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Abstract

The Abstraction and Reasoning Corpus (ARC) is a gen-
eral artificial intelligence benchmark that poses difficulties
for pure machine learning methods due to its requirement
for fluid intelligence with a focus on reasoning and abstrac-
tion. In this work, we introduce an ARC solver, General-
ized Planning for Abstract Reasoning (GPAR). It casts an
ARC problem as a generalized planning (GP) problem, where
a solution is formalized as a planning program with point-
ers. We express each ARC problem using the standard Plan-
ning Domain Definition Language (PDDL) coupled with ex-
ternal functions representing object-centric abstractions. We
show how to scale up GP solvers via domain knowledge
specific to ARC in the form of restrictions over the actions
model, predicates, arguments and valid structure of planning
programs. Our experiments demonstrate that GPAR outper-
forms the state-of-the-art solvers on the object-centric tasks
of the ARC, showing the effectiveness of GP and the ex-
pressiveness of PDDL to model ARC problems. The chal-
lenges provided by the ARC benchmark motivate research
to advance existing GP solvers and understand new relations
with other planning computational models. Code is available
at github.com/you68681/GPAR.

Introduction
Abstract visual reasoning tasks have been used to under-
stand and measure machine intelligence (Małkiński and
Mańdziuk 2023; Barrett et al. 2018; Moskvichev, Odouard,
and Mitchell 2023). One of these tasks, the Abstraction and
Reasoning Corpus (ARC) introduced by Chollet (2019), re-
mains an open challenge. ARC tasks are challenging for
machines because they require object recognition, abstract
reasoning, and procedural analogies (Johnson et al. 2021;
Acquaviva et al. 2022). ARC comprises 1000 unique tasks
where each task consists of a small set (typically three) of
input-output image pairs for training, and generally one or
occasionally multiple test pairs for evaluation (Figure 1).
Each image is a 2D grid of pixels with 10 possible colors.
ARC tasks require inferring the underlying rules or proce-
dures from a few examples based on core knowledge priors
including objectness, goal-directedness, numbers and count-
ing, topology and geometry.

Copyright © 2024, Association for the Advancement of Artificial
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Figure 1: Three example tasks from the ARC. For a given
task, each row contains an input-output image pair as a train-
ing instance, and the bottom row is the test instance. The
goal of the solver is to learn from the training instances how
to generate the output for the test instance.

Chollet (2019) suggested a hypothetical ARC solver that
includes a program synthesis engine for candidate solu-
tions generation within a “human-like reasoning Domain
Specific Language (DSL)”. Few successful solvers have
followed this approach. Inspired by human strategies for
solving ARC tasks (Johnson et al. 2021; Acquaviva et al.
2022), Xu, Khalil, and Sanner (2023) proposed an object-
centric approach, Abstract Reasoning with Graph Abstrac-
tions (ARGA) that adopts a graph-based DSL representation
and performs a constraint-guided search to find programs in
the DSL solving the task. ARGA demonstrates considerable
generalization ability and efficient search. However, the lim-
ited expressiveness of the DSL weakens its performance in
some ARC tasks compared to the Kaggle competition’s first-
place solution (top quarks 2020). This algorithm searches
in a directed acyclic graph to synthesize program solutions
over a hand-crafted DSL, where each search node represents
an image transformation applied to its parent node.

Generalized planning (GP), a program synthesis approach
that studies the representation and generation of solutions
that are valid for a set of problems, is well suited to the
ARC (Srivastava, Immerman, and Zilberstein 2008; Hu
and De Giacomo 2011; Jiménez, Segovia-Aguas, and Jon-
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sson 2019). Solutions, known as generalized plans, can be
formalized as planning programs with pointers (Segovia-
Aguas, Jiménez, and Jonsson 2019) where conditional state-
ments, and looping and branching structures allow the com-
pact representation of solutions. Recent advances in GP
solvers have significantly improved the search efficiency, en-
abling the applicability of GP over new challenging bench-
marks (Lei, Lipovetzky, and Ehinger 2023).

