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Abstract

The paper introduces a novel polynomial compilation tech-
nique for the sound and complete removal of conditional ef-
fects in classical planning problems. Similar to Nebel’s poly-
nomial compilation of conditional effects, our solution also
decomposes each action with conditional effects into several
simpler actions. However, it does so more effectively by ex-
ploiting the actual structure of the given conditional effects.
We characterise such a structure using a directed graph and
leverage it to significantly reduce the number of additional
atoms required, thereby shortening the size of valid plans.
Our experimental analysis indicates that this approach en-
ables the effective use of polynomial compilations, offering
benefits in terms of modularity and reusability of existing
planners. It also demonstrates that a compilation-based ap-
proach can be more efficient, either independently or in syn-
ergy with state-of-the-art optimal planners that directly sup-
port conditional effects.

Introduction
In essence, automated planning is the problem of finding a
sequence of actions to achieve certain objectives from an
initial state. Many languages have been developed to model
planning problems concisely, each with its strengths and
weaknesses. This paper studies classical planning with con-
ditional effects (Pednault 1989), which allows one to express
state-dependent effects in the action model.

Over the years, conditional effects have proved quite use-
ful to encode planning problems beyond classical planning,
such as planning with soft and hard state trajectory con-
straints (e.g., Wright, Mattmüller, and Nebel 2018; Percassi
and Gerevini 2019; Bonassi et al. 2021, 2023), planning un-
der uncertainty (e.g., Palacios and Geffner 2009; Grastien
and Scala 2017), matrix multiplication as planning (Speck
et al. 2023) and even for compiling expressive planning for-
malisms like PDDL+ in numeric planning (Percassi, Scala,
and Vallati 2023). Moreover, they exhibit a relationship with
state-dependent action cost (Mattmüller et al. 2018; Speck
et al. 2021) and numeric planning (Gigante and Scala 2023).
However, despite conditional effects being introduced more
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than three decades ago, several planners do not directly sup-
port them, or they do so with some limitations. The majority
of state-of-the-art planners are based on forward state-space
heuristic search (e.g., Helmert 2006; Richter and Westphal
2010), with a few notable exceptions (e.g., Gerevini, Saetti,
and Serina 2003; Wehrle and Rintanen 2007; Lipovetzky
and Geffner 2017). Although there is a significant number of
powerful heuristics available for these systems, only a few of
them provide direct support for conditional effects with the
necessary guarantees, such as the admissibility of heuristics.

One way to support conditional effects, independently
from the search algorithm and heuristic of the planner, is
using a compilation-based approach: the problem with con-
ditional effects is transformed into an equivalent one with-
out them, ensuring soundness and completeness. Compi-
lation approaches have the nice property of allowing the
use of a wide set of existing planners, providing a planner-
independent approach. Two main compilation approaches
have been investigated. Gazen and Knoblock (1997) pro-
posed an approach that generates compiled actions emulat-
ing all possible contextual effects that may take place; Nebel
(2000) devised a method simulating a machine that evaluates
and applies conditional effects through a sequence of auxil-
iary actions. These approaches have different strengths and
weaknesses: the former preserves the length of valid plans at
the cost of an exponential worst-case blow-up in the size of
the problem representation, while the second does not suffer
this exponential blow-up but stretches the size of the valid
plans by a polynomial factor.

In this paper, we investigate yet another polynomial com-
pilation that addresses some of the limitations of Nebel’s ap-
proach, resulting in a significantly more powerful technique.
We begin by closely examining the interactions of condi-
tional effects within each operator, and we observe that there
are instances where it is possible to achieve a more concise
encoding. We interpret these interactions by employing an
effect interference graph for each action and utilising well-
known algorithms for managing and reasoning about these
dependencies. Our study leads to a two-step transformation.
In the initial step, we process the planning problem to ensure
that its interference graphs become acyclic. Then we exploit
this acyclicity to generate an encoding where the additional
auxiliary atoms for the compiled problem are limited to only
those that are necessary, and all auxiliary actions do not in-
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troduce further branching points in the search of the planner.
The paper first presents our compilation formally and

analyses its main theoretical properties. Then it reports
on an extensive experimental analysis carried out using
a variety of known planning benchmarks and planners.
Note that, notwithstanding its worst-case exponential be-
haviour, Gazen and Knoblock’s approach seems preferred
over Nebel’s polynomial approach (Hoffmann et al. 2006).
Indeed, the compilation by Gazen and Knoblock does not
jeopardise the properties of the heuristic (Katz 2019).

Our results show that exponential compilations may not
always be a good idea. Indeed, over a large number of
benchmarks with conditional effects collected from differ-
ent sources, we observe that, for optimal planning, our new
polynomial compilation behaves more effectively than both
the ones by Gazen and Knoblock (1997) and Nebel (2000)
in three out of four considered planning systems. Moreover,
the proposed compilation is competitive and complementary
with approaches handling conditional effects natively.

