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Abstract

In this paper, we present approximate distance and shortest-
path oracles for fault-tolerant Euclidean spanners motivated
by the routing problem in real-world road networks. A fault-
tolerant Euclidean spanner for a set of points in Euclidean
space is a graph in which, despite the deletion of small num-
ber of any points, the distance between any two points in the
damaged graph is an approximation of their Euclidean dis-
tance. Given a fault-tolerant Euclidean spanner and a small
approximation factor, our data structure allows us to compute
an approximate distance between two points in the damaged
spanner in constant time when a query involves any two points
and a small set of failed points. Additionally, by incorporating
additional data structures, we can return a path itself in time
almost linear in the length of the returned path. Both data
structures require near-linear space.

Introduction
Computing the shortest path in a graph is a fundamental
problem motivated by potential applications such as GPS
navigation, route planning services and POI recommendation
for real-world road networks. Although the shortest path can
be computed by Dijkstra’s algorithm, it is not sufficiently effi-
cient if the given graph is large. This requires us to preprocess
a given graph so that for two query vertices, their shortest
path can be computed more efficiently. A data structure for
this task is called a shortest-path (or distance) oracle.

From the theoretical viewpoint, this problem is not an
easy task. More specifically, any data structure for answer-
ing (2k + 1)-approximate distance queries in O(1) time for
n-vertices graphs must use Ω(n1+1/k) space assuming the
1963 girth conjecture of Erdős (Thorup and Zwick 2005). On
the other hand, there are algorithms for this task that work
efficiently for real-world road networks in practice such as
contraction hierarchies (Kuhn et al. 2005), transit nodes (Bast
et al. 2007), and hub labels (Abraham et al. 2011). Although
these algorithms work well in practice, there is still a lack of
theoretical explanation for this. Bridging this theory-practice
gap is one of interesting topics in computer science. Indeed,
there are lots of works on bridging the theory-practice gap
in the routing problems such as (Blum, Funke, and Storandt
2018; Kosowski and Viennot 2017; Abraham et al. 2016).
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Motivation. In real-life situations, networks might be vul-
nerable to unexpected accidents: edges or vertices might be
failed, but these failures are transient due to a repair process.
As the network is large, we cannot afford to construct the
entire data structure from scratch. This motivates the study
of fault-tolerant distance and shortest-path oracles on vul-
nerable networks: preprocess a graph G = (V,E) so that
for any set F of f failed vertices (or edges) of G and two
query vertices s and s′, we can compute a shortest path in
G− F between s and s′ efficiently. A data structure that can
handle failed vertices (or edges) is said to be fault-tolerant.
The theoretical performance of a fault-tolerant data structure
is measured by a function of the number n of vertices of an
input graph and the maximum number f of failed vertices.

Although this problem is natural, little is known for ver-
tex failures while there are lots of work on edge failures.
To the best of our knowledge, there is the only published
result on (approximate) distance oracles for general graphs in
the presence of vertex failures: an O(n2)-sized approximate
distance oracle answering queries in polylog(n) time in the
presence of a constant number of vertex failures (Duan, Gu,
and Ren 2021). On the other hand, there are lots of theoretical
results on (approximate) distance oracles for general graphs
in the presence of edge failures (Bodwin et al. 2018; Chechik
et al. 2017; Ren 2022). Dynamic graphs whose edge weights
change over time also have been studied from a more prac-
tical point of view (Ouyang et al. 2020; Zhang et al. 2021;
Zhang, Li, and Zhou 2021). In this case, vertex updates (and
vertex failures) are not allowed.

This raises an intriguing question: Can we design an ef-
ficient oracle for handling vertex failures? The size of the
best-known oracle is O(n2), which is still large for practical
purposes. In real-life situations, vertices as well as edges are
also prone to failures. A bus map can be considered as a
graph where its vertices correspond to the bus stops. A bus
stop can be closed due to unexpected events, and then buses
make detours. This changes the bus map temporarily. To ad-
dress this scenario, we need vertex-fault tolerant oracles. In
this paper, we design a new efficient oracle for answering
approximate distance and shortest-path queries for real-world
road networks from a theoretical point of view.

