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Abstract
Counterexample-Guided Abstraction Refinement (CEGAR)
is a prominent technique to generate Cartesian abstractions
for guiding search in cost-optimal planning. The core idea is
to iteratively refine the abstraction, finding a flaw of the cur-
rent optimal abstract plan. All existing approaches find these
flaws by executing the abstract plan using progression in the
original state space.
Instead, we propose to do backward refinements by using re-
gression from the goals. This results in a new type of flaw,
that can identify invalid plan suffixes. The resulting abstrac-
tions are less focused on the initial state, but more informa-
tive on average, significantly improving the performance of
current CEGAR-based techniques. Furthermore, they can be
combined with forward refinements in several bidirectional
strategies that provide the benefits of both methods.

Introduction
Counterexample-guided abstraction refinement (CEGAR) is
a method that originated in model-checking (Clarke et al.
2000), where it is widely used to prove that error states
are unreachable. The key idea is to iteratively refine an ab-
straction by finding an optimal abstract plan, understanding
why it is not an actual plan by using interpolation to find a
logic formula that explains the difference, and changing the
abstraction to reflect the difference. The idea was brought
to planning by Seipp and Helmert (2013b; 2018), using
CEGAR to generate Cartesian abstractions that result in in-
formative admissible heuristics for A∗ search (Hart, Nilsson,
and Raphael 1968). Since then, CEGAR has become one of
the dominant approaches for generating all kinds of abstrac-
tion heuristics (Rovner, Sievers, and Helmert 2019; Kreft
et al. 2023). This is best exemplified by the state-of-the-art
Scorpion planner (Seipp 2018), which uses this method to
compute a diverse set of Cartesian abstraction heuristics and
combine them additively (Seipp and Helmert 2013a, 2014)
using saturated cost-partitioning (Katz and Domshlak 2010;
Seipp, Keller, and Helmert 2017, 2020).

But the question of how to guide the refinement process
of CEGAR to generate informative abstractions has com-
paratively received much less attention. One possibility is
to perform batch refinement (Speck and Seipp 2022), where
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at each iteration the abstraction is refined based on multi-
ple plans instead of only one. In this paper, we focus on the
notion of flaw, i.e., identifying the reason why the abstract
plan is not an actual plan. In planning, this is always done by
executing the abstract plan on the original task, until some
step in the plan cannot be executed or results in an unex-
pected effect. While this indeed is a valid interpolation, it is
not necessarily the only one, i.e., there could also be other
reasons why the same abstract plan is not an actual plan.

We introduce regression flaws. Instead of executing the
abstract plan on the initial state, we use regression to iden-
tify sets of states that are solved by the suffix of the abstract
plan. This results in a different type of flaw, which focuses
on why the plan suffix fails to solve the task instead of why
the plan prefix fails. Refining the abstraction based on re-
gression flaws maintains all important properties of the over-
all CEGAR process, such as converging to an optimal plan.

Backward interpolation has also been successfully used in
the context of model-checking (Hajdu and Micskei 2020).
We show that the idea of backward refinements makes even
more sense in the context of planning, where abstractions are
used to estimate goal distance from any reachable state. In
our experiments we notice abstractions obtained with back-
ward refinements are less focused on the initial state, so they
typically converge slower towards the optimal plan and get
lower values when evaluating the initial state. However, the
resulting heuristic is overall more informative, significantly
improving the quality of the heuristic to guide the search.

In fact, replacing the standard forward refinements with
backward ones leads to a significant improvement in the per-
formance in most domains not only when deriving a single
abstraction heuristic, but also when combining multiple ab-
stractions via cost partitioning on the Scorpion planner.

We also experiment with strategies that combine both for-
ward and backward refinements. The results show that they
inherit the strengths of both methods: generating heuristics
that are as informative as with backward refinement and, at
the same time, obtaining heuristics even more informative
for the initial state than the original forward refinements.

Background
We consider tasks in SAS+ representation (Bäckström and
Nebel 1995), where states are described in terms of a set of
variables V , and each v ∈ V has a finite domain, Dv . A
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Figure 1: Example of a Cartesian abstraction for a task with
two binary variables, s0 = {v1 7→ 0, v2 7→ 0}, G = {v2 7→
1}, and a single operator o1 with pre(o1) = {v2 7→ 0}, and
eff (o1) = {v2 7→ 1}.

partial state p is a partial variable assignment over some
variables vars(p) ⊆ V . A (concrete) state s is a full as-
signment, i.e., vars(s) = V . We write p[v] for the value
assigned to the variable v ∈ vars(p) in the partial state p.
Two partial states p and c are consistent if p[v] = c[v] for all
v ∈ vars(p) ∩ vars(c). We denote by S(p) ⊆ S the set of
states consistent with p.

