
Monte Carlo Tree Search in the Presence of Transition Uncertainty

Farnaz Kohankhaki1*, Kiarash Aghakasiri1, 2*, Hongming Zhang1, Ting-Han Wei1, Chao Gao2,
Martin Müller1

1University of Alberta
2Edmonton Research Center, Huawei Canada

{kohankha, aghakasi, hongmin2, tinghan, mmueller}@ualberta.ca, chao.gao4@huawei.com

Abstract

Monte Carlo Tree Search (MCTS) is an immensely popular
search-based framework used for decision making. It is tradi-
tionally applied to domains where a perfect simulation model
of the environment is available. We study and improve MCTS
in the context where the environment model is given but im-
perfect. We show that the discrepancy between the model and
the actual environment can lead to significant performance
degradation with standard MCTS. We therefore develop Un-
certainty Adapted MCTS (UA-MCTS), a more robust algo-
rithm within the MCTS framework. We estimate the transi-
tion uncertainty in the given model, and direct the search to-
wards more certain transitions in the state space. We modify
all four MCTS phases to improve the search behavior by con-
sidering these estimates. We prove, in the corrupted bandit
case, that adding uncertainty information to adapt UCB leads
to tighter regret bound than standard UCB. Empirically, we
evaluate UA-MCTS and its individual components on the de-
terministic domains from the MinAtar test suite. Our results
demonstrate that UA-MCTS strongly improves MCTS in the
presence of model transition errors.

1 Introduction
The Monte Carlo Tree Search (MCTS) framework (Browne
et al. 2012) approaches sequential decision-making prob-
lems by selective lookahead search. It manages the balance
of exploration and exploitation with techniques such as UCT
(Kocsis, Szepesvári, and Willemson 2006). Often combined
with machine learning, it has been enormously successful
in both games (Silver et al. 2016; Gao, Müller, and Hay-
ward 2018; Gao 2020; Saffidine 2008; Nijssen and Winands
2010) and non-game applications (Lu et al. 2016; Mansley,
Weinstein, and Littman 2011; Sabharwal, Samulowitz, and
Reddy 2012; Cazenave 2010). In these applications, a per-
fect simulation model allows for efficient lookahead search.
However, in many practical applications, only an imperfect
model is available to the agent. Yet lookahead using such a
model can still be useful. We improve MCTS for this setting.

One research area that studies imperfect models of the en-
vironment is model-based reinforcement learning (MBRL).
Here, an agent builds its own model through limited real

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

world interactions. The resulting learned model, when used
for lookahead search, can either be for planning or for pro-
ducing more accurate training targets (Silver, Sutton, and
Müller 2008). It can also be used to generate simulated train-
ing samples for better sample efficiency (Sutton and Barto
2018). The learned model may be inaccurate for many rea-
sons, including stochasticity of the environment, insufficient
training, insufficient capacity, non stationary environments,
etc. Consequently, there is a rich body of research on un-
certainty in MBRL (Abbas et al. 2020; Xiao et al. 2019;
Buckman et al. 2018).

While previous approaches to using search with imper-
fect models exist (Vemula et al. 2020; Vemula, Bagnell, and
Likhachev 2021), to the best of our knowledge, there is no
prior work that directly adapts MCTS to deal with model
uncertainty. In our work, we define transition uncertainty as
a measure of difference between the state transitions in the
perfect model and in the model that is available to the agent.
We use a neural network to estimate this uncertainty.

Our Uncertainty Adapted MCTS (UA-MCTS) approach
implements the main components of the MCTS framework
in a way that guides the search away from states with high
uncertainty. We compare the performance of our proposed
methods with MCTS baselines in three deterministic Mi-
nAtar environments (Young and Tian 2019). In each case
the search agent “believes” it is playing the real game. How-
ever, the rules of the game itself have changed, and the agent
only learns about this change slowly when it acts in the real
environment. The results show that UA-MCTS is able to out-
perform the baseline MCTS with an imperfect model.

Our approach is inspired by the work of (Vemula et al.
2020) where a robotic arm has to solve tasks despite be-
ing handicapped, e.g. by a broken motor or by an unmod-
eled weight restriction. To show how an agent should adapt
UCB-based exploration strategy in the presence of environ-
ment uncertainties, we first consider a case of stochastic ban-
dits (Lattimore and Szepesvári 2020) along with corrupted
feedback. We prove that incorporating uncertainty informa-
tion can enhance the performance of UCB, yielding a re-
gret bound that is more constrained compared to the stan-
dard UCB. We also prove that in the general case of tree
search, with similar modification of UCT, our UA-MCTS
approach maintains its completeness property, ensuring that
as the number of iterations goes to infinity, all nodes will be

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20151

consistently explored. To further motivate our approach, we
compare the scenarios of learning to improve the transition
function, using MCTS, directly against the easier task of just
learning a transition uncertainty function with UA-MCTS.
In both cases, learning occurs online; the former is used with
MCTS while the latter is used with UA-MCTS. Our results
show that learning the transition function is much harder
than learning transition uncertainty, which justifies the use
of UA-MCTS in such settings.