In this work, we propose an ARC solver called Gen-
eralized Planning for Abstract Reasoning (GPAR), which
models each ARC task as a generalized planning prob-
lem and adopts a state-of-the-art planner to perform pro-
gram synthesis. We improve existing graph abstractions to
promote greater object awareness and introduce a novel
DSL based on the Planning Domain Definition Language
(PDDL) (Haslum et al. 2019), where hybrid declarative and
imperative modeling languages are combined to guarantee
enough expressivity, and represent the transition function
concisely. Our main contributions are: 1) a novel method
to solve abstract reasoning tasks based on generalized plan-
ning, which achieves the state-of-the-art performance over
the ARC benchmark; 2) an encoding based on PDDL which
enables the adoption of alternative planning models for vi-
sual reasoning; 3) the usage of novel ARC domain knowl-
edge that other ARC solvers can use to reduce the size of
the solution space.

Background
Planning Domain Definition Language PDDL, the de
facto standard modeling language for several different
classes of planning problems, allows the usage of automated
planning solvers to find plans that map an initial state into
one of the goal states of a transition system (Haslum et al.
2019). PDDL divides the representation of a planning prob-
lem into two parts, a domain D to define the predicates
and action schemes, consisting of preconditions and effects,
whose parameters can be instantiated with a typed-system
of constant objects, and a problem or instance I, defining
the objects, initial state, and goal formula that entails a set
of goal states. Different problems with the same domain can
be created by changing any problem definition element: ob-
jects, initial state or goal conditions.

The induced transition system can be traversed through
the application of actions. In fact, a plan is typically com-
posed of a sequence of actions. To be applicable, the ac-
tion preconditions need to be true in a state, and the re-
sulting state is generated by incorporating the effects of the
action, where some ground atoms of a predicate become
true or false. Preconditions and effects are generally de-
scribed through formulas in first-order logic. It is known
that certain effects can be described more concisely by al-
ternative languages or simulators, better equipped to rea-
son over complex numeric operations, for example Dorn-
hege et al. (2009). We use PDDL with external functions
whose denotation is specified using imperative languages
to express complex preconditions and effects of the ARC
tasks (Frances et al. 2017).

Figure 2 presents a PDDL domain and instance file for
a fragment of an ARC task. Parameters of action schemes

(define (problem 9565186b-1)
 (:domain ARC-9565186b)
 (:objects pixel-0-0 pixel-0-1 pixel-0-2 pixel-1-0 pixel-1-1 pixel-1-2
           pixel-2-0 pixel-2-1 pixel-2-2 - pixel
           node-1 node-2 node-3 - node size-1 size-3 size-4 size-5 - size
           red blue grey cyan - color)
(:INIT (node-size node-1 size-5) (node-color node-1 red)
 (node-size node-2 size-1)  (node-color nod-2 blue)
 (node-size node-3 size-3) (node-color nod-3 cyan)
 (pixel-color pixel-0-0 red),...,(pixel-color pixel-2-2 cyan)
 (contain-pixel node-1 pixel-0-0),...,(contain-pixel node-3 pixel-2-2)
(:Goal(AND (pixel-color pixel-0-0 red),...,(pixel-color pixel-2-2 grey))))

(define (domain ARC-9565186b)
(:types node pixel size color - object)
(:predicates (node-color ?no - node ?co - color)
 (node-size  ?no - node ?si - size)
 (contain-pixel ?no - node ?pi - pixel)
 (pixel-color ?pi - pixel ?co -color))
(:action UpdateColor
 :parameters (?no - node, ?co1 - color ?co2 - color)
 :precondition (node-color ?no ?co1)
 :effect @PixelColorUpdate(?no, ?co2)))

In
st

an
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 1

File for Domain

File for Instance 1

Task 9565186b

Figure 2: A PDDL example for a fragment of an ARC task.

and predicates are preceded by the “?” symbol, and external
functions are preceded by the “@” symbol.

Generalized Planning GP aims to solve a finite set of
classical planning problems P over the same domain D,
where each instance I may differ in the initial state I , goal
conditions G, or objects ∆. A GP solution is a single pro-
gram that produces a valid plan for every classical planning
instance.

Planning Programs with Pointers planning programs
with pointers Z, where each pointer indexes a type of ob-
ject in P , compactly describe a scalable solution space
for GP (Segovia-Aguas et al. 2022). A planning program
Π, is a sequence of programmable instructions, i.e. Π =
⟨w0, . . . , wn−1⟩, with a given maximum number of program
lines n.