A SAS+ task Π is a tuple ⟨V,O, s0, G⟩ where s0 is the
initial state, G is a partial state that describes the goals, and
O is a set of operators. An operator o ∈ O has precondi-
tions pre(o) and effects eff (o), both of which are partial
states, and a non-negative cost cost(o) ∈ R+

0 . An operator
o is applicable in progression in a state s if s is consistent
with pre(o). The result of applying o to s is another state
sJoK where sJoK[v] = eff (o)[v] if v ∈ vars(eff (o)) and
sJoK[v] = s[v] otherwise. s o−→ s′ is a shorthand for the ap-
plication of o on s when s′ = sJoK. The state space of a task
Π is a transition system, Θ = ⟨S,O, T, s0, SG⟩, where S is
the set of all states, SG = {s ∈ S | s is consistent with G}
is the set of goal states, and T = {(s, o, s′) | s o−→ s′} is
the set of transitions. A plan π for s is a sequence of opera-
tors ⟨o1, o2, . . . , on⟩, s.t. the trace s

o1−→ s1
o2−→ . . .

on−→ sn
reaches a goal state sn ∈ SG. The cost of π is the summed
up cost of its operators. The goal distance from s to the goal,
h∗(s), is the minimum cost of any plan for s, or∞ if no plan
exists. A plan for Π is a plan for the initial state, s0.

Regression reasons backwards, starting from a partial
state p and deriving from which states we can reach some
state in S(p) by applying some operator (Rintanen 2008;
Alcázar et al. 2013). An operator o is applicable in regres-
sion in p if p is consistent with prer (o) where prer (o) =
eff (o) ∪ {pre(o)[v] | v /∈ vars(eff (o))}.1 After applying o
in regression to p, the resulting partial state p′ is defined for
(vars(p) \ vars(eff (o)))∪ vars(pre(o)) and regr(p, o)[v] =
pre(o)[v] for v ∈ vars(pre(o)) and regr(p, o)[v] = p[v] oth-
erwise. We write p

o←− p′ as a shorthand.
A common approach to find optimal plans is to use A∗

search with an admissible heuristic. A heuristic is a function
h : S 7→ R+

0 ∪ {∞}. The heuristic is admissible if h(s) ≤
h∗(s) for all s ∈ S.

An abstraction is a function α : S 7→ Sα, where Sα is
a finite set of abstract states. The abstract state space Θα =

1Previous work considered as additional precondition in regres-
sion that vars(p) ∩ vars(eff (o)) ̸= ∅, as otherwise the resulting
partial state is subsumed.

⟨Sα, O, Tα, sα0 , S
α
G⟩ is a homomorphism of the state space,

i.e., Tα = {(α(s) o−→ α(t) | s o−→ t ∈ T )}, sα0 = α(s0),
Sα
G = {α(s) | s ∈ SG}. Each abstraction induces a heuristic

function where hα(s) is the distance from α(s) to the goal
in Θα. Each abstract state sα ∈ Sα is identified with the set
of states mapped to it, S(sα) = {s | s ∈ S, α(s) = sα}.

Cartesian abstractions are a type of abstractions where the
set of states S(sα) is Cartesian for all sα ∈ Sα (Seipp and
Helmert 2018). A set of states is Cartesian if it is of the form
A1×A2× · · · ×An, where Ai ⊆ Dvi

for all vi ∈ V . Given
a Cartesian set a, we denote by a[vi] the set of values that
vi can take in a, i.e., a[vi] = Ai ⊆ Dvi

. The intersection
of two Cartesian sets a′ = a1 ∩ a2 is also a Cartesian set,
where a′[v] = a1[v]∩a2[v] for all v ∈ V . Figure 1 shows an
example of a Cartesian abstraction, where each abstract state
is a Cartesian set, e.g., a0 has two concrete states {v1 7→
0, v2 7→ 0} and {v1 7→ 1, v2 7→ 0}.

Note that Cartesian sets generalize partial states. For any
partial state p, we can build a Cartesian set C(p) such that
C(p) = S(p), by making C(p)[v] = {p[v]} if v ∈ vars(p)
and C(p)[v] = Dv otherwise. Slightly abusing notation, we
will keep this conversion implicit and define the intersection
of a Cartesian set a and a partial state p as a∩p = a∩C(p).