2 Background
2.1 The Imperfect Model Problem Setting
We focus on deterministic Markov Decision Processes
(MDP) which can be expressed as a 5-tuple (S,A,R,M, γ)
with state space S , action space A, rewards R which map
an (s, a) pair to a scalar reward, deterministic dynamics
st+1 = M(st, a), and a discount factor 0 ≤ γ ≤ 1. An
agent policy maps each state in S to an action in A. The
goal is to find a policy that maximizes the total discounted
reward.

During the course of a search, the agent only has access to
an imperfect model M̂(s, a) of the environment. We assume
that M̂ is both given and fixed within one search. This is in
contrast to the model learning case where M̂ is neither given
nor fixed. Each search is used to select an action, which is
then executed in the “real world” M .

Both M and M̂ take a state and an action as input and
return the next state. However, the next state predicted by
M̂ might be incorrect. After each search in M̂ , the agent
decides on an action a, which is then executed in the “real
world” M , and observes the next true state. M̂ and M share
the same S , A,R, and γ.

We model the transition uncertainty U(s, a) as an (arbi-
trary) function of the difference between the next-state pre-
dictions made by M̂ and M for the same state-action pair
(s, a). Like M , U is not directly available to the agent,
thus it learns an estimation of U(s, a), noted as Û(s, a),
during interactions with the environment. A special case is
that when the MDP contains only one state, the problem be-
comes a corrupted K-armed stochastic bandit where there
are K actions. In this case, the transition uncertainty leads
to corrupted reward distribution — the agent takes arm i,
instead of receiving from the reward from real distribution
pi, a reward is sampled from corrupted distribution p̂i. Fol-
lowing standard bandit assumptions, we use µi ∈ [0, 1] and
µ̂i ∈ [0, 1] to denote the expected rewards for pi and p̂i,
respectively. The difference is noted as δi = |µi − µ̃i|.

2.2 Monte Carlo Tree Search (MCTS)
MCTS conducts a selective tree search by repeating four
steps (Algorithm 1): An in-tree selection method such as
UCT (Kocsis, Szepesvári, and Willemson 2006) descends
along a path in the tree until a leaf node is reached, which
is then expanded. A simulation evaluates the selected leaf
node. Finally, the nodes along the selection path, up to
and including the root of the tree, are updated according to
the evaluation result during backpropagation (Browne et al.

Algorithm 1: MCTS Framework

function MCTS(s0)
create a root node v0 with state s0
for NI do

vs ← SELECT(v0)
if N(vs) > 0 then

vs ← EXPAND(vs)
end if
value← SIMULATE(S(vs))
BACKPROPAGATE(vs, value)

end for
vbest ← choose the most visited child of v0
return action(vbest)

end function

2012). Each of the four steps of MCTS are modified in UA-
MCTS.

We use the following notation: For node v in the cur-
rent search tree T , S(v) is the feature vector of the state
that is represented by v; N(v) is the number of times v has
been visited throughout the search; Q(v) is the sum of re-
wards observed at v; Par(v) is the parent of v in T , with
Par(root) = NULL; Ch(v) is the current set of v’s children
in T ; and Û(v) is the estimated transition uncertainty of v
which is equal to Û(s, a), where (s, a) is the transition in T

that leads to node v. The choices for Û(v) are further elab-
orated on in Subsection 5.1. UA-MCTS is controlled by five
hyperparameters: the total number of iterations NI , the num-
ber NS of simulations to evaluate a leaf node of T , the max-
imum depth of each simulation DS , the exploration constant
c, and the uncertainty factor τ which controls how much the
uncertainty affects the behavior of UA-MCTS.

3 Uncertainty Adapted UCB
Before diving into full MCTS for corrupted MDPs, we first
consider the corrupted bandit case. For the real and cor-
rupted environments, we assume the optimal arms are re-
spectively noted as i∗ and î∗. At time t (t > 1), let x̂i,(t−1) be
the empirical average reward collected for arm i before time
t, and Ni(t − 1) be the visit count of arm i. Naturally, the
agent has to consider uncertainty information δi; one sensi-
ble idea is to adapt the UCB score function for each arm i,
as follows:

UA− UCB i(t) = x̂i,t−1 + c

√
ln (t− 1)

Ni,t−1
· (1− δi)

Here, x̂i,t is an estimate for µ̂i, e.g., empirical mean reward.