Preliminaries
This section provides a brief overview of the syntax and se-
mantics of classical planning with conditional effects (CEs).
We then give some notations and definitions that will be used
for our compilation schemata.

A classical planning problem Π with CEs is the tuple
⟨F,A, I,G⟩, where F is a set of atoms, A is a set of ac-
tions, I is a set of atoms such that I ⊆ F , and G is
a set of literals over F . Each action a ∈ A is a pair
⟨pre(a), post(a)⟩, where pre(a) is a set of literals over F ,
and post(a) is a set of CEs. A CE e of an action a is a pair
⟨cond(e), eff(e)⟩, where cond(e) and eff(e) are both sets of
literals over F . A plan π for a planning problem Π is a se-
quence ⟨a1, . . . , an⟩ of actions in A. The cost of a plan π
is defined as cost(π) =

∑
a∈π cost(a), where cost(a) is a

non-negative rational value defining the cost of action a. For
convenience, let L be some set of literals, we superscript L
with “+” or “−” to extract the positive and negative liter-
als in a set, respectively. For example, if L = {p,¬q}, then
L+ = {p} and L− = {q}. With atoms(L) we access the set
of atoms in L (e.g., atoms({p,¬q}) = {p, q}). Finally, we
use the term planning problem as an abbreviation of classi-
cal planning problem with CEs.

The semantics of a planning problem Π = ⟨F,A, I,G⟩
is as follows. A state s assigns a truth value to each atom
in F ; we represent states as subsets of F using the closed-
world assumption (if f ∈ s, then f is true in s); otherwise,
f is false. The state space of Π is 2F , and I is the initial
state. Let L be a set of literals, s |= L iff for all l ∈ L+

(z ∈ L−) we have that l (z) is true (false) in s. An ac-
tion a = ⟨pre(a), post(a)⟩ of Π is applicable in a state s
iff s |= pre(a) and all active CEs of a do not conflict, i.e.,⋃
e,e′∈post(a)s.t.e̸=e′

{eff(e)+∩eff(e′)− | s |= cond(e)∪cond(e′)} = ∅.

The application of an action a to a state s generates a suc-
cessor state, denoted as s[a], such that f ∈ s[a] iff at least
one of the following conditions holds: (i) in post(a) there
exists an effect ⟨C,L⟩ such that f ∈ L+ and s |= C; (ii)
f ∈ s and in post(a) there exists no effect ⟨C,L⟩ such that

p ∈ L− and s |= C. In the following, we assume that each
action has no conflicting CEs.

A plan π = ⟨a1, . . . , an⟩ is applicable in a state s0 if a1
is applicable in s0 and, for i ∈ {1, . . . , n}, every action ai
is applicable in s[ai−1]; a plan π is a solution for Π if π
is applicable in state sI and s[an] |= G; Π is solvable if it
admits a solution; an optimal solution for Π is a solution of
Π that has minimal cost.
Definition 1 (Simple Action and Simple Planning Problem).
Given a planning problem Π = ⟨F,A, I,G⟩, an action
a ∈ A is a simple action if, for every CE ⟨C,L⟩ ∈ post(a),
C = ∅; a problem Π is a simple planning problem (SP) if
all actions in A are simple.

Compiling Conditional Effects Away
This section shows how to compile a classical planning
problem with CEs into a simple planning problem. The com-
pilation schema substitutes each action of the original prob-
lem into a number of simple actions that mimic the execu-
tion of the associated CEs. In order to do so in a way that
preserves the semantics of the original action, this process
takes into account the inter-dependencies that arise among
CEs. We capture this formally through the notion of the ef-
fect interference graph, in turn, based on the notion of effect
interference.
Definition 2 (Effect Interference). Let e and e′ be two dis-
tinct CEs of an action a; e interferes with e′ in a (written
e ▷ e′) iff atoms(eff(e)) ∩ atoms(cond(e′)) ̸= ∅.
Definition 3 (Effect Interference Graph). The effect interfer-
ence graph of an action a is the directed graph Ga = ⟨V,E⟩
where V = {ve | e ∈ post(a)} and E = {(ve, ve′) | e, e′ ∈
post(a), e ̸= e′, and e ▷ e′}.
Definition 4 (Effect Acyclic Action and Acyclic Planning
Problem). An action a is effect acyclic iff Ga is acyclic; a
planning problem is an acyclic planning problem (AP) iff all
actions in Π are effect acyclic.

Let GT
a be the transpose graph of Ga obtained by revers-

ing the direction of all its edges, it is easy to see that, if
Ga is acyclic, a topological ordering ω = ⟨ve1 , . . . , vem⟩
of the vertices of GT

a induces an interference-free sequence
of effects ⟨e1, . . . , em⟩, i.e., no effect is conditioned by the
outcome of an effect preceding it in ω. A problem that is not
acyclic according to Definition 4 is denoted as CP.