The most successful technique to obtain informative
Cartesian abstractions is CEGAR (Counterexample-Guided
Abstraction Refinement) (Seipp and Helmert 2013b, 2018).
CEGAR starts with the trivial abstraction with a single ab-
stract state a s.t. a[v] = Dv ∀v ∈ vars(v). Then, it is itera-
tively refined until reaching a termination condition or find-
ing a concrete plan. The refinement loop is shown in Algo-
rithm 1: an optimal abstract plan trace τα = a0

o1−→ a1
o2−→

. . .
on−→ an is executed in the concrete space, resulting in a

trace s0
o1−→ s1

o2−→ . . .
on−→ sn. If this execution succeeds

and sn ∈ SG, then it is an optimal plan for the task. If the
plan execution fails at some step, a flaw is reported and the
abstraction is refined by splitting an abstract state along the
plan into two in such a way that the same flaw cannot happen
again. A flaw is a tuple ⟨si, c⟩ consisting of a concrete state
si ∈ S and a Cartesian set c. There are three types of flaws,
which correspond to different reasons that can cause the ex-
ecution of τα to fail at step i: (1) si is the first state in which
oi+1 is not applicable and c is the set of concrete states in
ai in which oi+1 is applicable, i.e. c = ai ∩ pre(oi+1). (2)
si is the first state where oi+1 is applicable but its successor
is not mapped to ai+1. Then, c is the set of concrete states
in ai from which ai+1 is reached when applying oi. (3) the
sequence can be executed but sn is not a goal state. This
results in the flaw ⟨sn, G⟩.

A flaw ⟨s, c⟩ is repaired by splitting α(s) into two abstract
states d and e with s ∈ S(d) and S(c) ⊆ S(e). Usually,
multiple possible splits exist in different variables to fix the
flaw. A split selection strategy is a criterion to choose a split
among the ones that fix the flaw (Seipp and Helmert 2018).

The process refines the abstraction until solving the prob-
lem either by finding an optimal plan (line 9) or proving the
task unsolvable (line 4). The process can be stopped by some
termination condition (typically a time or memory limit), re-
sulting in a Cartesian abstraction that induces a heuristic.
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Algorithm 1: CEGAR main algorithm
Data: Π = ⟨V,O, s0, G⟩, Sα ; // task, initial abstraction
Result: unsolvable, concrete plan, final abstraction

1 while not terminationCondition() do
2 τα ← findOptimalTrace(Sα)
3 if τα = “no trace” then
4 return task is unsolvable
5 φ← findFlaw(Π, τα)
6 if φ = “no flaw” then
7 return plan extracted from τα

8 Sα ← refine(Sα, φ);
9 return Sα

Backward Refinement
Our main contribution is to perform the refinement of the
abstraction in the backward direction, based on regressing
the abstract plan from the goal.

Regression Flaw
Given an abstract plan, we define a regression flaw as an
explanation of why a given suffix of the plan is not a solution
for the planning task. The definition is similar to that of flaw
used in previous work (Seipp and Helmert 2018). However,
as the goal is not a fully specified state, regression should
be done on partial states, in an attempt to cover all possible
ways of reaching the goal with such an abstract plan.

Definition 1 (Regression flaw). Let Π be a planning task,
α a Cartesian abstraction of Π, and τα = a0

o1−→ a1
o2−→

. . .
on−→ an an abstract plan trace. Let pn = G and ⟨pn

on←−
. . .

o1←− p0⟩ be the result of performing regression using the
reversed sequence of operators. A regression flaw of τα is a
pair ⟨pi, c⟩ where i is the largest index for which:

1. oi is not backward applicable on pi (pi is not consistent
with prer (oi)). In this case, c = ai ∩ prer (oi) is the set
of concrete states in ai where oi is backward applicable;

2. oi is backward applicable on pi but S(pi−1)∩S(ai−1) =
∅, i.e., no state in the predecessor is mapped to ai−1.
In this case, c is the Cartesian set within ai that can be
reached from some state in ai−1 by applying oi; or

3. the entire sequence is well defined but p0 is incompatible
with the initial state s0, and c is the Cartesian set of s0.

Algorithm 2 shows how to find the first regression flaw by
generating the sequence of partial states in regression along
the plan, checking the conditions above. An important prop-
erty for the correctness of the approach is that returning “no
flaw” means the abstract plan is a plan for the original task.
In forward refinements this property is guaranteed, as any
plan trace τα without forward flaws is always mappable and
therefore is a plan for the original task.

Definition 2 (Mappable abstract plan). An abstract plan
trace τα = a0

o1−→ a1
o2−→ . . .

on−→ an is mappable if the
sequence of operators corresponds to an actual plan trace
s0

o1−→ s1
o2−→ . . .

on−→ sn, and si ∈ S(ai) for all i ∈ [0, n].