3.1 Regret Bound

We provide a regret bound for the UA-UCB strategy for cor-
rupted bandits (proof shown in Appendix C (Kohankhaki
et al. 2023)).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20152

Theorem 1.

Rn ≤
k∑

i=1

[4βi

∆̂2
i

+ C
]
(∆̂i + δi + µi∗ − µ̂î∗) ln(n− 1)

Here C is a constant, βi = c2(1− δi)
2, ∆i = µi∗ − µi and

∆̂i = µ̂i∗ − µ̂i, assuming 0 ≤ δi ≤ 1−
√

1
2c2 .

Clearly, if δi = 0, this regret bound matches UCB for
stochastic bandits. If δi ̸= 0, we can also see that, acting
using UCB resulting into very similar regret notation except
that βi = c2 (see Appendix C (Kohankhaki et al. 2023)).
Since c2(1−δi)2 ≤ c2, we see that UA-UCB, by considering
the uncertainty information in selection, produces a tighter

bound. Note that when δi > 1−
√

1
2c2 , both UCB and UA-

UCB lead to linear regret, i.e., the reward observed by agent
is too much misleading w.r.t the real environment such that
optimistic strategies based on estimation of p̂ become not
beneficial.

4 Uncertainty Adapted Monte Carlo Tree
Search (UA-MCTS)

How can search in an imperfect model M̂ improve decision-
making in M? Of course, the optimal strategy for the agent
is to exploit the mathematical relation between M̂ and M ;
however, this information is unknown for the agent. In UA-
MCTS, we adapt MCTS to behave more conservatively in
states where the estimated uncertainty is larger. By doing so,
we discourage, but do not completely give up on, searching
through the more uncertain parts of the model.

Guided by the insights from the corrupted bandit case, in
UA-MCTS, we use four custom functions for selection, ex-
pansion, simulation, and backpropagation within an MCTS
framework which utilizes this learned transition uncertainty.
These four functions are described in subsections 4.1 - 4.4.

4.1 UA-Selection
Similar to UA-UCB, in UA-Select, the exploration term in
the standard UCT formula is dampened by a multiplicative
term 1 − αi, so that children with higher uncertainty will
be explored less. αi is a softmax of Û with a temperature
parameter set to the uncertainty factor τ > 0. A lower τ
makes the algorithm more sensitive to the predicted uncer-
tainty. With a higher τ UA-Selection behaves more like the
baseline MCTS selection. Algorithm 2 describes the modi-
fied selection function in pseudo-code.

We prove that with this modification of UCT, our UA-
MCTS remains complete in the sense that all nodes will be
visited continuously in the limit as NI goes to infinity. We
prove this by induction.

Lemma 1. ∀v ∈ Tree, if lim
NI→∞ N(v) = ∞ ⇒ ∀vi ∈

Ch(v) lim
NI→∞ N(vi) =∞.

(Proof in Appendix D (Kohankhaki et al. 2023))

Theorem 2. (Completeness) If NI → ∞, then ∀v ∈
Tree,N(v)→∞

Algorithm 2: Uncertainty Adapted Selection Algorithm.
Parameter: temperature τ for softmax
function SELECT(v)

while v is expanded do
for vi ∈ Ch(v) do

αi ← eÛ(vi)/τ∑
vj∈Ch(v)

eÛ(vj)/τ

end for
v← argmax

vi∈Ch(v)

Q(vi)
N(vi)

+ c
√

lnN(v)
N(vi)

· (1 - αi)

end while
return v

end function

Proof. We prove this by induction on depth of the nodes in
the tree.

1. Induction base: N(root)→∞.
2. Induction step: lim

NI→∞ N(v) = ∞. ⇒ ∀vi ∈
Ch(v), lim

NI→∞ N(vi) =∞ (Proved in Lemma 1).

4.2 UA-Expansion
To discourage searching parts of the tree where the model is
more inaccurate, UA-Expansion gives children with higher
uncertainty a lower chance to be added to the tree. While
expanding node v, we initialize the uncertainty of each child
vi based on the uncertainty of the transition (S(v), ai) that
yielded vi and store it as Û(vi). This stored value can then be
accessed by other parts of the UA-MCTS algorithm. Next,
with probability 1 − τ/10 we eliminate exactly one child
from the tree. The choice of which child to eliminate is de-
pendent on probabilities that are proportional to each child
node’s uncertainty. The uncertainty factor τ is used in UA-
Expansion as the elimination probability τ/10; the scaling
constant 1/10 was chosen empirically. Algorithm 3 shows
the pseudo-code for UA-Expansion.