Similar to the static case, there is a huge gap between the-
ory and practice in the dynamic settings: theoretical solutions
are not efficient in general while practical solutions do not
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Kernel oracle Distance oracle Path-Pres. Kernel oracle Shortest-Path oracle

Space h(t, f, ε)(n log n) h(t, f, ε)(n log2 n log log n)

Construction time h(t, f, ε)(n log2 n) h(t, f, ε)(n2 log2 n)

Query time
Moderately Far O(t8f4) O(t8f4 log3(tf/ε) log2 n) O(f4 log2 n log log n+ sol)

General - O(t8f4) - O(f4 log2 n log log n+ f · sol)

Table 1: Performance of our oracles. h(t, f, ε) = exp(O(f log(tf/ε))) and sol is the number of vertices of the reported path.

give theoretical explanation why they work efficiently. Re-
searchers also tried to bridge the theory-practice gap. For
instance, (Ouyang et al. 2020) gave a shortest-path oracle for
dynamic road networks with theoretical guarantees together
with experimental evaluations. Their theoretical guarantees
partially explain why their result works efficiently. In partic-
ular, they analyzed the performance of their oracle in terms
of the size of an input graph and some parameter depending
on their construction algorithms. Then they showed that this
parameter is small for real-world road networks. This still
does not tell us why this parameter is small in practice, and
the definition of the parameter does not look intuitive as it
depends on their algorithms. Instead, we choose a different
approach to bridge the gap between theory and practice from
a more theoretical point of view in a more classical method:
first define a theoretical model for real-world road networks,
and then design an oracle on this theoretical model.

Due to lack of space, some proofs and details are omitted
in the conference version of this paper. All missing proofs
and details can be found in the full version of this paper.

Theoretical model. A geometric graph is a graph where
the vertices correspond to points in Rd and the weight of
each edge is the Euclidean distances between the endpoints
of the edge. Let V be a set of n points in Rd for a constant
d ≥ 1. A geometric graph G = (V,E) with |E| = O(|V |)
is called a Euclidean t-spanner of V if the distance in G
between any two vertices is at most t times the Euclidean
distance of their corresponding points. More generally, a
geometric graph G = (V,E) with |E| = fO(1)|V | is an
f -fault-tolerant Euclidean t-spanner if the distance in V −F
between two vertices u and v is at most t times the Euclidean
distance between u and v for any set F of at most f vertices
of G. Here, we call the vertices of F the failed vertices.

Lots of road networks can be represented as Euclidean t-
spanners for a small constant t. For instance, a southern Scan-
dinavian railroad network is a 1.85-spanner (Narasimhan and
Smid 2007). Thus it is reasonable to use a fault-tolerant Eu-
clidean spanner as a theoretical model for our purposes (Som-
mer 2014). Apart from this, Euclidean spanners have various
applications such as pattern recognition, function approx-
imation and broadcasting systems in communication net-
works (Narasimhan and Smid 2007). Due to its wide range
of applications, many variations of fault-tolerant Euclidean
spanners have been studied extensively (Abam et al. 2009;
Levcopoulos, Narasimhan, and Smid 1998, 2002; Bose et al.
2013; Buchin, Har-Peled, and Oláh 2020, 2022; Filtser and
Le 2022). For static Euclidean spanners without vertex/edges
failures, (Gudmundsson et al. 2008; Oh 2020) showed that a

Euclidean spanner admits an efficient approximate distance
oracle. Their oracle has size O(n log n) and answers approx-
imate distance queries in O(1) time.

Our result. In this paper, we present the first near-linear-
sized approximate distance and shortest-path oracle special-
ized for fault-tolerant Euclidean spanners. More specifically,
given a fault-tolerant Euclidean t-spanner with constant t and
a value ε, we present a near-linear-sized data structure so
that given two vertices s, s′ and a set F of at most f failed
vertices, an (1 + ε)-approximate distance between s and s′
in G−F can be computed in poly{f, t} time. Moreover, we
can report an approximate shortest path π in time almost lin-
ear in the complexity of π. The explicit bounds are stated in
Table 1. Our oracle is significantly more compact compared
to the quadratic-sized distance oracle (Duan, Gu, and Ren
2021) for general graphs.

We only consider spanners constructed in a two-
dimensional Euclidean space. However, our ideas can be
extended to a general d-dimensional Euclidean space without
increasing the dependency on n in the performance guaran-
tees. We provide a sketch of this extension in the appendices.