Algorithm 2: FindRegressionFlaw
Data: Π = ⟨V,O, s0, G⟩, τα ; // task, abstract plan trace
Result: Regression Flaw ⟨partial state, Cartesian set⟩

1 p← G

2 forall b o−→ a ∈ reverse(τα) do
3 if o is not backward applicable to p then
4 return ⟨p, a ∩ prer (o)⟩
5 p′ ← regr(p, o)
6 if S(p′) ∩ b ̸= ∅ then
7 return ⟨p, a ∩ progr(b, o)⟩
8 p← p′

9 if p ∩ s0 ̸= s0 then
10 return ⟨p, s0⟩
11 return “no flaw”

However, partial states generated during regression may
correspond to multiple abstract states. Therefore, in case
(2.), we check whether the intersection is empty instead of
requiring the partial state to be included in the abstract state.
Due to this, it might happen that abstract plans with no re-
gression flaw are not directly mappable to actual plans.

Proposition 1. An abstract plan without regression flaws
may be not mappable.

Proof. In the Cartesian abstraction of Figure 1, the optimal
abstract plan trace τα = a0

o1−→ a2 is not mappable because
the state s1 = s0Jo1K is mapped to a1 instead of the expected
a2. However, τα has no regression flaws because the goal
partial state {v2 7→ 1} has a non-empty intersection with
a2, the operator o1 can be applied in the goal partial state
{v2 7→ 1} reaching the state {v2 7→ 0} which has a non-
empty intersection with both, a0 and s0.

Nevertheless, regression flaws do keep the most impor-
tant property, which is that any abstract plan without a flaw
corresponds to a plan for the original task.

Theorem 1. Let Π be a planning task, and α a Cartesian ab-
straction of Π. If an abstract plan trace τα = a0

o1−→ a1
o2−→

. . .
on−→ an has no regression flaws, then the sequence of

operators ⟨o1, o2, . . . , on⟩ is a plan for the original task.

Proof. If there is no regression flaw, then the whole re-
gression sequence ⟨pn

on←− pn−1
on−1←−−− . . .

o1←− p0⟩ is
well-defined, i.e., each oi is consistent with prer (oi) and
pi−1 = regr(pi, oi). We show by induction that there ex-
ist s0, . . . , sn such that si ∈ S(pi) for all i ∈ [0, n], and
siJoi+1K = si+1. The base case, s0 ∈ S(p0), holds due
to the absence of a type (3.) flaw. For the inductive case, if
si ∈ S(pi) and pi = regr(pi+1, oi+1), then by the defini-
tion of regression there must exist si+1 ∈ S(pi+1) such that
siJoiK = si+1. Finally, sn ∈ S(pn) = SG, so the whole
sequence is a plan for Π.
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Trivial abstraction

t = {l1, l2}
p1 = {l1, l2, t}
p2 = {l1, l2, t}

start

Split by wanted value (p1 = l1)

t = {l1, l2}
p1 = {l1}

p2 = {l1, l2, t}
start

t = {l1, l2}
p1 = {l2, t}

p2 = {l1, l2, t}

pick(t , p1 , l1 )

drop(t , p1 , l1 )

Split by unwanted value (p1 = l2)

t = {l1, l2}
p1 = {l1, t}

p2 = {l1, l2, t}
start

t = {l1, l2}
p1 = {l2}

p2 = {l1, l2, t}

drop(t , p1 , l2 )

pick(t , p1 , l2 )

Figure 2: Backward refinement of the trivial abstraction. The regression flaw identifies that the goal disagrees with the initial
state and chooses to refine based on v = p1. The value p1 = t can be assigned to either side, but “unwanted” is preferable.

Splitting Strategy
After finding a regression flaw, we need to refine the ab-
straction by splitting a Cartesian state into two states. In pro-
gression flaws, ⟨s, c⟩, the refinement is performed over α(s).
In regression flaws, ⟨p, c⟩, this is not uniquely defined how-
ever, as the states within S(p) may correspond to different
abstract states. For a regression flaw, ⟨p, c⟩, we will perform
the refinement on the abstract state a such that S(c) ⊆ S(a).
Note that this is uniquely defined, as in all three types of
flaws c corresponds to a subset of the states within a Carte-
sian state. To guarantee that a can be refined, it is enough to
show that it contains more than one concrete state.
Theorem 2. If ⟨pi, c⟩ is a regression flaw for τα, there exists
an abstract state a, such that S(c) ⊆ S(a) and |S(a)| > 1.

Proof. Let a be the state used to define c in any of the three
types of flaw. S(c) ⊆ S(a) because c is the intersection of a
and another Cartesian set.