4.3 UA-Simulation
In regular MCTS simulation, the returned value is the av-
erage of the NS rollouts. To adapt simulation to transition
uncertainty, we weigh each result based on a measure of the
uncertainty of the whole rollout trajectory. Assume Ti is the
rollout trajectory that the ith rollout took and T is the set of
rollout trajectories. We define the uncertainty σ(Ti) of tra-
jectory Ti = (s1, a1, s2, a2, · · · , sh, ah, sh+1) as

σ(Ti)
.
=

h∑
k=1

γk−1Û(sk, ak)

The weight αi for rollout i is defined as the softmax

αi
.
=

e−σ(Ti)/τ

NS∑
j=1

e−σ(Tj)/τ

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20153

Algorithm 3: Uncertainty Adapted Expansion Algorithm
Parameter: probability τ for deleting a node
function EXPAND(v)

for ai ∈ A do
si, ri ← M̂(S(v), ai)
create a node vi with state si and reward ri
Û(vi)← Û(S(v), ai)
N(vi)← 0
Q(vi)← 0

end for
x ∼ Uniform(0, 1)

if
∑

vj∈Ch(v)

Û(vj) > 0 and x < (1− τ/10) then

for ai ∈ A do
αi ← Û(vi)∑

vj∈Ch(v)

Û(vj)

end for
choose node vi with probability αi

delete node vi
end if
return a random child of v

end function

Again, a lower τ makes αi more sensitive to the predicted
uncertainties. Let gi be the sum of discounted rewards for
rollout i. Then the weighted average return G of all NS sim-
ulations is

G
.
=

NS∑
i=1

αi · gi

Pseudo-code for UA-Simulation is presented in Appendix B
(Kohankhaki et al. 2023).

4.4 UA-Backpropagation
In Algorithm 4 UA-Backpropagation, nodes with more cer-
tainty have more impact on their parents. To do that, a child’s
value is modified with a multiplicative term that is based on
its uncertainty before it is used to update its parent’s value.
This multiplicative term is the softmax of −Û with a tem-
perature parameter set to the uncertainty factor τ , to assign
children with lower uncertainty a higher weight.

5 Experiments
We experimentally test the performance of UA-MCTS.1 In
each test, we define a specific transition uncertainty U and a
method for learning its approximation Û . We compare UA-
MCTS with baseline MCTS in three modified MinAtar envi-
ronments (Young and Tian 2019). For each of the determin-
istic MinAtar environments – Space Invaders, Freeway, and
Breakout – we briefly explain the modified domain, and dis-
cuss the experimental results. Also, we compare learning to
improve the transition function with learning the uncertainty
model in a toy environment setting. Moreover, in Appendix

1https://github.com/ualberta-mueller-group/UAMCTS

Algorithm 4: Uncertainty Adapted Backpropagation Algo-
rithm.

Parameter: uncertainty factor τ
function BACKPROPAGATE(v, value)

while v is not NULL do
N(v)← N(v) + 1

α = e−Û(v)/τ∑
n∈Ch(Par(v))

e−Û(n)/τ

Q(v)← Q(v) + α · value
value← value · γ
v ← Par(v)

end while
end function

A (Kohankhaki et al. 2023), we discuss the scenario where
all paths to the goal contain uncertainty.

5.1 Defining Uncertainty and Learning its
Estimate

The uncertainty estimate U and the implementation of its
approximation Û can be chosen freely in our framework.
For our experiments we use the following approach: Given
M and M̂ , we define the transition uncertainty U as the
squared difference of the state vectors

U(s, a) =
(
M̂(s, a)−M(s, a)

)2
.

A neural network uncertainty model Û which approx-
imates U is learned by regression. After each action in
the environment M , U(s, a) is computed and the tuple
⟨s, a, U(s, a)⟩ is added to a buffer B. After every I steps in
the environment, the neural network Û is trained for E train-
ing steps. τ decays exponentially with the update formula
τ = τ/10 at each I steps in the environment. This schedul-
ing scheme for τ enables UA-MCTS to be more sensitive to
the predicted uncertainty. Each training step performs a gra-
dient descent update with a randomly selected batch B′ ⊂ B
and loss function L:

L =
∑

s,a,U(s,a)∈B′

(
Û(s, a)− U(s, a)

)2

For each real world action decision, UA-MCTS is run
with the current state as a start state for NI iterations. When-
ever a node v is added to the tree from transition (s, a), we
define its uncertainty as Û(v) = Û(s, a). In the offline case,
Û = U ; in the online case, Û is learned as above.

5.2 Setup of Experiments
We test our method on the three deterministic games Space
Invaders, Freeway and Breakout in the MinAtar framework
(Young and Tian 2019). While the original games are all
continuing tasks, we used an episodic version for our ex-
periments.