Related work. Although nothing is known for (approxi-
mate) distance oracle specialized for fault-tolerant Euclidean
spanners, designing fault-tolerant structures is a popular topic
in the field of algorithms and data structures. Fault-tolerant
structures have received a lot of interests over the past few
decades. In general, there are two types of problems in the
research of fault-tolerant structures. For the first type of prob-
lems, the goal is to process a given graph G = (V,E) which
can have failed vertices (or edges) so that for a set F of failed
vertices (or edges) given as query, it can efficiently respond
to several queries on the subgraph of G induced by V − F
(or E − F ). Various types of queries have been studied, for
instance, reachability queries (van den Brand and Saranurak
2019), shortest path queries (Bodwin et al. 2018; Charalam-
popoulos, Mozes, and Tebeka 2019; Duan, Gu, and Ren
2021; Ren 2022; van den Brand and Saranurak 2019), diame-
ter queries (Bilò et al. 2021), and k-paths and vertex cover
queries (Braverman 2022). The problem we consider in this
paper also belongs to this type of problems. For the second
type of problems, the goal is to compute a sparse subgraph H
of a given graph G so that for any set F of failed vertices (or
edges), H − F satisfies certain properties. For instance, the
problems of computing sparse fault-tolerant spanners (Bilò
et al. 2015; Chechik et al. 2009; Czumaj and Zhao 2004;
Dinitz and Krauthgamer 2011; Dinitz and Robelle 2020;
Parter 2022) and fault-tolerant distance preservers (Bodwin
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et al. 2020) have been widely investigated.

Preliminaries
For a graph G = (V,E) and two vertices u and v of G, let
πG(u, v) be a shortest path between u and v within G, and
dG(u, v) be the distance between u and v in G. An (1 + ε)-
approximate distance between u and v of G is defined as any
value ` lying between dG(u, v) and (1 + ε)dG(u, v). Here,
there does not necessarily exist a path in G of length exactly
`, but it can be considered as a good estimate of the distance
between u and v. Analogously, an (1 + ε)-approximate short-
est path between u and v inG is a path inG of length at most
(1 + ε)dG(u, v).

For two points p and q in a Euclidean space, let |pq| be the
Euclidean distance between p and q. With a slight abuse of
notation, we use |γ| to denote the length of a path γ of G (the
sum of the weights of the edges of γ). Note that a path in a
graph is a sequence of adjacent edges, and equivalently, it can
be represented by a sequence of incident vertices. For two
numbers a, b ∈ R, we let [a, b] be the closed interval between
a and b. Also, let (a, b] and [a, b) be half-closed intervals
excluding a and b, respectively. In addition, let (a, b) be the
open interval between a and b.

A geometric graphG is called anL-partial f -fault-tolerant
Euclidean t-spanner if dG−F (u, v) ≤ t|uv| for any two
vertices u and v with |uv| ≤ L and any set F of at most f
failed vertices. We say two points s and s′ are moderately
far in G if |ss′| ∈ [ Lm2 ,

L
t ), where m is the number of edges

in G. For two paths γ and γ′, we say γ can be extended to
γ′ if the vertex sequence of γ is a subsequence of the vertex
sequence of γ′. Even if γ and γ′ are from different graphs
H and H ′, respectively, we can define the extension relation
when V (H) ⊆ V (H ′).

In the rest of this section, we introduce four main tools and
concepts used in the design of our data structures.

Generalization Lemmas. The following generalization
lemmas states that once we have oracles on L-partial f -fault
tolerant spanners for moderately far vertices, we can use them
as black boxes to handle a query consisting of any two (not
necessarily moderately far) vertices.

Lemma 1. Assume that for any ε′ > 0, we can construct an
oracle of size hs(n) in hc(n) time on an n-vertices partial
fault-tolerant Euclidean spanner for supporting (1 + ε′)-
approximate distance queries for moderately far vertices and
f failed vertices in T time. Then we can construct an oracle
of size O(hs(f

2n) + f2n) in O(hc(f
2n) + f2n log n) time

for answering (1 + ε)-approximate distance queries for any
ε > 0, two vertices, and f failed vertices in O(f + T ) time.

Lemma 2. Assume that for any ε′ > 0, we can construct an
oracle of size hs(n) in hc(n) time on an n-vertices partial
fault-tolerant Euclidean spanner for supporting (1 + ε′)-
approximate shortest-path queries for moderately far ver-
tices and f failed vertices in T time. Then we can con-
struct an oracle of size O(hs(f

2n) + f2n log2 n log log n)
in O(hc(f

2n) + f2n2 log2 n) time for answering (1 + ε)-
approximate shortest-path queries for any ε > 0, two vertices,

and f failed vertices in O(f4 log2 n log log n+ T + f · sol)
time, where sol is the number of vertices in the returned path.