We show that |S(a)| > 1 by contradiction. Assume that
|S(a)| = 1, then {s} = S(a). We consider the three cases
corresponding to each type of flaw. Flaw (1) can happen if
some oi is not applicable on pi in regression. However, since
ai−1

oi−→ ai is part of the abstract plan, by the definition of
the abstract state space there must exist some si−1

oi−→ si
such that si−1 ∈ S(ai−1) and si ∈ S(ai). As ai = {si}, and
S(ai)∪S(pi) ̸= ∅ then si ∈ S(pi). Thus, o is applicable in
regression on pi, reaching a contradiction.

Flaw (2) can happen if some oi is applicable in regression
on pi but pi−1 ∩ ai−1 = ∅. Since ai = {si}, then by the
definition of abstract state space there exists si−1 ∈ S(ai−1)
s.t. si−1JoiK = si. By the definition of regression, si−1 ∈
S(pi−1), reaching a contradiction as si−1 ∈ S(pi−1∩ai−1).

Flaw (3) happens if s0 ̸∈ p0. Because no flaw of type
(2) exists, p0 ∩ a0 ̸= ∅. τα is an abstract plan trace, so
s0 ∈ a0. Since p0 ∩ a, so s0 = s, so s0 ∈ p0, reaching a
contradiction.

To split a into two Cartesian sets d and e, we pick a vari-
able v ∈ vars(p) such that p[v] ̸∈ c[v], but p[v] ∈ a[v].
The choice of v can be based on the same strategies defined
for forward flaws (Speck and Seipp 2022). Then, a is split by
choosing d and e such that d[v]∪e[v] = a[v], d[v]∩e[v] = ∅,
and d[v′] = e[v′] = a[v′] for all v′ ̸= v. The split is done
in such a way that p[v] ∈ d[v] and c[v] ⊆ e[v], so d is con-
sistent with p and e is consistent with c. All other values of
a[v] can be assigned either to d or e.

Figure 2 illustrates this, by showing two possible splits.
The original CEGAR algorithm splits the wanted values (the
values in c[v]) from the rest. This achieves the desirable be-
havior, of having as many values as far from the goal as pos-
sible. In backward refinements, we need to reverse this, by
splitting away the unwanted value of the partial state (p[v]).
This is more desirable because that way all states taking the
remaining values (p1 = t in our example) will get a larger
heuristic value. This is most clear in the trivial abstraction,
where splitting the wanted values splits only the initial state
fact, which provide low improvements to the heuristic.

Corollary 1. The CEGAR algorithm using regression flaws
without termination condition returns an optimal plan if the
task is solvable, and otherwise returns “task is unsolvable”.

Proof. At each iteration of CEGAR, three things can hap-
pen: (1) there is no abstract plan. As α is an abstraction, this
can only happen on unsolvable tasks. (2) There is no flaw
and a plan is returned. The plan is valid due to Theorem 1
and optimal, as it is optimal in the abstraction. (3) The ab-
straction is refined. By Theorem 2, this is always successful.
As the number of concrete states in some abstract state is
always reduced, eventually the abstraction cannot be refined
any longer and either (1) or (2) hold.

Relation to Forward Refinement
After showing the correctness of CEGAR with regression
flaws, the question of whether this is a significant change
arises, compared to CEGAR with forward flaws. First, we
consider the relationship between both types of flaws.

Theorem 3. If an abstract plan has a regression flaw, then
it has a progression flaw, but not necessarily vice-versa.

Proof Sketch. (⇒) If the abstract plan has a regression flaw,
then it is not executable in regression or pi∩ai = ∅ at some
step i. Therefore, it cannot be executed in progression either.
The full proof can be found in the supplementary material
(Pozo, Torralba, and Linares López 2023).

(̸⇐) The example from Figure 1 shows an abstract plan
with a progression flaw but no regression flaws. Any plan
without a progression flaw is mappable to a plan trace τ =

s0
o1−→ s1

o2−→ . . .
on−→ sn s.t. α(si) = ai ∀i ∈ [0, n]. So, the

regression over pn
on←− pn−1 is possible and si ∈ S(pi) ∩

S(ai), so the intersection is not empty at any step.
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p0 p1 = ⟨u, 0, 0, 1⟩ p2 = ⟨u, 1, 1, 1⟩

o1 o2

start

a0 =
⟨{0, 1}, {0},
{0, 1}, {0}⟩ a1 =

⟨{0, 1}, {0, 1},
{0}, {1}⟩ a2 =

⟨{0}, {1},
{1}, {0, 1}⟩

o1 o2

step 1 step 2

s0

s1

flaw

flaw

Figure 3: States of an abstract optimal plan (other states of
the abstraction and self-loops omitted) for the example of
Theorem 4. Circumferences are abstract states, rectangles
are partial states and dots are concrete states. The portions
of partial states outside their mapped abstract state may be
part of any other abstract state. u means undefined variable.
If the operator o1 were applicable, s0 would be inside p0.