We modify each game to be “slightly broken” by chang-
ing the transition function M . The agent still believes it is

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20154

playing the original game and plans using that model M̂ ,
which is no longer correct for the modified game. We com-
pare UA-MCTS and its four components with two base-
line MCTS algorithms in this setting. For each game, we
study two uncertainty scenarios and compare a total of seven
search algorithms:

1) In the offline scenario, the agent has access to the true
uncertainty U of the model, but not to the perfect model M
itself. This scenario evaluates the performance of UA-MCTS
with a “perfect uncertainty” model. The reason for this ex-
periment is to separate out the difficulty of not knowing M
from the extra difficulty due to the training errors in the es-
timate Û .

2) In the online scenario, the agent does not have access
to U , and therefore has to learn an approximation Û online
from real experience. The agent starts with a random initial-
ization of the uncertainty network and collects the buffer of
transitions B that is used to train Û as explained in Section
5.1.

The seven search algorithms tested are as follows: the
two baselines use standard MCTS without any UA modi-
fications.

1) “True Model” MCTS is allowed to use M in its search.
It is shown as a horizontal dashed green line in the figures.

2) “Corrupted Model” MCTS uses M̂ for all its planning,
and is shown as a horizontal dashed red line in the figures.

3-7) All versions of UA-MCTS work as follows: they use
M̂ for all their planning. In the offline scenario, they use
the true U from the beginning, as explained above. In the
online scenario, they start by running the Corrupted Model
MCTS (no UA modifications), and gain real experience from
the moves played. The UA-MCTS versions labeled “Back-
propagation”, “Selection”, “Expansion” and “Simulation”
use the UA modifications only for this one component of
MCTS, and use unmodified MCTS for the other three parts.
The “Combined” version uses all four enhancements.

In the offline scenario we show results for all seven algo-
rithms. In the online scenario, for simplicity we only show
results for the combined version of UA-MCTS and the two
MCTS baselines.

For each combination of game and algorithm we per-
formed a parameter sweep over the exploration constant c
from the set {0.5, 1,

√
2, 2}. For the “Combined” version in

the online scenario, we used the best c found for the offline
scenario. In the offline scenario the uncertainty factor τ is
set to 0.1 (a small number so that UA-MCTS is more sen-
sitive to the true uncertainty), and in the online scenario the
τ is initialized to 10, then decays until it reaches 0.1. The
uncertainty model in the online scenario is a fully connected
neural network with two hidden layers of 128 hidden units
each. The number of training steps E and training frequency
I are both 5000, and the step size is 10−3 for the Adam op-
timizer (Kingma and Ba 2014). Table 1 shows a list of other
hyperparameters used in UA-MCTS.

5.3 Space Invaders
In Space Invaders, the agent tries to eliminate 24 enemies
by shooting at them (Young and Tian 2019). We modified

Figure 1: Offline (vertical bars) and online scenarios for
Space Invaders. Bars and shaded areas show mean ± std
of rewards over 100 runs for the offline and 15 for the online
scenarios. For the corrupted and true models (two-leftmost
cases), the best c is 2 and

√
2 respectively. The best c pa-

rameter chosen for each of the UA-MCTS algorithms (the
remaining five cases) are [2, 2, 1, 0.5,

√
2] from left to right.

For the online scenario, we plot the moving average of the
reward with a window size of 50.

this environment by disabling the shoot action in five out
of ten positions, at indices 2, 3, 4, 5, and 6. As shown in
Figure 1, the performance of the baseline MCTS drops from
an average reward of 18.4 for the True Model MCTS to 16.3
for the Corrupted Model MCTS, where the agent is unaware
of its limitations on shooting.

In the offline scenario, UA-MCTS worked surprisingly
well, and even exceeded the performance of the True Model
MCTS in all configurations except UA-backpropagate-only.
As a single modification, UA-expand-only performed best.
The combined UA-MCTS achieved an average reward of
23.8, which is close to the perfect play reward of 24. Even
in the online setting, after training Û , combined UA-MCTS
outperforms the True Model MCTS. In this game, low value
states are strongly correlated with high uncertainty states
where the agent cannot shoot. Since UA-MCTS discourages
visits to these states, its search becomes more efficient than
the True Model MCTS despite the imperfect model.

5.4 Freeway
In Freeway, the agent’s goal is to reach the top of the
screen without touching enemies along the way (Young and
Tian 2019). In the modified game M , executing the action
“None” moves the agent up in six out of ten locations. Figure
2 shows that offline, combined UA-MCTS achieves the aver-
age reward of 0.9 and outperforms Corrupted Model MCTS.
The individual performance of each component is better than
the Corrupted Model, with UA-expand-only again perform-
ing best. In the online setting, UA-MCTS is able to outper-
form the Corrupted Model MCTS, but cannot approach the
True Model MCTS. Comparing the two results (offline and
online) for this game, we conjecture that the uncertainty net-
work’s inaccuracies limit the performance.