We present the compilation of CEs in a modular way.
Firstly, we show how to compile CEs of an acyclic problem,
denoted by τAP

SP (from AP to SP). Then we show how any
planning problem can be made acyclic (if needed) through
another compilation called τCP

AP (from arbitrary classical
planning problems with CEs CP to AP). The whole pipeline
τCP

AP plus τAP
SP can be used for compiling away any kind of

CEs.

Transformation from Acyclic to Simple Planning
Problems
As hinted at above, τAP

SP substitutes each action a ∈ A with a
number of fresh simple actions, linked together to mimic the
original semantics of a. Two special actions, i.e., astart and
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aend, mark the beginning and the end of the execution pro-
cess for action a. The remaining ones, denoted as intermedi-
ate actions, are used to sequentially compute the successor
state obtained by applying a. τAP

SP ensures that the start of a
is followed by a sequence of sets of mutually exclusive sim-
ple actions, one for each CE ⟨C,L⟩ of a. Each set contains
(i) a simple action that is executable when C holds and up-
dates the state consistently with L, and (ii) another action for
each literal in C that is executable when the corresponding
literal does not hold in the state. Importantly, τAP

SP exploits
the order of CEs given by GT

a . τAP
SP makes use of this order-

ing information to sequence all the intermediate actions in a
way, that when an intermediate action has to be taken there
is no previous intermediate action affecting its precondition.

The actions of the transformation are organised into four
sets: Astart and Aend contain all starting and ending ac-
tions, while ACE+ and ACE− contain all intermediate actions.
Specifically, ACE+ includes actions that mimic the activation
of CEs and the subsequent state update. In contrast, ACE− are
executed when the corresponding CEs do not get activated.

τAP
SP uses a number of fresh atoms: pause and, for each ac-

tion a, di,a for i ∈ {0, . . . , |post(a)|}. The di,a-atoms mean
that the i-th effect of a has been processed, and they are used
to enforce an order for the simple actions associated with a
specific action. The atom pause is used to avoid the inter-
leaved execution of simple actions corresponding to differ-
ent original actions and thus forbid their overlapping.

Given a planning problem Π = ⟨F,A, I,G⟩, τAP
SP trans-

lates it into the problem τAP
SP (Π) = ⟨F ′, A′, I, G′⟩ where

F ′ = F ∪
⋃
a∈A

{di,a | i ∈ {0, . . . , |post(a)|}} ∪ {pause}

A′ = Astart ∪Aend ∪ACE+ ∪ACE−

Astart =
⋃
a∈A

{astart = ⟨pre(a) ∪ {¬pause}, {⟨∅, {d0,a, pause}⟩}⟩}

Aend =
⋃
a∈A

{aend = ⟨d|post(a)|,a, {⟨∅, {¬d|post(a)|,a,¬pause}⟩}⟩}

ACE+ =
⋃
a∈A

ACE+
a ACE− =

⋃
a∈A

ACE−
a G′ = G ∪ {¬pause}.

Referring to ACE+ and ACE−, consider an action a ∈ A
and let ⟨ve1 , . . . , vem⟩ be a topological ordering of the m
vertices of GT

a (where vei denotes a CE ei of a). Ace+
a has

an action a+ei for each vertex vei of Ga such that

pre(a+ei) = cond(ei) ∪ {di−1,a}
post(a+ei) = {⟨∅, eff(ei) ∪ {di,a,¬di−1,a}⟩}.

ACE−
a contains the set of actions {alei | l ∈ cond(ei)}, one

for each literal, such that vei is a vertex of Ga and

pre(alei) = {di−1,a,¬l}
post(alei) = {⟨∅, {di,a,¬di−1,a}⟩}.

Each action in ACE+ ∪ ACE− ∪ Aend has cost 0, while each
action in Astart has cost equal to cost(a).

The presented compilation transforms actions with CEs
and simple actions without distinction, even though the lat-
ter do not necessitate such processing. However, the compi-
lation can be enhanced by ignoring the simple actions.

Theorem 1 (Problem Equivalence for τAP
SP ). Let Π be an

acyclic planning problem. Π is solvable iff so is τAP
SP (Π).

Proof. (τAP
SP (Π) is solvable ⇒ Π is solvable) Let

π′ be any solution plan for τAP
SP (Π). By construc-

tion of τAP
SP (Π), π′ is formed by m sub-sequences

⟨⟨a11, . . . , a
k1
1 ⟩, . . . , ⟨a1m, . . . , akm

m ⟩⟩ where each sub-
sequence ⟨a1i , . . . , a

ki
i ⟩, hereafter denoted as π′(i), consists

of simple actions generated by τAP
SP , referring to the orig-

inal action ai ∈ A. Specifically, a1i = astart
i ∈ Astart,

aki
i = aend

i ∈ Aend, while all the intermediate actions
aji , with j ∈ {2, . . . , ki − 1}, belong to ACE+

ai
∪ ACE−

ai
.