An initial motivation for using backward refinements is
that, intuitively, doing regression over the abstract plan will
find flaws on abstract states closer to the goal.2 This is ex-
pected to be beneficial, as a refinement on an abstract state
can never increase the goal distance of abstract states closer
to the goal. So refining on states closer to the goal has higher
chances of propagating the increase of goal distance to other
abstract states. Indeed, Speck and Seipp (2022) experimen-
tally showed that strategies refining states closer to the goal
provide better heuristics. However, regression flaws are not
guaranteed to occur closer to the goal.

Theorem 4. Let τα = a0
o1−→ . . .

on−→ an be an abstract
trace with a progression flaw at step ai

oi−→ ai+1 and a re-
gression flaw at step aj+1

oj←− aj . Cases where i > j exist.

Proof. Consider a task with binary variables V =
{v1, v2, v3, v4}, s0 = {v 7→ 0 | v ∈ V }, G = {v2 7→
1, v3 7→ 1, v4 7→ 1}, O = {o1, o2} with pre(o1) = {v2 7→
0}, eff (o1) = {v2 7→ 1, v4 7→ 1}, pre(o2) = {v2 7→
0, v3 7→ 0}, and eff (o2) = {v3 7→ 1}.

Figure 3 shows the abstract states along an optimal ab-
stract plan. The forward flaw happens at step 2 because o2 is
not applicable on s1. The regression flaw happens at step 1
because o1 is not backward applicable on p1.

Note that this happens when concrete states reached in
progression are not inside partial states reached in regres-
sion, as happens with s1 in the figure. In this example, both
refinements happen on a1, but it could easily be extended so
that the regression flaw happens on some ai and the progres-
sion flaw happens on some aj with i < j. Another difference
is that progression flaws focus on plan prefixes, refining an
abstract state on which there is at least one reachable state. In
contrast, regression flaws are found on abstract states where
the heuristic value is correct for at least one of their states,
to discriminate the ones where this is not the case.

2We confirmed this experimentally. In single abstractions, re-
gression flaws are closer to the goal in ≈ 99% of the cases, though
this decreases for additive abstractions (Pozo et al. 2023).

Experiments
We implemented our new refinement algorithms within the
Scorpion planner (Seipp, Keller, and Helmert 2020). Our ex-
periments run on the Autoscale 21.11 benchmark set (Tor-
ralba, Seipp, and Sievers 2021), which contains 42 domains
with 30 tasks each, for a total of 1260 instances. All experi-
ments are limited to 30 minutes and 8 GB of RAM and run
in an Ubuntu Linux 20.04 server with an Intel Xeon X3470
processor at 2.93 GHz, 16 GB of RAM and a 1 TB HDD.

Unless explicitly said otherwise, we use Scorpion’s de-
fault parameters for CEGAR. Specifically, we use in-
cremental search for optimal abstract plans instead of
A∗ (Seipp, von Allmen, and Helmert 2020); set the ter-
mination condition as 1 million of non-looping transi-
tions; and choose splits by maximizing the amount of
covered flaws (COVER), breaking ties by the most re-
fined split (MAX REFINED), i.e., the one with minimal
remaining values/domain size (Speck and Seipp 2022).

In the Scorpion planner, goals are refined before starting
the main CEGAR loop as an optimization. We keep this for
the forward refinements, as it improves the results. This is
disabled on all configurations using backward and bidirec-
tional refinements, where this was detrimental. Another op-
timization used on all configurations is, on tasks with a sin-
gle goal variable, we refine all facts unreachable before the
goal on the relaxed planning graph (Blum and Furst 1997).

All experiments use the “wanted” splitting strategy for
progression flaws and the “unwanted” strategy for regres-
sion flaws. Using “wanted” with backward refinements is
still better than forward refinements, but “unwanted” is al-
ways better. Details are shown in the supplementary mate-
rial, available in Zenodo along with code and experimental
data (Pozo, Torralba, and Linares López 2023).

Single Abstraction
First, we study the effect of backward refinements by using
CEGAR to construct a single Cartesian abstraction. Apart
from configurations that only do forward (Cf ), and back-
ward (Cb) refinements, we also experiment with three bidi-
rectional strategies that combine both types of refinements:

• Cbd: Interleaves backward and forward refinements, al-
ternating between them in each iteration of the loop.

• Cb-f : Uses backward refinements with half of the limits
(in terms of the time spent and/or number of transitions)
and then switches to forward refinements for the rest.

• Cf-b: Like the previous one but refining first in the for-
ward direction and afterwards in the backward direction.