The online UA-MCTS agent converges to its best perfor-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20155

Figure 2: Offline (vertical bars) and online scenarios for
Freeway. Bars and shaded areas show mean ± std of re-
wards over 100 runs for the offline and 15 for the online
scenarios. For the corrupted and true models (two-leftmost
cases), the best c is 0.5 and 2 respectively. The best c pa-
rameter chosen for each of the UA-MCTS algorithms (the
remaining five cases) are [2, 2,

√
2, 2,
√
2] from left to right.

For the online scenario, we plot the moving average of the
reward with a window size of 50.

mance in Space Invaders using fewer episodes than in Free-
way. The reason is that Space Invaders episodes are longer,
so the agent can learn from more environment interaction
samples.

5.5 Breakout

In Breakout, the agent controls a paddle at the bottom of the
screen, which is used to bounce a ball back up. The goal is to
hit and destroy as many bricks as possible (Young and Tian
2019). In our modified game, the paddle fails to stop the
ball in two out of ten positions, ending the game. To over-
come this, the agent must plan ahead to keep the ball in play
without using these corrupted positions. Figure 3 shows that
UA-MCTS outperformed the Corrupted Model MCTS base-
line and performed almost as well as the True Model MCTS.
UA-select-only and UA-expand-only also performed very
well, while UA-backpropagate-only and UA-simulate-only
performed poorly. Another observation is the performance
drop in the online setting w.r.t the offline setting, although
it still performed better than the Corrupted Model MCTS.
Since the main difference between the two settings is the
uncertainty, the online setting is likely limited by its learned
uncertainty’s lower accuracy. The effect of this inaccuracy,
and potential improvements, remain an interesting future di-
rection of research.

Space Invaders Freeway Breakout
NI 10 100 100
DS 20 50 50
NS 10 10 10

Table 1: Experiment settings

Figure 3: Offline (vertical bars) and online scenarios for
Breakout. Bars and shaded areas show mean ± std of re-
wards over 100 runs for the offline and 15 for the online
scenarios. For the corrupted and true models (two-leftmost
cases), the best c is 2 and

√
2 respectively. The best c pa-

rameter chosen for each of the UA-MCTS algorithms (the
remaining five cases) are [1, 2,

√
2, 2,
√
2] from left to right.

For the online scenario, we plot the moving average of the
reward with a window size of 50.

5.6 Learning the Uncertainty VS. Learning the
Transition Function

An alternative approach to learning the uncertainty, then ap-
plying that to UA-MCTS, is to use MCTS with a learned
transition function that approximates the true environment.
We justify the choice of focusing on the former in this pa-
per as follows. We believe that training the transition func-
tion is generally more difficult than training the uncertainty
because state representations tend to be more complex. In
contrast, uncertainty can be represented with a single scalar
value regardless of the environment. As an example, the fea-
ture vector representing each state contains 306, 34, and 107
scalar elements for Space Invaders, Freeway, and Breakout,
respectively. Therefore, with the same amount of resources,
we should be able to learn a more accurate uncertainty
model than a transition model. (Vemula et al. 2020; Vem-
ula, Bagnell, and Likhachev 2021) also mention the same
intuition, which motivated their approach. To illustrate this
with an example, we designed a toy environment called the
2-Way GridWorld. A snapshot of this environment is pre-
sented in Figure 4. The agent starts at position (1, 0) and at
each time step it can choose any of the four actions: “Up”,
“Down”, “Left”, and “Right”. The terminal state is at po-
sition (1, 6). When the agent reaches the position (1, 6), the
game terminates and the agent gets a reward of 10. The max-
imum number of steps in each episode is 50. In the cor-
rupted model the agent does not know that the wall in po-
sition (0, 2) exists. Therefore, it assumes that it can reach
the goal either from the top path or from the bottom path.
The reality is that the top path is not a valid plan.

We compare the two scenarios: 1) Using combined UA-
MCTS and learning the uncertainty online: we use com-
bined UA-MCTS and the same method and setup for learn-
ing the uncertainty as in the MinAtar environments, except
that the uncertainty model is a fully connected neural net-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20156

Figure 4: 2-Way GridWorld Environment. White cells are
empty and grey cells are walls.

work with no hidden layers. τ is initialized to 10 and decays
until it reaches 0.1. 2) Using MCTS and learning the tran-
sition function online: We use MCTS and learn the transi-
tion function online. The process of learning the transition
function is the same as learning the uncertainty model, ex-
cept that the buffer B is filled with ⟨s, a,M(s, a)⟩ samples.
For the first I steps, the corrupted model is used to gather a
buffer, since the transition function has not been trained yet.