Let π = ⟨a1, . . . , am⟩ be the sequence of actions in
A obtained from π′ by replacing each π′(i) with the
associated ai. Moreover, let τ = ⟨I = s0, . . . , sm⟩ and
τ ′ = ⟨I ′ = s′0, . . . , s

′
m⟩ be the state trajectories generated

by iteratively applying π and π′, respectively, where τ ′ is
generated considering the sub-sequences of π′ as if they
were single actions. In the following, we prove that for each
i ∈ {0, . . . ,m}, si and s′i are equivalent w.r.t. F , writing
this as si ≡F s′i. The proof is by induction on i.

For the base case (i = 0), we observe that the atoms
of τAP

SP (Π) extend those from Π, and I = I ′, resulting in
s0 ≡F s′0. For the inductive step, we assume the statement
holds for any i < |τ | and prove it for i + 1. Since si ≡F s′i
by the inductive hypothesis, and astart

i is applicable in s′i, we
have that ai is also applicable in si (pre(ai) ⊂ pre(astart

i )). In
the continuation of the proof, we focus on the intermediate
actions belonging to ACE+ since those belonging to ACE− do
not affect the atoms F . Let aji with j ∈ {2, . . . , ki−1} be an
intermediate action in π′(i), associated to a CE e ∈ post(ai),
that affects the state w.r.t. to F , i.e., aji = a+e ∈ ACE+

ai
, and

let F e = atoms(cond(e)). Let s′′ be an intermediate state
between s′i and s′i+1 in which aji is applied. Since all the in-
termediate actions in π′(i) are properly sorted according to
a topological ordering of GT

ai
to obtain an interference-free

sequence of actions, we know that s′i ≡F e s′′. Moreover,
the truth values of atoms(eff(e)) in s′′[aji ] persist until s′i+1
is reached, otherwise, there would be at least a pair of con-
flicting CEs in ai. Since si ≡F s′i (inductive hypothesis) and
s′i ≡F e s′′, si ≡F e s′′. Therefore, the effect e of ai is ac-
tivated in si, modifying in si+1 the truth values of atoms in
F as aji does in s′′[aji ]. If we extend this reasoning to every
intermediate actions in π′(i), it follows that si+1 ≡F s′i+1.
(Π is solvable⇒ τAP

SP (Π) is solvable) Let π = ⟨a1, . . . , am⟩
be any solution plan for Π. From π, we can derive a solu-
tion π′ for τAP

SP (Π) by replacing each action ai with the sub-
sequence ⟨a1i , . . . , a

ki
i ⟩ of simple actions as defined earlier.

We proceed as done for the opposite direction, i.e., consider-
ing τ and τ ′ generated by π and π′, and showing their equiv-
alence w.r.t. F , and that each state in τ ′ implies ¬pause.

For the case base, again, we know that I = I ′, so
s0 ≡F s′0 and moreover s′0 |= ¬pause. For the inductive
step, we assume that si ≡F s′i and s′i |= ¬pause. Since π
is a valid plan, we know that si |= pre(ai). It follows that
a1i = astart

i is applicable as pre(astart
i ) = pre(ai)∪{¬pause}.

Then, to show that the remaining sequence converges to a
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state s′i+1 that is equivalent to si+1 w.r.t. F , we can use a
similar argument as we did in the opposite direction. In par-
ticular, for every e ∈ post(ai) such that si |= cond(e), in
π′(i) there is an intermediate action aji = a+e ∈ ACE+ that
produces the same effect as e does. Furthermore, for every
e ∈ post(ai) such that si ̸|= cond(e), in π′(i) there is an
action aji = ale ∈ ACE− that has no effect on the F atoms.
Finally, the last intermediate action of π′(i) makes aend

i the
only applicable action, and this action makes pause false. It
follows that s′i+1 ≡F si+1 and s′i+1 |= ¬pause.

Transformation to Acyclic Planning Problems
The problem of finding the smallest set of vertices in a di-
rected cyclic graph, whose removal makes the graph acyclic,
is known as the problem of finding a minimal feedback ver-
tex set (MFVS) (Younger 1963). In our context, where the
graph vertices represent CEs, we reformulate MFVS as the
problem of finding a minimal feedback propositional set.
Definition 5 (Minimal Feedback Propositional Set). A min-
imal feedback propositional set (MFPS) of an action a is
the smallest set of atoms that appear in the conditions of
the effects post(a) such that, if we remove from these condi-
tions all literals involving these atoms, the effect interference
graph Ga becomes acyclic.

Let a ∈ A, and let MFPS(a) denote a MFPS for a. The core
idea of τCP

AP is to use MFPS(a) to remove the cyclic effect
interferences in a by (i) substituting, in the effects condi-
tions of a, all literals involving atoms in MFPS(a) with fresh
atoms, and (ii) enforcing that such literals are true if and only
if so are the original literals. To do so, the problem is ex-
tended with a twin atom tp for each atom p ∈ MFPS(a). The
purpose of twin atoms is to track the truth value of the cor-
responding original atoms. The truth values of twin atoms
related to action a are set by an additional setup action for a.
The truth is determined by the truth of the atoms in the state
where a is applied. Each revised action is then enforced to
be executed immediately after its setup action, allowing safe
evaluation of the CEs’ conditions in the action.