Note that the parameter L does not appear in the perfor-
mance guarantees. This is because L determines if two ver-
tices are moderately far. In particular, for L = 0, all geomet-
ric graphs are L-partial fault-tolerant Euclidean spanners, but
no two vertices are moderately far. In the following, we let G
be an L-partial f -fault-tolerant Euclidean spanner, and (s, s′)
be a pair of moderately far vertices unless otherwise stated.

Kernel. We call an edge-weighted graph H = (VH , EH)
an (s, s′, F ; ε)-kernel of G if the following hold.

• s, s′ ∈ VH ⊆ V (G),

• dG−F (s, s′) ≤ dH(s, s′) ≤ (1 + ε)dG−F (s, s′), and

• πH(s, s′) can be extended to an (1+ε)-approximate short-
est path between s and s′ in G− F .

We define the size of a kernel as the number of vertices
and edges of the kernel. For an edge uv of H , its weight is
denoted by wH(uv).

Our main strategy is to construct a data structure on a
partial fault-tolerant Euclidean spanner G and a value ε for
computing an (s, s′, F ; ε)-kernel of small complexity for two
vertices s and s′ and a set F of failed vertices given as a
query. We call this data structure a kernel oracle. By the
definition of kernels, once we have an (s, s′, F ; ε)-kernel of
G, we can compute an (1 + ε)-approximate distance between
s and s′ in G − F in time near linear in the complexity of
the kernel by applying Dijkstra’s algorithm to the kernel. For
distance oracles, it is sufficient to construct a kernel oracle
for computing a kernel of small complexity.

However, it is not sufficient for approximate shortest-path
oracles. To retrieve an (1 + ε)-approximate shortest path of
G− F from a shortest path π of a kernel H , we are required
to efficiently compute a path in G− F between u and v of
length wH(uv) for every edge uv of H . Then we can replace
every edge of π with its corresponding path such that the
resulting path becomes an (1 + ε)-approximate shortest path
between s and s′ in G− F . From this motivation, we define
the notion of path-preserving kernels as follows. We say a
(·, ·, F ; ·)-kernel H of G is path-preserving if for every edge
uv with wH(uv) ≤ dH(u, v), at least one of the following
holds:

• dG(u, v) ≤ tL/m6, or

• we can efficiently compute a path in G − F between u
and v of length wH(uv).

Note that an edge u′v′ with wH(u′v′) > dH(u′, v′) does not
appear in any shortest path in H . If dG(u, v) ≤ tL/m6, we
will see that it is sufficient to replace uv with an arbitrary
path between u and v consisting of edge of length at most
tL/m6 to obtain an approximate shortest path in G− F .

Net Vertices. For an r > 0, a set N of vertices of G is
called an r-net if

• dG(u, v) ≥ r for any two net vertices u, v ∈ N , and

• minv∈N dG(x, v) ≤ r for any vertex x ∈ V (G).
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Figure 1: (a) Cross marks failed vertices. The path between
u and v is safe since no failed vertex lies in the gray area. (b)
Illustration of Lemma 3. The path between u and v is weakly
safe, and there is a safe path between net vertices z and z′.

If it is clear from the context, we simply call it a net and call
a vertex in a net a net vertex. We can compute an r-net of G
in O(m+ n log n) time. For a vertex v ∈ V (G) and a value
c > 0, the number of net vertices u with dG(u, v) ≤ cr is at
most 4(c+ 1)2.

Safe Paths and Weakly Safe Paths. In the design of ker-
nel oracles, a key idea is to decompose a shortest path be-
tween s and s′ in G− F into subpaths each of which is safe,
weakly safe, or sufficiently short. We define safe paths and
weakly safe paths as follows. With a slight abuse of nota-
tion, for a path γ in G, we define dG(γ, v) as the minimum
distance in G between vertex v and any vertex on γ. Let
F be a set of failed vertices and (t, r) be a pair of positive
parameters.

• γ is (t, r)-safe if dG(xf , γ) ≥ tr for any xf ∈ F , and
• γ is (t, r)-weakly safe if min{dG(u, xf ), dG(v, xf )} is at

most (2t2 + 3t+ 1)r for any xf ∈ F such that dG(xf , γ)
is at most (1 + t)r, where u, v are two end vertices of γ.