An instruction wi, where i is the location of the program
line, 0 ≤ i < n, can either be a planning action instantiated
from the action scheme over pointers or constant objects, a
RAM action to manipulate pointers, a test action to re-
turn the interpretation of a predicate, a goto instruction for
non-sequential execution, or a special end instruction for
termination that is always programmed in the last line. A
goto instruction is a tuple goto(i′, yz), where i′ is the des-
tination line, and yz is a proposition that captures the result
of the last execution of RAM or test action. We refer the
reader to Segovia-Aguas, Jiménez, and Jonsson (2019) for a
full specification.

The upper part of Figure 3 illustrates a planning program
discovered by our solver that updates the color of any size-1
node (a collection of pixels) to black using two pointers, no
and co, to iterate over node and color objects. The bottom
part illustrates how a single planning action can represent a
large set of object-instantiated action executions. The inner
loop, lines 0 to 4, updates a size-1 node no with color co
to black. If the precondition of the action UpdateColor is
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0. test(node-size(     ,         -1)) 
1. goto(3,    )
2. UpdateColor(no, co, black)
3. inc(no)
4. goto(0,  !    )
5. clear(no)
6. inc(co)
7. goto(0, !    )
8. end

UpdateColor (?no - node ?co1 - color ?co2 - color)

 UpdateColor(no, co, black)

Pointers    instantiation (no, co)  Objects    instantiation  

UpdateColor(node1, black,  black)

node1

green
no = 0
co =1

UpdateColor(node1, green,  black)

UpdateColor(node3, red,  red)
UpdateColor(node3, red,  blue)

Figure 3: A planning program Π to alter size-1 nodes with
different colors to black. Pointers no and co index node and
color objects.

false (see Fig 2), then the effect of the action will not be
executed. When no points to the last node object, line 3 fails
to increment the pointer, and lines 5-7 are executed to set no
to the first node, and let co point to the next color. When all
colors have been tried, then the program will end.

Abstraction over ARC
Abstraction enables object awareness in GPAR to allow ac-
tions to modify a group of pixels at once rather than individ-
ually, resulting in a smaller search space. Object cohesion is
central to human visual understanding (Spelke and Kinzler
2006), and humans doing ARC tasks seem to come up with
solutions that involve objects and object relations (Acqua-
viva et al. 2022; Johnson et al. 2021). However, part of the
challenge of the ARC tasks comes from the fact that there
are multiple ways to interpret the images, and different tasks
may require different “objects”. Therefore, we consider mul-
tiple possible abstract representations. As in Xu, Khalil, and
Sanner (2023), we represent an image as a graph of nodes
representing objects and their spatial relations.

Inspired by Xu, Khalil, and Sanner (2023), we consider
the following abstractions: 1) 4-connected, which treats 4-
connected components as nodes, excluding the background;
2) 8-connected, which treats 8-connected components as
nodes, excluding the background; 3) same-color, which
treats all pixels of the same color as a node, regardless
of their connectivity; 4) multi-color, which treats all non-
background colors as the same for the purposes of forming
4-connected and 8-connected components (thus allowing the
creation of multi-colored nodes); 5) vertical and horizon-
tal, which form nodes of columns or rows, respectively, of
same-colored non-background pixels; 6) pixels, which treats
each pixel as a node; 7) image, which treats the entire im-
age as a single node; 8) max-rectangle, which recognizes
the maximum rectangle that can be inscribed within a 4-
connected component as a node and subsequently processes
the remaining pixels as 4-connected components, in both

4-connected

8-connected

4-connected

8-connected

Solution:
color updates
based on size.

Solution:
color updates
based on size.

Task aedd82e4 Task b230c067

No feasible 
solution.

Figure 4: An example task for which the 4- vs. 8-connected
abstractions produce different nodes (left), and an example
task where identified nodes are the same (right).

non-background and background regions.
Different node definitions can compensate for the limi-

tations of a certain abstraction, such as in Figure 4 (left),
where only the 4-connected abstraction is reasonable. How-
ever, two abstractions may produce identical nodes for a
given ARC task, as in Figure 4 (right). To avoid duplica-
tion, we only consider an abstraction if it produces a differ-
ent node representation in terms of size, color, or shape for
at least one training instance.