More precisely, given a planning problem Π =
⟨F,A, I,G⟩, the transformation τCP

AP (Π) = ⟨F ′, A′, I, G′⟩
of Π is defined as follows:

F ′ = F ∪
⋃
a∈A

{tp | p ∈ MFPS(a)} ∪
⋃
a∈A

{runa} ∪ {set}

A′ = {asetup | a ∈ A} ∪ {arun | a ∈ A}
G′ = G ∪ {¬set} ∪ {¬runa | a ∈ A}

where asetup and arun are defined as:

pre(asetup) = pre(a) ∪ {¬set}

eff(asetup) =
⋃

p∈MFPS(a)

{⟨{p}, {tp}⟩, ⟨{¬p}, {¬tp}⟩, ⟨∅, {runa, set}⟩}

pre(arun) = {runa}

eff(arun) =
⋃

e∈post(a)

{⟨S(cond(e), a), eff(e)⟩} ∪ {⟨∅, {¬runa,¬set}⟩}

where S(c, a) is a function substituting in a set of literals
c each atom p ∈ MFPS(a) with the twin atom tp. That is,

S(c, a) = {θ(l, a) | l ∈ c}, with

θ(l, a) =

tp if l = p ∈ MFPS(a)

¬tp if l = ¬p and p ∈ MFPS(a)

l otherwise.

To preserve the plan cost, τCP
AP assigns a cost of 0 to all

actions a ∈ Arun, while actions in Asetup are given the same
cost as the original domain actions from which they are gen-
erated.

τCP
AP generates a planning problem that is equivalent to the

original one in terms of its solutions.

Theorem 2 (Problem Equivalence for τCP
AP ). Let Π be a clas-

sical problem with CEs. τCP
AP (Π) is solvable iff so is Π.

Proof Sketch. Given a valid plan π for Π, we can derive a
valid plan π′ for τAP

SP (Π) by replacing each action a ∈ A in
π with the corresponding pair of actions ⟨asetup, arun⟩, where
asetup ∈ Asetup and arun ∈ Arun in τAP

SP (Π). This is because,
given a state, and by the construction of τAP

SP (Π), the appli-
cation of ⟨asetup, arun⟩ is equivalent to applying a and yields
the same outcome. More in detail, asetup does not affect the
atoms F and copies the truth values of a subset of F (pos-
sibly empty if Ga is acyclic), i.e., MFPS(a), into their twin
atoms F a = {tp | p ∈ MFPS(a)}. Additionally, arun has the
same CEs of a, except for a subset of them (possibly empty if
Ga is acyclic), where cond(e) is defined over the atoms F a.
Since the values of F a are synchronised with F by asetup,
the application of arun updates the state consistently with a.

Likewise, we can derive a plan π for Π from a valid plan
π′ for τCP

AP (Π) by replacing each pair of actions ⟨asetup, arun⟩
with their corresponding original action a ∈ A from Π. To
demonstrate the validity of π, we can use a similar argument
as that used in the opposite direction.

The full compilation of a cyclic planning problem Π
into a classical planning problem Π′ without CEs consists
of chaining the two proposed transformations, i.e., Π′ =
τAP

SP (τ
CP
AP (Π)). By Theorems 1–2 and the relative proofs, it

is easy to see that the following corollary also holds:

Corollary 1. Let Π be a classical problem with CEs.
τAP

SP (τ
CP
AP (Π)) is solvable iff so is Π.

As finding a MFVS is NP-COMPLETE, so is finding
a MFPS. This makes τCP

AP expensive when actions have
many CEs. To overcome this issue, in what follows we
over-approximate MFPS preserving Theorems 1-2. Figure 1
presents the algorithm, which works as follows: it iteratively
removes vertices from the effect interference graph Ga of
the input action a, until Ga becomes acyclic, and returns
in output all atoms in the set of literals cond(e) for every
removed vertex ve. At each iteration, one of the strongly
connected components of Ga (SCCs(Ga)) with at least two
vertices is randomly selected, if available. 1 Then, from this
component, we heuristically select a vertex that corresponds
to a CE involved in the largest number of interferences while
limiting the number of atoms that it contributes to the output

1SCCs(Ga) can be computed by Tarjan’s algorithm in linear
time w.r.t. the size of Ga (Tarjan 1972).
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Algorithm 1: Computing a size-approximated MFPS.

Input: Action a
Output: A set of atoms

1: R← ∅
2: Ga ← build the effect interference graph of a
3: while true do
4: T ← {g | g = ⟨V,E⟩ ∈ SCCs(Ga) and |V | > 1}
5: if T = ∅ then
6: break
7: end if
8: g = ⟨V,E⟩ ← a random element from T

9: u← argmaxve∈V
in(ve)+out(ve)

|cond(e)|
10: R← R ∪ {u}
11: remove u from Ga

12: end while
13: return atoms(

⋃
ve∈R

{l | l ∈ cond(e)})

(approximated) MFPS. Formally, the selected vertex max-
imises the ratio between the sum of the ingoing (in(ve))
and outgoing (out(ve)) edges of the vertex and the num-
ber of literals in the condition of the effect that it represents
(cond(e)).