Table 1 compares all refinement methods in terms of
coverage. We distinguish those tasks solved directly with
the CEGAR algorithm while building the abstraction, from
those solved by A∗ search using the resulting abstraction to
compute the heuristic. Interestingly, the comparison in terms
of tasks solved directly by the CEGAR algorithm is com-
pletely opposite to the tasks solved by search informed with
the resulting abstractions. Our Cb refinements are signifi-
cantly worse than the baseline Cf in terms of tasks solved
by the CEGAR algorithm. And yet, they result in far better
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Figure 4: Expansions until last f -layer and initial state value (h0) of single abstractions: Cf vs. Cb (left) and Cb vs. Cb-f (right).

CEGAR A∗ + CEGAR
Cf Cb Cbd Cb-f Cf-b Cov Cf Cb Cbd Cb-f Cf-b Cov

Cf – 18 3 0 7 112 – 2 1 1 1 397
Cb 2 – 0 0 0 78 17 – 10 5 14 427
Cbd 6 21 – 0 9 123 9 2 – 1 4 414
Cb-f 10 24 8 – 13 131 14 2 6 – 9 426
Cf-b 6 17 3 1 – 116 8 2 2 1 – 411

Table 1: Coverage of different refinement methods when
considering only the tasks solved within the CEGAR al-
gorithm (left side), and search with the resulting abstrac-
tion (right side). The cell in row x and column y shows the
number of domains where method x solved more tasks than
method y. “Cov” indicates the total number of tasks solved.

heuristics, solving more tasks. This can be observed in terms
of total coverage, where Cf solves 34 more instances within
the CEGAR process but 30 instances less when combined
with search. And the same happens on a per-domain basis,
where in terms of tasks solved by CEGAR, Cf is superior
to Cb in 18 domains and only worse in 2 of them. However,
when combined with search, Cb is better in 17 domains and
only worse in 2 instances from DataNetwork and Driverlog.

Figure 4 shows additional insights on the comparison of
Cf and Cb. This confirms that Cf ’s abstractions obtain a
higher heuristic value for the initial state (h0) in most of the
tasks,3 and solve more tasks with no search (0 expansions).
However, Cb’s abstractions induce more informed heuristics
in almost all cases, leading to fewer expansions.

Combining both types of flaws in any of our bidirectional
approaches produces abstractions with the strengths of both.
So, despite solving 1 fewer problem, Cb-f forges a more
robust heuristic with higher h0 value and more problems
solved without search. All bidirectional strategies are sim-
ilar in performance, but Cb-f gets the best coverage while
Cf-b is more focused on h0. Cbd has a mixed behavior but
doing the forward refinements at the end gets better results.

To understand the counter-intuitive observation that the
variants leading to a notably higher heuristic value for the
initial state are overall less informed (A∗ performs more ex-

3In all h0 plots the maximum value has been bounded to 2000.
This excludes the ParcPrinter domain, with a similar behavior but
orders of magnitude larger values, making visualization difficult.

Cadd
f Cadd

b Cadd
bd Cadd

b-f Cadd
f-b Cov

Cadd
f – 2 1 3 1 480

Cadd
b 7 – 3 4 6 490

Cadd
bd 7 6 – 6 5 493

Cadd
b-f 6 1 3 – 4 484

Cadd
f-b 2 2 1 3 – 483

Table 2: Coverage of CEGAR with additive abstractions.

Sf Sbatch
f Sb Sbd Sb-f Compl2 S2018 Cov

Sf – 2 4 3 4 22 20 727
Sbatch
f 5 – 4 4 5 22 20 730

Sb 11 8 – 7 4 22 21 743
Sbd 7 5 2 – 2 23 20 737
Sb-f 9 6 1 5 – 22 22 740
Compl2 17 16 15 16 15 – 19 653
S2018 10 9 8 9 8 19 – 687

Table 3: Coverage of Scorpion variants.

pansions), we take a closer look at the distribution of heuris-
tic values on selected instances. Table 4 shows the average h
value, h0 and search time of some representative instances.
DataNetwork is one of the few domains where Cb performs
worse than Cf , and the average heuristic value is also lower.
However, in most instances the average heuristic value of Cb

is higher despite having a smaller h0, which explains why it
has a better coverage and lower search times. h0 is more in-
fluential in problems with few expanded nodes, like the Lo-
gistics example. But in larger instances of the same and other
domains, where more expansions are required, the average
h value is paramount. Another factor is the distribution of
the heuristic value (Figure 5), since having fewer states with
low h values may be more helpful in the search than having
a very high value on some states (Holte et al. 2006). Indeed,
we observe that this happens in some domains like Trans-
port, where despite reaching a high h0 value, Cf has many
states with very low h values.

