plete tour by connecting the starting/terminating nodes of
SHPPs in their original order.

GLOP can apply multiple revisers to solve a problem
from different angles. Also, a single reviser can decompose
the tour at different points and repeat its revisions. After all
revisions, GLOP outputs the improved tour as its final solu-
tion. Notably, GLOP allows applying a single set of small-
SHPP-trained models for arbitrarily large TSP.

Solving SHPP with Local Policy
Problem formulation and motivation SHPP is also re-
ferred to as open-loop TSP. With starting/terminating nodes
fixed, it aims to minimize the length of a Hamiltonian path
visiting all nodes in between exactly once. Solving small
SHPPs with neural networks, instead of directly solving TSP
or with traditional heuristics, makes GLOP a highly paral-
lelizable one-size-fits-all solution.

Model We parameterize our local policies based on Atten-
tion Model (AM) (Kool, van Hoof, and Welling 2019). To
apply it to SHPP, we adjust its context embedding following
Kim, Park, and Kim (2021) and leverage the solution sym-
metries by autoregressively constructing solutions from both
starting/determining nodes.

Local policy Given an SHPP instance s with start-
ing/terminating node 1 and n, our stochastic local policy
pθ(ωfd,ωbd | s), parameterized by the neural model θ, de-
notes the conditional probability of constructing forward and

backward-decoded solutions ωfd and ωbd. We let ω1:t−1 de-
note the partial solution at time step t, then the local pol-
icy can be factorized into probability distribution of per-step
construction:

pθ(ωfd,ωbd | s) = pθ(ωfd | s)× pθ(ωbd | s)

=

n−2∏
t=1

pθ(ωt | s,ω1:t−1, n)× pθ(ωt | s,ω1:t−1, 1).
(1)

We accept the better one between ωfd and ωbd during infer-
ence while making use of both for training.

Training Algorithm
We train our parameterized local policy, i.e., a reviser, by
minimizing the expected length of its constructed SHPP so-
lutions:

minimize L(θ | s) = Eωfd,ωbd∼pθ(ωfd,ωbd|s)

[fSHPP (ωfd, s) + fSHPP (ωbd, s)],
(2)

where fSHPP maps an SHPP solution to its length. We
apply the REINFORCE-based gradient estimator (Williams
1992) using the average path length of two greedy rollouts
as a baseline. This training algorithm doubles the experience
learned on each instance and enables a more reliable base-
line by weighing the greedy rollouts of both directions.

Two-stage curriculum learning According to our coor-
dinate transformation, we design a two-stage curriculum to
improve the homogeneity and consistency between training
and inference instances. We are motivated by the following
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observation: the inputs to revisers are 1) SHPP graphs with
y-axis upper bounds ranging from 0 to 1 after our coordinate
transformation, and also 2) the outputs of its preceding mod-
ule. Therefore, stage 1 in our curriculum trains revisers using
multi-distribution SHPPs with varied y-axis upper bounds,
and stage 2 collaboratively fine-tunes all revisers following
the inference pipeline.

General Routing Solver
Many routing problems can be formulated hierarchically,
which requires node clustering (e.g. CVRP, mTSP, Capaci-
tated Arc Routing Problem) or node subsetting (e.g. PCTSP,
Orienteering Problem, Covering Salesman Problem), fol-
lowed by solving multiple sub-TSPs or a single sub-TSP,
respectively (Li et al. 2021a; Zhang et al. 2022a, 2021; Ale-
siani, Ermis, and Gkiotsalitis 2022; Xiao et al. 2019; Li et al.
2021b). For these general routing problem, GLOP involves
an additional global partition policy defined by a parame-
terized partition heatmap and trained with parallel on-policy
sampling without costly step-by-step neural decoding. The
applicability of our global policy is also discussed.