We used three different transition functions: a) a linear re-
gression, b) a fully connected neural network with 1 hidden
layer consisting of 8 units, and c) a fully connected neu-
ral network with 1 hidden layer with 16 units. All models
predict the feature vector of the next state. We also com-
pare with the two baselines “True Model” and “Corrupted
Model”. We performed a parameter sweep over the explo-
ration constant c from the set {0.5, 1,

√
2, 2} for the “True

Model” and “Corrupted Model”. We used the best c found
for the “Corrupted Model” for the two scenarios. In this set
of experiments NI = 10, NS = 10, DS = 30, I = 300, and
E = 5000. Figure 5 presents the result of this experiment.
We can observe that the combined UA-MCTS converges to
a result much better than the Corrupted Model MCTS and
close to the True Model MCTS. However, when trying to
learn the transition function using the same network capac-
ity, the agents could not find a path to the goal at all. The
agent improves as the capacity of the transition function in-
creases, but is still not able to outperform UA-MCTS with
16 units in its hidden layer.

UAMCTS (Linear Regression)

Learning Transition (Linear Regression)

Figure 5: Comparison between learning the transition func-
tion with different hidden layer (HL) sizes and UA-MCTS
method. The average number of steps to the goal is over
30 runs. The exploration parameter c for “True Model” and
“Corrupted Model’ is 2 and

√
2 respectively. For the other

scenarios c is
√
2.

6 Related Work
There are numerous techniques which quantify and use un-
certainty for MBRL. (Lütjens, Everett, and How 2019) cap-
tured uncertainty using ensembles of LSTM and Monte
Carlo dropout, and changed the behaviour of their agent to
act more cautiously in the uncertain parts by introducing a
cost function for model predictive control (MPC), which can
be considered a search algorithm.

Several approaches used uncertainty, but not as a compo-
nent of an explicit search. (Abbas et al. 2020; Xiao et al.
2019; Buckman et al. 2018) modified the model value ex-
pansion (MVE) algorithm by taking model uncertainty into
consideration. (Abbas et al. 2020) and (Xiao et al. 2019) se-
lected the bootstrapping depth using model uncertainty. (Jaf-
ferjee et al. 2020) investigated the effect of model updates
in both forward and backward directions with an imperfect
model. (Lai et al. 2020) used forward and backward mod-
els in model-based policy optimization (Janner et al. 2019)
in order to reduce accumulative model error while maintain-
ing a similar update depth. (Talvitie 2017) designed a way
to learn the model which reduces accumulative model error
in deep lookahead.

CMAX and CMAX++ (Vemula et al. 2020; Vemula, Bag-
nell, and Likhachev 2021) are robust online path-planning
algorithms in a real-time A* search framework, which can
work around imperfect model predictions. As in our work,
imperfect states are identified by comparing against the real
environment during interactions. At runtime, CMAX com-
pletely disables parts of the model that are found to be in
conflict. Examples of this include malfunctioning motors or
overloaded robotic arms. To find a solution, at least one per-
fectly modelled path to the goal needs to exist. In contrast,
UA-MCTS does not hard-prune such states, but shapes the
search to prefer states with lower estimated uncertainty.

7 Conclusion and Future Work
UA-MCTS improves MCTS by learning a simple uncer-
tainty model, instead of trying to learn corrections to a com-
plex transition function. The method modifies the four main
components of MCTS in a “risk-averse” way so that the
search is directed away from the more uncertain parts of the
model. To test UA-MCTS in practice, we developed a defi-
nition of uncertainty for a fixed given model, and a learned
approximation that works with UA-MCTS. We tested UA-
MCTS on the MinAtar testbed. Our results show that: 1)
baseline MCTS suffers from severe performance degrada-
tion in the face of model uncertainty. 2) UA-MCTS out-
performs MCTS for imperfect models. It can recover from
performance degradation, or at least lessen its effects when
used in conjunction with a learned uncertainty estimate. 3)
The precision of the learned uncertainty model used by UA-
MCTS has a very strong effect on agent performance. Im-
proving this estimate requires further investigation. Other
future directions include: investigating the impact of varying
degrees of model imperfection on both UA-MCTS and base-
line MCTS, especially the “risk-seeking” case where high
uncertainty states must be explored, and comparing differ-
ent uncertainty estimation techniques for UA-MCTS.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20157

References
Abbas, Z.; Sokota, S.; Talvitie, E.; and White, M. 2020. Se-
lective Dyna-style planning under limited model capacity.
In International Conference on Machine Learning, 1–10.
PMLR.