Additive Abstractions
CEGAR is usually used in a saturated cost partitioning
scheme, generating abstractions that focus on the cost of
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Figure 6: Expansions until last f -layer and h0 of Sf vs Sb.

reaching a single landmark or goal. This helps because
CEGAR’s abstractions do not tend to focus in different as-
pects of the problem (Seipp and Helmert 2014).

Table 2 shows the coverage using additive abstractions.
In this case, no problem is solved by the CEGAR loop di-
rectly, because each abstraction is only computed on a sub-
problem. Similar trends can be observed, though using ad-
ditive abstractions slightly reduces the impact of the refine-
ment method. The coverage is higher than using a single ab-
straction in all variants, with 58-83 more problems solved.
Cadd

b solves 10 more problems than Cadd
f , improving cover-

age in 7 domains and being detrimental in only 2 domains.
Cadd

bd solves 3 more problems than Cadd
b , being the best

heuristic and worse than Cadd
f in only 1 domain. Cadd

b-f and
Cadd

f-b solve fewer problems but still more than Cadd
f .

Scorpion Configuration
The last experiments use the Scorpion configuration, the
CEGAR-based state-of-the-art planner (Seipp 2018, 2023).
This configuration combines additive CEGAR abstractions
and Pattern Databases (PDBs) (Culberson and Schaef-
fer 1998; Edelkamp 2001) in an online saturated cost
partitioning scheme (Seipp 2021). Furthermore, it uses the
h2 preprocessor (Alcázar and Torralba 2015) and atom-
centric stubborn sets pruning (Alkhazraji et al. 2012; Wehrle
et al. 2013; Wehrle and Helmert 2014; Röger et al. 2020).
A minor difference with the previous experiments is that
Scorpion configuration uses the MAX REFINED splitting
strategy, breaking ties in favor of the minimum position in
the partial ordering of the causal graph.

Logistics p04 Cf Cb Cbd Cb-f Cf-b

h0 24 21 23 23 23
Avg. h 9.9 11.7 10.3 11.3 10.4
Search t. (s) 1.1 3.8 2.0 2.1 1.7

Transport p02 Cf Cb Cbd Cb-f Cf-b

h0 672 637 683 696 679
Avg. h 133 221 206 208 165
Search t. (s) 1.5 0.6 0.8 0.7 1.0

DataNet p08 Cf Cb Cbd Cb-f Cf-b

h0 44 27 42 41 40
Avg. h 5.8 2.2 2.2 2.2 2.1
Search t. (s) 101 163 163 165 175

Table 4: h statistics in some selected instances.

Table 3 shows the coverage of all Scorpion configura-
tions, including Sbatch, Scorpion with batch forward refine-
ments (Speck and Seipp 2022), and the best non-portfolio
planners from the International Planning Competition (IPC)
2018: Complementary2 (Franco et al. 2017; Franco, Lelis,
and Barley 2018) (Compl2) and Scorpion 2018 (S2018).

Backward refinements can once again improve the overall
performance in the Scorpion configuration, solving 16 more
problems improving in 11 domains and only being detrimen-
tal on 4. Sb-f is again the best bidirectional strategy but close
to Sbd. Our enhancement is orthogonal to batch refinements,
not improving in exactly the same domains. Total coverage
is around 250 higher than using additive abstractions without
Scorpion’s improvements, so online ordering of partitions,
preprocessing and pruning have a huge impact in coverage.

Another finding is that, contrary to the experiments on
single abstractions, h0 is slightly higher for Sb than Sf , as
shown in Figure 6. So, this shortcoming of backward re-
finements is overcome when combined with Scorpion. As
a final remark, Sb and Sb-f are the best alternatives, solv-
ing more problems than the non-portfolio planners of the
last IPCs: Scorpion 2023 (Sf ) and Complementary2. Inter-
estingly, Complementary2 solves 90 fewer problems, though
it solves more problems in around 15 domains.

Conclusions
CEGAR is a state-of-the-art technique to generate abstrac-
tion heuristics, iteratively refining the abstraction by finding
flaws in abstract plans. However, the mechanism to obtain
these flaws has barely been explored. In this paper we pro-
pose backward refinements, which find flaws using regres-
sion from the goal. We show that the resulting abstractions
induce better heuristics, improving the overall planner per-
formance. In addition, we introduce bidirectional strategies
that use refinements in both directions. They obtain a cov-
erage similar to backward refinements and are also more ro-
bust for obtaining higher heuristic values on the initial state.

This opens a new research avenue on how to identify flaws
in abstract plans, and how to combine this with other or-
thogonal enhancements, such as refining multiple plans at
once (Speck and Seipp 2022) or online refinements (Eifler
and Fickert 2018; Seipp 2021).
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