Node Attributes. Each identified node is associated with
basic attributes, including color, size, and shape. Shape can
be a single pixel, square, rectangle, horizontal line, vertical
line, left diagonal line, right diagonal line or unknown. To
address tasks involving counting or sorting objects, nodes
with the largest and smallest size, odd and even size, and
most and least frequently occurring color are also indicated.

For some abstractions, the aforementioned attributes are
inappropriate, and alternative attributes are used. For multi-
color nodes, the color attribute is omitted. When consider-
ing either pixel nodes or image nodes, only the most and
least frequent color are identified. For pixel nodes, we use
additional attributes to represent image geometry, denoting
which nodes are on the image borders, centric-diagonal,
middle-vertical and middle-horizontal lines and to detect
and remove pixels that are potentially noise (defined as 4-
connected components with a size of 1 pixel).

Relations between Nodes We define three types of node
relations, spatial, congruent, and inclusive, applicable to all
node definitions except for pixel and image nodes. Spatial
relations, right, left, up, and down, exist between two nodes
iff there is at least one pixel in each node with the same co-
ordinate value along either axis. Diagonal spatial relations
are considered for two nodes whose shapes are not unknown
and whose corners align on the same diagonal axis. Congru-
ent relations are defined between nodes with identical shapes
and sizes, and nodes with the same color. Inclusive relations
specify which nodes contain or partially contain other nodes.
A node contains another node if all the pixels of the con-
tained node lie within the borders of the containing node.
A node partially contains another node if the above relation
holds and the borders of the contained node touch the bound-
aries of the image. Node attributes and relations are sourced
from core knowledge priors and extracted through standard
image processing approaches.
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Object Types Possible Associated Objects
NODE node-0, . . . , node-n.
PIXEL pixel-0-0, . . . , pixel-29-29.
COLOR color-0, . . . , color-9.
SIZE size-1, . . . , size-9000.
STEP one, max.
ROTATION 90◦, 180◦, 270◦.
F-DIRECTION vertical, horizontal, left-diagonal, right-

diagonal.
M-DIRECTION left, right, up, down, left-up, left-down, right-

up, right-down.
SHAPE single-pixel, square, rectangle, vertical-line,

horizontal-line, left-diagonal-line, right-
diagonal-line, unknown.

Table 1: Object types and associated objects in our DSL.

Domain-Specific Language

PDDL leverages a subset of first-order logic, a powerful
tool to represent knowledge for reasoning purposes. It pro-
vides a structured and concise way to express relations be-
tween objects and properties (Genesereth and Nilsson 1987;
Levesque 1986). PDDL describes each ARC task through
a single domain file and a finite set of instance files, one
for each input-output image pair. The domain file contains
the relations between nodes and their attributes, modeled
as predicates, and node transformations, modeled by ac-
tion schemes. Action schemes and predicates are instanti-
ated through the objects specified in the instance file, where
the conjunctive formula of instantiated predicates describes
the initial state representing an input image, and a goal state
modeling the target image configuration.

Given an ARC task, Table 1 shows the available objects
and their types, while Table 2 presents the available pred-
icates to model node attributes and their relations. We dif-
ferentiate between predicates that can be interpreted by the
test action to condition a goto instruction, indicated by
the testp column, and predicates whose main purpose is to
encode knowledge in our DSL. Table 3 introduces a subset
of the main action schemes included in our DSL, where the
preconditions or effects are implemented by external func-
tions, either to check the applicability of certain actions or
facilitate node transformations. We encode a mix of low-
level and high-level actions, where some high-level actions
encode complex transformations that would otherwise re-
quire several low-level actions. This enables the solver to
reason at the appropriate level of abstraction and lower the
program complexity when possible. E.g., SwapColor and
CopyColor can be realized by the ground action Update-
Color with additional program logic to manipulate point-
ers, but this would require increasing the number of program
lines encoding a solution.

Each abstraction is associated with its respective set of
actions and predicates and a full description is available in
the supplementary materials. We also consider two addi-
tional abstractions to enable complicated movement, exten-
sion, and congruent node operations, where both node def-
initions are the same as the 4-connected abstraction. These
are only tried if simpler abstractions yield no solution.