Global Policy as Partition Heatmap
Partition heatmap We introduce a parameterized parti-
tion heatmap Hϕ(ρ) = [hij(ρ)](n+1)×(n+1) where ρ is the
input instance with n+ 1 nodes including node 0 as the de-
pot. hij ∈ R+ represents the unnormalized probability of
nodes i and j belonging to the same subset.

Model and input graph The partition heatmap is parame-
terized by an isomorphic GNN ϕ (Joshi, Laurent, and Bres-
son 2019; Qiu, Sun, and Yang 2022). Inputs to the model are
sparsified graphs with features designed separately for dif-
ferent problems. We defer the full details to Appendix A.4.

Global policy For node clustering, GLOP partitions all
nodes into multiple subsets, each corresponding to a sub-
TSP to solve. For node subsetting, GLOP partitions all nodes
into two subsets, i.e., the to-visit subset and the others,
where the to-visit subset forms a sub-TSP to solve. Let π =
{πr}|π|

r=1 denote a complete partition and πr = {πr
t }

|πr|
t=1

the r-th subset containing both regular nodes and the de-
pot. Each subset begins and terminates at the depot; that is,
πr
1 = πr

|πr| = 0. Given Hϕ(ρ), our global policy partitions
all nodes into |π| subsets by sequentially sampling nodes
while satisfying problem-specific constraints Θ:

pϕ(π|ρ) =


|π|∏
r=1

|πr|−1∏
t=1

hπr
t ,π

r
t+1

(ρ)∑
k∈N (πp) hπr

t ,k
(ρ)

, if π ∈ Θ,

0, otherwise,
(3)

where N (πp) is the set of feasible actions given the current
partial partition. For our benchmark problems, the applied
constraints Θ are given in Appendix A.4.

Decoding We apply greedy (GLOP-G) and sampling
(GLOP-S) heatmap decoding (Qiu, Sun, and Yang 2022) to
draw the node partitions following our global policy.

Training Algorithm
We train our global policy to output partitions that could
lead to the best-performing final solutions after solving sub-
TSPs. Given each instance ρ, the training algorithm infers
partition heatmap Hϕ(ρ), samples node partitions in par-
allel, feeds the sampled partitions into GLOP for sub-TSP
solutions, and optimizes the expected final performance:

min L(ϕ|ρ) = Eπ∼pϕ(π|ρ)[

|π|∑
r=1

fTSP (GLOPθ(π
r,ρ))],

(4)
where fTSP is a mapping from a sub-TSP solution to its
length, and GLOPθ generates sub-TSP solutions with well-
trained local policies. We apply the REINFORCE algorithm
(Williams 1992) with the averaged reward of sampled so-
lutions for the same instance as a baseline. The baseline is
respectively computed for each instance within each train-
ing batch. GLOP for sub-TSP, i.e. GLOPθ , enables efficient
training of our global policy on large-scale problems due to
its parallelizability and scalability.

Applicability
Many routing problems can be formulated hierarchically, in-
volving node clustering and/or node subsetting, depending
on the problem formulation. Node clustering is used when
the problem requires formulating multiple routes that cover
all nodes, while node subsetting is used when the problem
requires formulating a single route that covers a subset of
nodes. In some cases, a routing problem may require both
subsetting and clustering. Our global policy offers a unified
formulation for all these scenarios. Additionally, it can eas-
ily handle constraints via masking if they can be anticipated
while constructing node subsets. To handle more complex
constraints, one can assign a large negative value to the re-
wards of infeasible solutions or apply post-processing tech-
niques before solution evaluation.