Hereinafter, we will refer to the pipeline of τCP
AP and τAP

SP
as COCOA (COmpiling COnditional effects Away).

Related Work
Planners support CEs through compilation (as in our pro-
posal) or natively with a custom search. In the first case, two
compilations have been proposed. The first method, referred
to as GKCOMP, was introduced by Gazen and Knoblock
(1997). It replaces each action with a set of actions, one for
each possible subset of CEs. These actions ensure that only
the associated CEs are activated. While relatively straight-
forward to implement, this method exhibits worst-case ex-
ponential behaviour due to the powerset size of CEs.

The second compilation was proposed by Nebel (2000),
and here it will be indicated with NCOMP. This approach
breaks down each action a with CEs into a set of actions
that must be executed in a sequence determined by the state
in which a is applied. This sequence comprises two phases.
The first one is the evaluation phase that evaluates which
CEs have been activated. In detail, for each e ∈ post(a),
the execution of exactly one of the following actions is en-
forced: one for when e is activated, and another one for when
it is not. These actions do not immediately affect the state,
and this task is delegated to a subsequent sequence of copy-
ing actions that modify the state based on which CEs were
activated during the evaluation phase. While NCOMP over-
comes the exponential worst-case complexity of GKCOMP,
it increases the length of valid plans polynomially. Nebel
(2000) uses this as a theoretical tool to study under which
condition CEs can be compiled away.

Similar to NCOMP, our compilation approach (COCOA)
breaks down each action into a set of simpler actions.
However, it achieves this by analysing the inherent struc-
ture of the CEs. This analysis enables COCOA to gener-

ate a more concise encoding. Firstly, COCOA simultane-
ously evaluates and updates the affected atoms. In contrast,
NCOMP decouples these phases, which significantly impacts
the plan’s size. Secondly, utilising the interference graph,
COCOA produces simple actions ordered upfront. Therefore,
unlike NCOMP, the actual permutation of these actions is
not a choice of the planner. Moreover, COCOA adds only
the necessary atoms to eliminate cycles, and the inclusion of
atoms for enforcing a total order among actions has a more
limited impact. Naturally, COCOA introduces an overhead
during pre-processing. Indeed, we have noted that achiev-
ing optimal acyclicity for the CEs would require solving
an NP-COMPLETE problem (Karp 1972). Our greedy al-
gorithm approximates the optimal solution by employing a
heuristic that selects the most promising arc for removal.
This approach bears some similarity to the work by Lin
and Jou (2000). We expect this reasoning to pay off against
NCOMP’s approach and will test it experimentally.

The concept of sequencing compiled actions to make
more efficient compilation is not entirely new and it is often
used as a part of the compilation outcomes (e.g., Ceriani
and Gerevini 2015; Torres and Baier 2015); Hoffmann et al.
(2006) already suggested to sequence the NCOMP actions.

State-of-the-art planners are mostly based on state-space
heuristic search, and so, significant effort has been devoted
to devising novel heuristic estimates sensitive to CEs. In op-
timal planning, efforts have been devoted to extend the LM-
cut heuristic (Helmert and Domshlak 2009). Keyder, Hoff-
mann, and Haslum (2012) and Röger, Pommerening, and
Helmert (2014) both contribute to this research direction.
More general in scope, Haslum (2013) proposes an incre-
mental compilation approach to solve optimal delete-free
relaxation for problems with CEs. This approach first tries
to solve a relaxed problem compiled through a simplified
transformation inspired by NCOMP, and in case of failure, it
performs an incremental exponential compilation of a subset
of CEs, relaxing the remaining ones. This procedure degen-
erates, in the worst case, into the GKCOMP compilation.

Another attempt worth to be mentioned is the work by
Katz (2019), which extended the red-black planning frame-
work (Domshlak, Hoffmann, and Katz 2015) to support
problems with CEs. The author generalises the definition of
invertibility of a variable, showing that red-black planning
for tasks with DAG black causal graphs remains a tractable
task even if they have CEs. This generalisation allows one to
derive informed (yet non-admissible) heuristics.

Native approaches for handling CEs do not alter the
problems’ size but they only work within specific heuris-
tic frameworks. This likely contributes to the limited na-
tive CEs support in modern planners. As a result, progress
towards efficiently managing CEs has not kept pace with
the advancements seen in classical planners. We remark
that compilation approaches also serve as an inspiration for
crafting relaxation-specific heuristics (Haslum 2013; Röger,
Pommerening, and Helmert 2014) and, similarly, we argue
that our compilation method can inspire newer relaxation-
s/heuristics handling directly CEs, too.
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Experimental Analysis
We compared our compilation (COCOA) with
those provided by Gazen and Knoblock (1997)
(GKCOMP) and Nebel (2000) (NCOMP). (Source code:
https://gitlab.com/EdmondDantes/cocoa2.0.) We conducted
experiments with planning problems generated from these
compilations in the optimal setting because the method-
ologies for handling CEs in planners are less explored
and established in this context. Therefore, we believe that
COCOA can play a significant role in this scenario.