Predicates (? Parameters)

A
ttr

ib
ut

es

t
e
s
t
p

color-most(color), color-least(color),
color-max(node), color-min(node), size-min(node),
size-max(node), odd(node), even(node),
up-border(node), down-border(node),
left-border(node), right-border(node),
left-diagonal(node), right-diagonal(node),
horizontal-middle(node), vertical-middle(node),
node-color(node, color), node-shape(node, shape),
node-size(node, size), denoising-color(node, color).

- background(color).

R
el

at
io

ns

t
e
s
t
p

node-diagonal(node, node), same-color(node, node),
congruent(node, node), contain-node(node, node),
partially-contain-node(node, node),
relative-position(node, node, m-direction).

- node-spatial(node, node, m-direction).
Pixel - pixel-color(pixel, color), contain-pixel(node, pixel).

Table 2: Predicates in our DSL. testp indicates following
predicates can be interpreted by the test action; the symbol
“- ”denotes predicates can not be interpreted.

Action Pruning Abstractions can introduce irrelevant ac-
tions in a domain. E.g., for the first task in Figure 1, ac-
tions that involve changing node positions should not be in-
cluded, and in the second task, actions related to color up-
dates should be avoided. A similar idea is discussed by Xu,
Khalil, and Sanner (2023), where a newly generated node
will be pruned while searching if it fails to satisfy a set of
constraints generated by comparing the nodes defined by
each abstraction. GPAR supports all their constraints. How-
ever, we acquire and use action constraints to prune irrele-
vant action schemes when generating the domain file instead
of pruning generated nodes.

We consider mainly three constraints based on whether all
nodes’ positions, colors, or sizes remain unchanged across
training input and output images. If any of the properties
above hold true in the training sets, then the related ac-
tions involving movement, color, or size updating will be
pruned. Some additional constraints are included to prune
actions not applicable to a given abstraction; e.g., InsertN-
ode is avoided when no consistent pattern (nodes with the
same color, size, and shape) exists among input images. See
the supplementary materials for the full list of actions asso-
ciated with each constraint.

Program Synthesis
We use and improve the PGP(v) solver (Lei, Lipovetzky, and
Ehinger 2023) to search in the space of planning programs
over training instances of each ARC task. Once the solver re-
turns a program that solves all training instances, we use the
test instances to evaluate the solution. The solver core engine
is a heuristic search algorithm that starts with an empty pro-
gram and tries to program an instruction one line at a time
until a solution is found.
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Action Schemes (? Parameters) Effects
UpdateColor(node color1 color2) Change the node color from

color1 to color2.
SwapColor(node1 node2) Swap colors of node1 and

node2.
CopyColor(node1 node2) Copy the color of node1 to

node2.
MoveNode(node1 node2) Move node1 to the boundary

of node2.
MoveNodeDirection(node
m-direction step)

Move node with the given di-
rection and step.

ExtendNode(node1 node2) Extend node1 until it hits the
node2.

ExtendNodeDirection(node
m-direction)

Extend the node in a given di-
rection.

Table 3: Example action schemes designed in our DSL with
external functions. Whole action descriptions, including pre-
conditions and effects, are available in the supplementary
materials.

Predicate and Argument Constraints Predicate con-
straints limit the allowed arguments of the test action.
This action returns the interpretation of a predicate in a pro-
gram, subsequently used to condition a goto instruction.
Predicate constraints are determined before the search starts
to ensure only relevant test actions are programmed. We
restrict a predicate, describing a node attribute, which can
be interpreted by the test action, iff there are two nodes,
among all training and test input images, with a distinct
value of that attribute. If all image nodes have the same at-
tribute value described by a predicate, then the interpretation
of that predicate will not be a helpful condition, as the inter-
pretation value is always true. For example in the third task
of Figure 1, a valid condition should be the interpretation
of the node color predicate rather than node size predicate
since all nodes in the input images are of size 1.

Argument constraints make sure that when a node color
or size predicate is used in a test action, the chosen argu-
ments describe attributes that exist in all training and test in-
put images. These constraints prevent overfitting programs
to work on a subset of input instances, increasing the gen-
eralizability of the solution programs. For example, condi-
tioning over nodes with size 3 in the second task of Figure 1
would not lead to a valid plan as the node size in the test
instance is 2. In this case, other conditions should be used to
create a solution moving down every node for one step.