Experimentation
Experimental Setup
Datasets We refer the readers to Kool, van Hoof, and
Welling (2019) for more specific definitions of benchmark
problems. (1) We evaluate GLOP on uniformly sampled
large-scale TSP instances (i.e., TSP500, 1K, and 10K) used
in Fu, Qiu, and Zha (2021) and an additionally generated
TSP100K instance. We perform a cross-distribution evalua-
tion on test instances used in (Bi et al. 2022). For evaluation
on real-world benchmarks, we draw all 49 symmetric TSP
instances featuring EUC 2D and containing fewer than 1000
nodes (since most baselines cannot process larger-scale in-
stances) from TSPLIB and map all instances to the [0, 1]2

square through Min-max Normalization. The test datasets
of ATSP are generated following Kwon et al. (2021). (2)
For CVRP, we adhere to the settings in TAM (Hou et al.
2023) and use the code of AM (Kool, van Hoof, and Welling
2019) to generate test datasets on CVRP1K, 2K, 5K, and
7K, each containing 100 instances. We also evaluate GLOP
on several large-scale CVRPLIB instances. (3) For PCTSP,
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Method TSP500 TSP1K TSP10K
Obj. Gap(%) Time Obj. Gap(%) Time Obj. Gap(%) Time

Concorde 16.55 0.00 40.9m 23.12 0.00 8.2h - - -
LKH-3 16.55 0.00 5.5m 23.12 0.00 24m 71.77 0.00 13h
Random Insertion 18.59 12.3 <1s 26.12 13.0 <1s 81.84 14.0 5.7s

AM 22.60 36.6 5.8m 42.53 84.0 22m 430 499 3.5m
LCP 20.82 25.8 29m 36.34 57.2 34m 357 397 4.3m
GCN+MCTS ×12 16.96 2.48 2.4m+33s 23.86 3.20 4.9m+1.2m 75.73 5.50 7.1m+6.0m
POMO-EAS 24.04 45.3 1.0h 47.79 107 8.6h OOM
DIMES+S 19.06 15.0 2.0m 26.96 16.1 2.4m 86.25 20.0 3.1m
DIMES+MCTS ×12 17.01 2.78 1.0m+2.1m 23.86 3.20 2.6m+1.0m 76.02 5.90 13.7m+20m
Tspformer* 17.57 5.97 3.1m 27.02 16.9 5.0m - - -
H-TSP - - - 24.65 6.62 47s 77.75 7.32 48s
Pointerformer 17.14 3.56 1.0m 24.80 7.30 6.5m - - -
DeepACO 16.94 2.36 4.3m 23.85 3.16 1.1h - - -

GLOP 17.07 3.14 19s 24.01 3.85 34s 75.62 5.36 32s
GLOP (more revisions) 16.91 1.99 1.5m 23.84 3.11 3.0m 75.29 4.90 1.8m

Table 1: Comparison results on 128 TSP500, 128 TSP1K, and 16 TSP10K. For all experiments on TSP, “Time” is the total
runtime for solving all instances. If it has two terms, they correspond to the runtime of heatmap generation and MCTS, respec-
tively. OOM: out of our graphics memory (24GB). *: Results are drawn from the original literature with runtime proportionally
adjusted (128/100) to match the size of our test datasets. See Appendix A.6 and F for full implementation details of GLOP and
the baselines, respectively.

Method TSP100K
Obj. Gap(%) Time

LKH-3 {T = 1} 226.4 0.00 8.1h
Random Insertion 258.5 14.2 1.7m

AM OOM
LCP OOM
GCN+MCTS ×12 OOM
POMO-EAS OOM
DIMES+MCTS ×12 OOM
DIMES+S 286.1 26.4 2.0m
H-TSP OOM
Pointerformer OOM

GLOP 240.0 6.01 1.8m
GLOP (more revisions) 238.0 5.10 2.8m

Table 2: Comparison results on a TSP100K instance.

Method Avg. gap(%) Time

LCP {M = 1280} 99.9 3.6m
DACT {T = 1K} 865 50m
GCN+MCTS ×1 1.10 7.5m
POMO-EAS {T = 60} 18.8 20m
DIMES+MCTS ×1 2.21 7.4m
AMDKD+EAS {T = 100} 7.86* 48m
Pointerformer 6.04 48s

GLOP 1.53 42s
GLOP (more revisions) 0.69 2.6m
*: Two instances are skipped due to OOM issue.