Specifically, we considered two classes of optimal plan-
ners. The first class comprises A⋆ (Hart, Nilsson, and
Raphael 1968) run either with hLM-cut (Helmert and Domsh-
lak 2009), i.e., A⋆(hLM-cut), or with the hmax heuristic
(Haslum and Geffner 2000), i.e., A⋆(hmax). The second class
involves two relevant planners from the Ninth International
Planning Competition (IPC-18), i.e., COMPLEMENTARY2
(Franco et al. 2018) based on symbolic PDBs (Franco et al.
2017), and METIS2 (Alkhazraji et al. 2014; Sievers and Katz
2018). The use of the first class of planners aims at mea-
suring the impact of the compilation on search with pre-
cision, minimising any external noise stemming from the
specific configuration of the system. The use of the sec-
ond class of planners is motivated by the intent of assess-
ing how much a fully equipped system can be influenced by
the chosen compilation schema. Specifically, COMPLEMEN-
TARY2 is the fastest non-portfolio planner from the IPC-
18, while METIS2 is selected primarily for its ability to
exploit symmetries in planning (Domshlak, Katz, and Sh-
leyfman 2012). This capability allows METIS2 to handle
Nebel’s compilation more efficiently than other planners, as
NCOMP introduces numerous symmetries in the compiled
problem. All planners used in our experiments are based on
the Fast Downward planning system (Helmert 2006). More-
over, for the sake of evaluation, we also compared all com-
pilations against planners supporting CEs natively, denoted
with PLAIN in the problem formulation. For PLAIN and for
the first class of planners, we use the standard hmax im-
plementation that already supports CEs and the CEs-aware
variant of hLM-cut (Röger, Pommerening, and Helmert 2014).
We also did our best to implement NCOMP as faithfully
as possible to what was proposed by Nebel (2000). (Note
that, ADL2STRIPS’s current implementation of NCOMP only
works for non-interfering CEs.)

Benchmarks. We collected domains with CEs from differ-
ent sources: Fast Downward benchmark collection (https://
github.com/aibasel/downward-benchmarks), problems gen-
erated by conformant-to-classical planning compilations
(Palacios and Geffner 2009; Grastien and Scala 2017). Ad-
ditionally, we also included domains used in the work
by Röger, Pommerening, and Helmert (2014). From the
collected benchmarks we excluded domains with conflict-
ing CEs. This is the case for all domains deriving from
the finite-state controller synthesis (Bonet, Palacios, and
Geffner 2009). In our experiments, each test run is speci-
fied by the combination of a planner, a compilation method,
and a planning problem from our benchmarks suite. With
PLAIN, for instance, the compilation time is zero, whereas

Figure 1: Expanded nodes (left) and Runtime (right) for CO-
COA vs GKCOMP (top) and COCOA vs NCOMP (bottom).

with COCOA, GKCOMP and NCOMP, compilation time de-
pends on the specific instance and may not be negligible at
all. Each run firstly compiles the problem and then gives
the generated output to the desired off-the-shelf planner. We
give a budget of 1800 seconds of runtime, 8 GB of mem-
ory for each run (compilation plus solving) and 2 GB of
disk space. The experiments were run on an Intel Xeon Gold
6140M CPU with 2.30 GHz.

Results
Table 1 shows the coverage obtained by each system with a
given compilation. Together with this information, we also
present the coverage for the Virtual Best Solver, both consid-
ering an individual planner (LVBS, where L stands for local)
and all systems (VBS). The fail row shows the number of
problems that did not pass Fast Downward’s preprocessing.

Comparison Among Compilations. Observing Table 1,
it is evident that COCOA consistently achieves more cover-
age than GKCOMP and NCOMP, except for COMPLEMEN-
TARY2, where GKCOMP behaves better. The overall best
configuration is COCOA with METIS2.

Figure 1 shows the number of expanded nodes and run-
time comparing GKCOMP vs COCOA (upper), and NCOMP
vs COCOA (lower). The scatter plots encompass all planners,
with points grouped based on the average number of CEs per
operator, denoted as navg. The buckets are: TINY (navg ≤ 2),
SMALL (2 < navg ≤ 4), MEDIUM (4 < navg ≤ 6), BIG
(6 < navg ≤ 8), and HUGE (navg > 8). The general trend
is that GKCOMP expands fewer nodes than COCOA. By a
closer examination of our raw experimental data, we note
that the points above the bisector are always associated with
hLM-cut. This result is not surprising, considering that GK-
COMP preserves the plan length (Nebel 2000), while CO-
COA extends it by a polynomial factor. Additionally, despite
GKCOMP leading to the expansion of fewer nodes, the run-
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A∗ Search Planning System
BVS