Structural Restrictions Restrictions over the structure of
programs are valid strategies to reduce symmetries in the
search space (Lei, Lipovetzky, and Ehinger 2023). We adopt
structural restrictions by separating a planning program into
the Application Section and the Looping Section. The ap-
plication section can be programmed with planning actions,
test, and goto instructions, and the looping section has a
sequence of pointer manipulations and goto instructions to
ensure the iteration of all possible combinations of pointer
values, followed by an end instruction for termination.

We program the looping section before the search starts
based on the given pointers. In the application section, the
instruction sequence is constrained with the following rules:

0. empty
1. empty
2. empty
3. empty
4. empty
5. inc(      )
6. goto(0, !   )
7. clear(      )
8. inc(      )
9. goto(0, !   )
10. clear(      )
11. clear(      )
12. inc(       )
13. goto(0, !   )
14. end

?

Solution found!

0.test(node-size(      ,       -1))
1. goto(5, !    )
2. test(relative-position(      ,       ,       ))
3. goto(5,    )
4. ExtendNodeDirection(      ,        )
5. inc(      )
6. goto(0, !   )
7. clear(      )
8. inc(      )
9. goto(0, !   )
10. clear(      )
11. clear(      )
12. inc(       )
13. goto(0, !   )
14. end

Lo
op

in
g

Se
ct
io
n

A
pp

lic
at
io
n

Se
ct
io
n

Instance 1 Instance 2 Instance 3 Test Instance

Ta
sk

7d
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Figure 5: An illustration of the planning process with the
application section and the looping section. Lines 0 and 1
ensure no1 indexes the square node, and lines 2 and 3 con-
strain the no2 to point to the single-pixel node, while mo1
indexes the correct spatial relation between no1 and no2.

1) a test action must be followed by a goto instruction;
2) the first line can only be programmed with a test ac-
tion; 3) once an action from the DSL is programmed, the
subsequent lines must either be programmed with actions
from the DSL or followed by the looping section. To ad-
dress a scenario where conditions are unnecessary, we in-
clude a dummy test(true) action whose interpretation is
always true. In GPAR, the number of program lines n refers
to the number of lines in the application section rather than
in the full program.

Figure 5 illustrates the planning process of a planning
program with a complex logic: the planning action Ex-
tendNodeDirection is executed only when the first tested at-
tribute is false (line 0) and the second tested spatial relation
is true (line 2), using three pointers in total. These restric-
tions come with the caveats of making the solver incom-
plete. Even if no restrictions are used, existing approaches
for ARC are already incomplete, as the expressivity of their
DSLs limits the type of solution that can be found.

Heuristic Function Benefiting from the pixel-related
predicates, we exploit the pixel information to guide the
search. Every time a new program is generated, we execute
it, and introduce a heuristic function hp that goes beyond
the goal-count heuristic by counting the number of pixels
that differ from the goal state and penalizing further pixels
whose values have been changed from the initial state and
do not match yet the values in the goal state. This is very
similar to the idea in means-ends analysis (Newell and Si-
mon 1963), preferring programs that bring the current state
abstraction closer to the goal state. We use hp to guide the
search algorithm used by the solver, and break ties with hln

heuristic, which promotes the application of action schemes
defined in the DSL. Full details of the solver and hln can be
found in Lei, Lipovetzky, and Ehinger (2023).
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CC4

Remove Duplicates
Action Constraints

CC4-Spa

Program Synthesis

Predicate Constraints
Argument Constraints

Test Actions
test(node-size(no1, size-1))

test(relative-position( no1, no2, mo1))

Planning Actions
ExtendNodeDirection

MoveNodeDirection

Domain file

Instance 1 file

Instance 2 file

Instance 3 file

Test instance file

PDDL

Verify the solution 

Goto Instructions
goto(1, !yz)

goto(5, !yz)

CC4-Spa

DSLGeneration

Solution found!

0. test(node-size(      , size-1))
1. goto(5, !yz)

14. end

Instance 1

Instance 2

Instance 3

?