Table 3: Comparison results on TSPLIB instances.

Method MatNet (Kwon et al. 2021) GLOP

ATSP150 2.88 (7.2s) 1.89 (6.4s)
ATSP250 4.49 (12s) 2.10 (9.6s)
ATSP1000 - 2.79 (39s)

Table 4: Comparison results on ATSP.

we follow the settings in AM (Kool, van Hoof, and Welling
2019) for data generation on PCTSP500, 1K, and 5K. As
suggested by Kool, van Hoof, and Welling (2019), we spec-
ify Kn = 9, 12, 20 to sample prizes for n =500, 1K, 5K,
respectively , i.e., βi ∼ Uniform(0, 3Kn

n ).

Baselines Evaluating an NCO method typically involves
two metrics: the objective value and the runtime. To ensure
the validity of our comparisons, we select SOTA baselines
with adjustable runtime that can match GLOP. We defer de-
tailed implementations of the baselines to Appendix F.

Hardware Unless otherwise stated, GLOP and the base-
lines are executed on a 12-core Intel(R) Xeon(R) Platinum
8255C CPU and an NVIDIA RTX 3090 Graphics Card.

Travelling Salesman Problem
Large-scale TSP Comparison results on large-scale TSP
are shown in Table 1 and Table 2. For GCN+MCTS (Fu,
Qiu, and Zha 2021) and DIMES+MCTS (Qiu, Sun, and
Yang 2022), we use all 12 CPU cores for MCTS and limit
its running time to ensure comparable results. Concluded
from the results, GLOP is highly efficient due to its decom-
posed solution scheme (see Appendix E.5 for the analysis of
time complexity). Furthermore, the memory consumption of
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Method Time Uniform Expansion Explosion Implosion
Gap(%) Gap(%) Det.(%) Gap(%) Det.(%) Gap(%) Det.(%)

AM (Kool, van Hoof, and Welling 2019) 0.5h 2.310 17.97 678 3.817 65 2.431 5.2

AM+HAC (Zhang et al. 2022b) 0.5h 2.484 3.997 61 3.084 24 2.595 4.5
GLOP 0.091 0.166 82 0.066 -27 0.082 -9.9

AMDKD+EAS (Bi et al. 2022) 2.0h 0.078 0.165 112 0.048 -39 0.079 1.3
GLOP (more revisions) 0.048 0.076 60 0.028 -41 0.044 -8.3

Table 5: Comparison results on the OoD datasets. Det = GapOoD/GapU −1, where GapOoD and GapU are the optimality gaps
on an OoD dataset and the Uniform dataset, respectively.

Method CVRP1K CVRP2K CVRP5K CVRP7K
Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s)

LKH-3 (Helsgaun 2017) 46.4 6.2 64.9 20 175.7 152 245.0 501

AM (Kool, van Hoof, and Welling 2019) 61.4 0.6 114.4 1.9 257.1 12 354.3 26
L2I (Lu, Zhang, and Yang 2020) 93.2 6.3 138.8 25 - - - -
NLNS (Hottung and Tierney 2019) 53.5 198 - - - - - -
L2D (Li, Yan, and Wu 2021) 46.3 1.5 65.2 38 - - - -
RBG (Zong et al. 2022) 74.0 13 137.6 42 - - - -
TAM-AM (Hou et al. 2023) 50.1 0.8 74.3 2.2 172.2 12 233.4 26
TAM-LKH3 (Hou et al. 2023) 46.3 1.8 64.8 5.6 144.6 17 196.9 33
TAM-HGS (Hou et al. 2023) - - - - 142.8 30 193.6 52

GLOP-G 47.1 0.4 63.5 1.2 141.9 1.7 191.7 2.4
GLOP-G (LKH-3) 45.9 1.1 63.0 1.5 140.6 4.0 191.2 5.8

Table 6: Comparison results on large-scale CVRP following the settings in (Hou et al. 2023). “Time” corresponds to the per-
instance runtime. GLOP-G (LKH-3) applies LKH-3 as its sub-TSP solver.