A∗(hmax) A∗(hLM-cut) COMPLEMENTARY2 METIS2
C N G P BVLS C N G P BVLS C N G P BVLS C N G P BVLS

Σ (1608) 529 132 478 650 650 742 212 541 828 892 617 101 649 703 825 860 316 687 596 971 1045
fail 0 0 0 0 — 15 0 0 339 — 0 0 0 0 — 0 0 0 341 — —

Table 1: Coverage for all planners under different problem formulations. “C” stands for COCOA, “N” for NCOMP, “G” for GK-
COMP and “P” for “PLAIN”. Bold is for best in a given planning system, and the underlined bold is the best across all planning
systems and problem formulations. fail denotes the number of problems that did not pass Fast Downward’s preprocessing.

Planner PF COCOA NCOMP GKCOMP PLAIN

A∗(hmax)
COCOA — 397 89 0
NCOMP 0 — 3 0

GKCOMP 38 349 — 0
PLAIN 123 520 174 —

A∗(hLM-cut)
COCOA — 534 252 40
NCOMP 4 — 3 23

GKCOMP 51 332 — 52
PLAIN 128 641 341 —

COMPL2
COCOA — 516 81 72
NCOMP 0 — 1 15

GKCOMP 113 549 — 103
PLAIN 159 618 158 —

METIS2
COCOA — 544 256 319
NCOMP 0 — 28 74

GKCOMP 83 399 — 138
PLAIN 55 354 47 —

Table 2: Complementarity analysis. Given a planner, entry
⟨x, y⟩ denotes the problems solved by x (row) not solved by
y (column). PF stands for Problem Formulation.

Figure 2: Percentage of times one formulation was faster
than all others for each BVLS of a given planner.

time is significantly affected, especially with an increasing
number of CEs (bearing in mind that GKCOMP is exponen-
tial in the number of CEs). Consequently, as the number of
CEs increases, points tend to shift above the bisector, indi-
cating a preference for COCOA. In contrast, GKCOMP tends
to exhibit faster performance on smaller instances.

COCOA consistently outperforms NCOMP; this is some-
what expected since NCOMP was primarily designed for the-
oretical purposes, while COCOA aims to provide efficient
compilation. Instances generated by NCOMP are, on aver-
age, 6.2 times larger than those generated by COCOA in
terms of the number of actions (min. and max. increases of
1.9 and 19.7, respectively), and 4.1 times larger in terms of
atoms (min. and max. increases of 2.9 and 8.9, respectively).

Comparison with Native Support. Table 1 shows that the
native approach is generally faster. Conversely, METIS2 per-
forms better with COCOA than with the original formulation,
achieving performance slightly better than that of hLM-cut.

To gain a deeper insight into the impact of different con-
figurations, we investigated the relationship between com-
pilation and native approaches. Our primary objective was
to ascertain whether the systems under consideration solve
distinct problem sets that do not overlap, or if one method
dominates the others. We did so with a pairwise compari-
son among all systems, and by measuring, for each planner,
which formulation enables finding a solution more quickly.

Table 2 summarises the pairwise comparison as follows.
Each ⟨x, y⟩ entry of the table indicates the number of prob-
lems solved by x (row) that have not been solved by y (col-
umn). By examining the PLAIN column for each planner,
we can evaluate the extent of complementarity between the
compilation methods and the native approaches. Notably, in
the case of hmax, no complementarity is observed, indicat-
ing a clear dominance of the native approach. Conversely,
for hLM-cut and COMPLEMENTARY2, we observe a moderate
level of complementarity. A strong level of complementar-
ity is instead observed for METIS2, in particular when com-
paring COCOA and PLAIN. Figure 2 shows, for each BVLS
obtained for a specific planner, the percentage of times each
formulation allows us to find a solution faster than all the
others. A⋆(hmax) and A⋆(hLM-cut) are mainly dominated by
PLAIN, and in the first case, dominance is almost total. Glob-
ally, as the complexity of the planning system grows, it can
be observed that COCOA and GKCOMP provide a signifi-
cant contribution to achieve better performance, especially
for METIS2. NCOMP’s contribution is instead negligible.

Conclusions

We have presented a polynomial technique for compiling
CEs away in classical planning problems. The compilation is
inspired by an early idea by Nebel (2000), but extends it sub-
stantially starting from the observation that CEs exhibits a
structure which can be characterised using a directed graph.
We have shown how to exploit such a structure obtaining
a much more effective compilation. Specifically, our com-
pilation removes some branching points during the search
whilst preserving soundness and completeness. Moreover,
in practice, the new compilation requires fewer actions and
atoms. These improvements make the search much lighter.
An experimental analysis demonstrates the practical advan-
tages of the proposed technique, which, overall, unlocks the
use of optimal planning engines over a much larger class of
instances, exhibiting performances on par and complemen-
tary with engines supporting CEs directly during the search.
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