Test Instance

Task 7ddcd7ec

User Input
Program Lines: n = 5
Pointers: Z ={no1, no2, mo1}
Novelty Threshold: v = 1

Figure 6: A pipeline sketch of GPAR. CC4 stands for the 4-connected abstraction; CC4-Spa stands for the abstraction that
contains complicated movement and extension operations.

Pointer 7→ Object Type
no1 7→ NODE
no1 7→ NODE, no2 7→ NODE
no1 7→ NODE, co1 7→ COLOR
no1 7→ NODE, no2 7→ NODE, co1 7→ COLOR
no1 7→ NODE, co1 7→ COLOR, co2 7→ COLOR
no1 7→ NODE, no2 7→ NODE, mo1 7→ M-DIRECTION
no1 7→ NODE, no2 7→ NODE, no3 7→ NODE

Table 4: Pointer combinations in GPAR.

Instantiation over Pointers GPAR supports partial in-
stantiation over pointers, where a subset of parameters in
a predicate or action schema are substituted by pointers and
others are substituted by objects, such as the planning ac-
tion shown in Figure 3. This occurs when the number of
pointers used to index an object type is less than the num-
ber of parameters specified by that object type. Partial in-
stantiation allows test actions to fix a specific attribute
for looping and branching, and naturally supports parameter
bindings (Xu, Khalil, and Sanner 2023) without additional
grammar extensions in our DSL.

System Overview
Figure 6 illustrates the pipeline sketch of GPAR, a two-stage
system that employs GP to solve ARC tasks. The DSL gen-
eration stage encompasses a collection of abstractions with
distinct node object, attribute and relation identifications to
generate a domain file and associated instance files for each
ARC task, where action constraints and duplication removal
ensure that only helpful action schemes are included in the
domain file, and unique abstractions are utilized. In the pro-
gram synthesis stage, ground planning actions and test
actions are generated by instantiating action schemes and
predicates, described in the domain file, over objects de-
clared in the instance file or pointers given by users, and
goto instructions are generated based on the given program
lines. The predicate and argument constraints increase the
likelihood that generated test actions are useful and goal-
oriented. PGP(v), the GP solver, leverages the user input,
program lines n, pointers Z, and novelty threshold v that
limits the number of occurrences of an action in a program,
as parameters to implement the application section and loop-
ing section programming. The solution of PGP(v) is a plan-

ning program Π that can map the input image, the initial
state, to the output image, the goal state, by executing Π on
the corresponding initial state in each training instance. Π is
a verified solution if Π has been validated as a solution in
the test instances.

Experiments
As a benchmark, we use the subset of 160 object-centric
ARC tasks introduced by Xu, Khalil, and Sanner (2023).
These tasks are further categorized into: 1) recoloring tasks
which involve changing object colors; 2) movement tasks
which involve changing object positions; 3) augmentation
tasks which involve changing aspects of objects like size or
pattern. Figure 1 shows example tasks from each class.

Parameters
In GPAR, PGP(v) takes n, v, and Z as parameters. The num-
ber of program lines n ranges from 3 to 10 where the valid
Π configuration for n = 3 is v = 1 since each instruction
included in Π with n = 3 can only appear once, such as
a test action, a goto instruction and a planning action.
For n = 4, reasonable configurations include v = 1 and
v = 2 since a planning action can appear twice. For n > 4,
the value of v ranges from 1 to 3. All the possible combina-
tions of Z are presented in Table 4, where only object types
NODE, COLOR, and M-DIRECTION are referenced since they
are typical specifications of parameters in the design action
schemes. The complexity of the search space is proportional
to the values of n and v. The upper-bound values of n and v
ensure the search space is large enough to cover most solu-
tions while still being tractable.

The combination of feasible parameters and a valid DSL
is supplied as the input for PGP(v). For each ARC task, pos-
sible combinations are executed in order of increasing com-
plexity, starting from lower values of n and v, fewer point-
ers, and simpler abstractions (e.g., 4-connected are consid-
ered before 8-connected abstractions) with a time limit of
1800s for each. We treat the first encountered Π as the so-
lution to generate the test output images for validation. Our
approach keeps the search space tractable and ensures we
find the simplest solution.
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Model Task Type Training Accuracy Testing Accuracy