GLOP can be basically invariant of the problem scale if re-
constructing the subtours using a fixed batch size. Hence,
it is the first neural solver to effectively scale to TSP100K,
obtaining a 5.1% optimality gap and a 174× speed-up com-
pared to LKH-3. Compared with LCP (Kim, Park, and Kim
2021) and H-TSP (Pan et al. 2023), GLOP dispenses with
learning upper-level TSP policies while achieving better per-
formance. Compared with NAR methods conducting MCTS
refinements (Fu, Qiu, and Zha 2021; Qiu, Sun, and Yang
2022), GLOP generates reasonable solutions even before
they have finished initialization or produced prerequisite
heatmaps for solution decoding. Hence, GLOP exhibits clear
advantages for real-time applications.

Cross-distribution TSP Table 5 gathers the comparison
between GLOP and two baselines specially devised for
cross-distribution performance (Zhang et al. 2022b; Bi et al.
2022) on four TSP100 datasets with different distributions,
i.e., uniform, expansion, explosion, and implosion. Recall
that we use uniformly distributed samples to train GLOP.
Hence, the latter three datasets contain out-of-distribution
(OoD) instances. Results show that GLOP obtains smaller
gaps and less Det. on most OoD datasets. We argue that the
holistic solution scheme of GLOP is the main contributor to
its cross-distribution performance. The inputs to the neural
models are local SHPP graphs, making GLOP insensitive to
the overall TSP distribution. We conduct further discussions

in Appendix E.3.

Real-world TSPLIB We evaluate GLOP and the base-
lines on real-world TSPLIB instances and collect the re-
sults in Table 3, where GLOP performs favorably against
the baselines due to its consistent performance across scales
and distributions. Note that we test each instance individu-
ally without parallel computation.

Asymmetric TSP GLOP is compatible with any neural
architecture and can be extended to asymmetric distance.
Table 4 exemplifies this flexibility on ATSP, where we re-
place AM with MatNet (Kwon et al. 2021) which is spe-
cially designed for ATSP. We follow the experimental setup
in (Kwon et al. 2021) and generalize MatNet100 as base-
line. For GLOP, we apply MatNet50 checkpoint as our re-
viser without retraining. The results validate that GLOP can
successfully extend MatNet to solve large ATSP instances.
Note that MatNet is limited to problem scales no larger than
256 due to its one-hot initialization while there is no such
limitation for GLOP-empowered MatNet.

Capacitated Vehicle Routing Problem

GLOP for CVRP involves node clustering with our global
policy, followed by solving the produced sub-TSPs with our
sub-TSP solver.
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Instance Scale AM TAM-AM LKH-3 TAM-LKH3 GLOP GLOP-LKH3
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

LEUVEN1 3001 46.9 10s 20.2 10s 18.1 69s 19.3 16s 16.9 2s 16.6 8s
LEUVEN2 4001 53.3 13s 38.6 14s 22.1 74s 15.9 24s 21.8 3s 21.1 3s

ANTWERP1 6001 39.3 13s 24.9 13s 24.2 596s 24.0 25s 20.3 3s 19.3 14s
ANTWERP2 7001 50.3 15s 33.2 15s 31.1 479s 22.6 32s 19.4 4s 19.4 7s

GHENT1 10001 46.9 21s 30.2 22s - 29.5 37s 20.3 5s 18.3 22s
GHENT2 11001 52.2 39s 33.3 38s - 23.7 56s 19.8 6s 18.1 8s

BRUSSELS1 15001 52.4 131s 43.4 139s - 27.2 167s 27.6 8s 27.5 26s
BRUSSELS2 16001 52.4 166s 39.0 159s - 37.1 187s 22.4 9s 20.1 14s

Table 7: Comparison results on large-scale CVRPLIB instances.