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte
Carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games, 4(1): 1–43.

Buckman, J.; Hafner, D.; Tucker, G.; Brevdo, E.; and Lee,
H. 2018. Sample-Efficient Reinforcement Learning with
Stochastic Ensemble Value Expansion. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, 8234–8244. Curran Asso-
ciates Inc.

Cazenave, T. 2010. Nested Monte-Carlo expression discov-
ery. In ECAI 2010, 1057–1058. IOS Press.

Gao, C. 2020. Search and Learning Algorithms for Two-
Player Games with Application to the Game of Hex. Ph.D.
thesis, University of Alberta.

Gao, C.; Müller, M.; and Hayward, R. 2018. Three-Head
Neural Network Architecture for Monte Carlo Tree Search.
In IJCAI, 3762–3768.

Jafferjee, T.; Imani, E.; Talvitie, E.; White, M.; and Bowl-
ing, M. 2020. Hallucinating value: A pitfall of Dyna-style
planning with imperfect environment models. arXiv preprint
arXiv:2006.04363.

Janner, M.; Fu, J.; Zhang, M.; and Levine, S. 2019. When
to Trust Your Model: Model-Based Policy Optimization.
Advances in Neural Information Processing Systems, 32:
12519–12530.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kocsis, L.; Szepesvári, C.; and Willemson, J. 2006. Im-
proved Monte-Carlo search. Univ. Tartu, Estonia, Tech. Rep,
1.

Kohankhaki, F.; Aghakasiri, K.; Zhang, H.; Wei, T.-H.; Gao,
C.; and Müller, M. 2023. Monte Carlo Tree Search in the
Presence of Transition Uncertainty. arXiv:2312.11348.

Lai, H.; Shen, J.; Zhang, W.; and Yu, Y. 2020. Bidirectional
Model-based Policy Optimization. In International Confer-
ence on Machine Learning, 5618–5627. PMLR.

Lattimore, T.; and Szepesvári, C. 2020. Bandit algorithms.
Cambridge University Press.

Lu, J.; Wang, X.; Wang, D.; and Wang, Y. 2016. Parallel
Monte Carlo tree search in perfect information game with
chance. In 2016 Chinese Control and Decision Conference
(CCDC), 5050–5053. IEEE.

Lütjens, B.; Everett, M.; and How, J. P. 2019. Safe rein-
forcement learning with model uncertainty estimates. In
2019 International Conference on Robotics and Automation
(ICRA), 8662–8668. IEEE.

Mansley, C.; Weinstein, A.; and Littman, M. 2011. Sample-
based planning for continuous action Markov Decision Pro-
cesses. In Twenty-First International Conference on Auto-
mated Planning and Scheduling.
Nijssen, J.; and Winands, M. 2010. Enhancements for multi-
player Monte-Carlo tree search. In International Conference
on Computers and Games, 238–249. Springer.
Sabharwal, A.; Samulowitz, H.; and Reddy, C. 2012. Guid-
ing combinatorial optimization with UCT. In International
conference on integration of artificial intelligence (AI) and
operations research (OR) techniques in constraint program-
ming, 356–361. Springer.
Saffidine, A. 2008. Utilisation dUCT au Hex. Ecole Nor-
male Super. Lyon, France, Tech. Rep.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484–489.
Silver, D.; Sutton, R. S.; and Müller, M. 2008. Sample-based
learning and search with permanent and transient memories.
In Proceedings of the 25th International Conference on Ma-
chine Learning, 968–975.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Talvitie, E. 2017. Self-correcting models for model-based
Reinforcement Learning. In Thirty-First AAAI Conference
on Artificial Intelligence.
Vemula, A.; Bagnell, J. A.; and Likhachev, M. 2021.
CMAX++: Leveraging Experience in Planning and Execu-
tion using Inaccurate Models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, 6147–
6155.
Vemula, A.; Oza, Y.; Bagnell, J. A.; and Likhachev, M. 2020.
Planning and Execution using Inaccurate Models with Prov-
able Guarantees. In Proceedings of Robotics: Science and
Systems.
Xiao, C.; Wu, Y.; Ma, C.; Schuurmans, D.; and Müller,
M. 2019. Learning to combat compounding-error in
model-based reinforcement learning. NeurIPS 2019
Deep Reinforcement Learning Workshop. arXiv preprint
arXiv:1912.11206.
Young, K.; and Tian, T. 2019. MinAtar: An Atari-inspired
testbed for thorough and reproducible Reinforcement Learn-
ing experiments. arXiv preprint arXiv:1903.03176.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20158