ARGA

movement 18/31 (58.06%) 17/31 (54.84%)
recolor 25/62 (40.32%) 23/62 (37.10%)
augmentation 20/67 (29.85%) 17/67 (25.37%)
all 63/160 (39.38%) 57/160 (35.62%)

Kaggle
First Place

movement 21/31 (67.74%) 15/31 (48.39%)
recolor 23/62 (37.10%) 28/62 (45.16%)
augmentation 35/67 (52.24%) 21/67 (31.34%)
all 79/160 (49.38%) 64/160 (40.00%)

GPAR

movement 20/31 (64.52%) 19/31 (61.30%)
recolor 41/62 (66.13%) 39/62 (62.90%)
augmentation 25/67 (37.31%) 23/67 (34.33%)
all 86/160 (53.75%) 81/160 (50.63%)

Table 5: Performance of ARGA, Kaggle First Place and GPAR over 160 object-centric ARC tasks. Training accuracy is the
number of tasks where the solution solves all the training instances. Testing accuracy is the number of tasks where the solution
also generates the correct output images for all test instances. Best results are in bold.

4-connected

8-connected

4-connected

8-connected

Task 60b61512

Training 
Instance

Test 
Instance

Figure 7: An example task where GPAR generated solution
succeeds in the training instance but fails in the test instance.

The Kaggle Challenge’s first-place model and ARGA
are used as state-of-the-art baselines. All experiments were
conducted on a cloud computer with clock speeds of 2.00
GHz Xeon processors. For the Kaggle first-place model and
ARGA, the models were executed with a time limit of 1800s
per task, and the highest-scored candidate generated by the
model is selected as the final solution.

Synthesis of Solutions
Table 5 shows the training and testing accuracy of GPAR,
ARGA and Kaggle’s winner. We score a model as “correct”
in training if it is able to find a solution that solves all train-
ing instances for a given task, and we score that model “cor-
rect” in testing if its solution also gives the ground truth cor-
rect outputs on the test instances. In training, GPAR outper-
forms the other models in the recolor class, and outperforms
all other approaches over the test instances. GPAR is the
only planner that solves more than half of the tasks, 53.75%
in training and 50.63% in testing overall. GPAR also shows
the great generalization ability (the smallest gap between the
training and testing accuracy).

GPAR has a distinct advantage in the recolor class, where
solutions are compactly implemented by imperative pro-
grams with conditions mainly relying on predicates describ-
ing attributes, such as size, shape and color. For the move-
ment class, the description of spatial relations remains chal-
lenging when dynamic attributes between nodes are needed,

such as the center, corner, and area. Meanwhile, some tasks
require movement actions defined with large numeric pa-
rameters, which is currently not supported well in our DSL.
The augmentation class involves shape transformations, in-
cluding rescaling, completion, and analogical replication,
which are difficult to implement in imperative programs
based on DSLs. All existing planners struggle with this cat-
egory, with both training and testing accuracy below 50%.

Like previous models, GPAR shows some gap between
training and testing, which means that a solution that solves
the training set does not generalize to produce the correct
results on test instances. Figure 7 shows an example where
GPAR fails to generalize because both 4-connected and 8-
connected abstractions can solve the training instance; how-
ever, only the 8-connected abstraction gives the correct so-
lution for the test instance. The correct solution to this task
is ambiguous given the training instances.

Of the tasks that GPAR solved in testing, over 50% re-
quire only a novelty threshold of 1 (v = 1) and just three
program lines (n = 3). The low novelty threshold implies
that most of the tasks can be solved without repeated actions,
and the low number of program lines indicates that a few
conditions and/or actions are necessary to produce a solu-
tion (44/81 tasks require only one condition). This shows the
efficiency of the DSL and the PGP(v) used by GPAR, which
also contributes to its high generalization performance.

Conclusion
We leverage an existing solver for generalized planning to
synthesize programs with pointers that represent expres-
sive solutions with branches and loops for ARC tasks. We
show how the de facto language for planning can be used
to model object-aware abstractions, resulting in the state-of-
the-art performance on the ARC, with greater generaliza-
tion results. Identifying the most useful abstractions is still
an open problem. In the future, new heuristics can be defined
to guide the search of programs through relaxations from the
DSL representation, and connections with alternative plan-
ning computational models can be explored to improve vi-
sual reasoning performance.
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