Method PCTSP500 PCTSP1K PCTSP5K
Obj. Time Obj. Time Obj. Time

OR Tools 15.0 1h 24.9 1h 63.3 1h
OR Tools (more iterations) 14.4 16h 20.6 16h 54.4 16h

AM (Kool, van Hoof, and Welling 2019) 19.3 14m 34.8 23m 175 21m
MDAM (Xin et al. 2021) 14.8 2.8m 22.2 17m 58.9 3h

GLOP-G 14.6 26s 20.0 47s 46.0 3.7m
GLOP-S 14.3 1.5m 19.8 2.5m 44.9 16m

Table 8: Comparison results of GLOP and the baselines on 128 PCTSP500, 1K, and 5K. “Time” corresponds to the total
execution time for solving all instances.

Large-scale CVRP Table 6 summarizes the results of the
comparison in large-scale CVRP, where the RBG (Zong
et al. 2022) and L2D (Li, Yan, and Wu 2021) models are
generalized for evaluation here due to their different train-
ing settings, and the results of other baselines are drawn
from (Hou et al. 2023). Here, we apply the global policy
trained on CVRP2K to both CVRP5K and CVRP7K, verify-
ing the generalization performance of GLOP. Compared to
the methods that entail iterative solution refinement (Hels-
gaun 2017; Li, Yan, and Wu 2021; Lu, Zhang, and Yang
2020; Zong et al. 2022), both TAM (Hou et al. 2023) and
GLOP can deliver more real-time solutions. Compared with
prior SOTA real-time solver TAM, GLOP learns more ef-
fective global/local policies and enables higher decoding ef-
ficiency. Hence, GLOP outperforms TAM regarding both so-
lution quality and efficiency.

Real-world CVRPLIB We test GLOP on large-scale
CVRPLIB instances and present results in Table 7. We gen-
eralize the model trained on CVRP2000 to these large in-
stances and compare GLOP to prior SOTA real-time solver
TAM (Hou et al. 2023). The results of TAM and other base-
lines are drawn from (Hou et al. 2023). The comparison also
demonstrates the superiority of GLOP in both solution qual-
ity and efficiency, especially for very large instances.

Prize Collecting Travelling Salesman Problem
GLOP for PCTSP involves node subsetting with our global
policies, followed by solving a sub-TSP instance with our
sub-TSP solvers. Large-scale PCTSP entails both a scalable

global policy to generate a promising node partition and a
scalable local policy to tackle the equivalently large sub-
TSP. We evaluate greedy (GLOP-G) and sampling (GLOP-
S) decoding for our global policy. The comparison results on
large-scale PCTSP are displayed in Table 8, where GLOP
surpasses recent neural solvers and conventional solvers in
terms of both solution quality and efficiency.

Conclusion and Limitation
This paper proposes GLOP to learn global policies for
coarse-grained problem partitioning and local policies for
fine-grained route construction. GLOP leverages the scala-
bility of the NAR paradigm and meticulousness of the AR
paradigm, making the first effective attempt at hybridiz-
ing them. Extensive evaluations on large-scale TSP, ATSP,
CVRP, and PCTSP demonstrate its competitive and SOTA
real-time performance. However, GLOP might be less com-
petitive in application scenarios where prolonged execution
time is allowed. In terms of its ability to trade off execu-
tion time for solution quality, GLOP might be inferior to
the methods based on iterative solution refinement (further
discussed in Appendix E.1). Our future focus will be on ad-
dressing this limitation. In addition, we plan to investigate
the emerging possibilities that arise when viewing AR and
NAR methods from a unified perspective. We believe it is
also promising to exploit unsupervised Deep Graph Cluster-
ing techniques (Liu et al. 2022, 2023) or to formulate node
classification tasks to solve large-scale routing problems hi-
erarchically.
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