For illustration, see Figure 1. If it is clear from the context,
we omit the parameter (t, r). Note that a safe path γ is not
necessarily weakly safe. There might be a failed vertex xf
such that dG(xf , γ) lies in [tr, (1 + t)r), but dG(u, xf ) and
dG(v, xf ) are both at least (2t2 + 3t+ 1)r.

Let N be an r-net of G. Then the following lemmas hold.
Lemma 3. Assume that all edges of G have length at most
r. Let γ be a (t, r)-weakly safe path between two vertices u
and v in G− F with |γ| ≥ (4t2 + 8t+ 4)r. Then there is a
(t, r)-safe path γ′ between two net vertices z, z′ ∈ N with
dG(u, z), dG(v, z′) ≤ (2t2 + 4t+ 4)r and |γ′| ≤ |γ|.

Lemma 4. Assume that all edges of G have length at most r.
Let u and v be two vertices of G− F such that πG−F (u, v)
is neither (t, r)-safe nor (t, r)-weakly safe. Then there are a
vertex y of πG−F (u, v) and a net vertex z ∈ N such that
• πG−F (u, y) · πG−F (y, z) is (t, r)-weakly safe,
• dG−F (y, z) ≤ (t2 + 2t)r, and
• dG−F (z, v) ≤ dG−F (u, v)− t2r.

Here, γ · γ′ denotes the concatenation of two paths γ and
γ′ having a common endpoint. Notice that πG−F (u, y) is a
subpath of πG−F (u, v), which will be used in the proof of
Lemma 9.

Organization of this paper. Our main ideas lie in the de-
sign of kernel oracles. Once a kernel oracle is given, we
can answer approximate distance queries immediately. Also,
with a path-preserving kernel oracle and an additional data

structure, we can answer approximate shortest-path queries
efficiently. A kernel oracle consists of substructures called
the FT-structures with different parameters. If two net ver-
tices u and v are connected by a safe path γ of length at most
2t|uv|, we can find a path of length at most |γ| between them
using a FT-structure.

In the following, we first describe FT-structures, and then
show how to use it to construct a kernel oracle. Finally, we
describe an approximate distance oracle and an approximate
shortest-path oracle. Recall that G is an L-partial f -fault
tolerant Euclidean t-spanner.

FT-Data Structure
The FT-structure is defined with respect to a pair (u, v) of
net vertices and a parameter W ≤ L. We denote this data
structure by FT(u, v;W ). IfW is clear in the context, we use
FT(u, v) simply to denote it. For a set F of at most f failed
vertices in G with u, v /∈ F , it allows us to compute a path
in G − F between u and v of length at most |γ| efficiently,
where γ is a (t,W )-safe path between u and v in G− F if it
exists. This structure is a modification of the one introduced
in (Chechik et al. 2017). While the work in (Chechik et al.
2017) deals with failed edges, we handle failed vertices. Since
the degree of a vertex can be large, the modification is not
straightforward. Moreover, to reduce the space complexity
of (Chechik et al. 2017) near linearly, we apply two tricks.
While (Chechik et al. 2017) constructs FT(u, v) for every
pair (u, v) of vertices of G, we construct FT(u, v) for every
pair (u, v) of net vertices. In addition to this, we construct the
data structure on the subgraph Ĝ(u, v) of G induced by the
vertices p with max{|pu|, |pv|} ≤ 2t|uv|. We will see that
this is sufficient for our purpose; this is one of main technical
contributions of our paper.

Construction of FT(u, v;W )

The FT-structure for (u, v;W ) is a tree such that each node
α corresponds to a subgraph Gα of Ĝ(u, v) and stores the
shortest path πα between u and v of Gα. Initially, we let
Gr = Ĝ(u, v) for the root node r. In each iteration, we pick
a node α whose children are not yet constructed. We decom-
pose πα into segments with respect to vertices u1, . . . , uk of
πα such that ui is the farthest vertex from u along πα with
|πα[u, ui]| ≤ i · t · W4 , where πα[u, ui] is the subpath in πα
between u and ui.

Then we construct the children of α corresponding to the
segments of πα. Let ηα′ be the segment of πα corresponding
to a child α′ of α. For illustration, see Figure 2. To construct
Gα′ , we first remove all edges and vertices in ηα′ except u
and v from Gα. Also, we additionally remove all vertices p
with dG(uα′ , p) ≤ t · W4 for an arbitrary internal vertex uα′
of ηα′ . In this way, we can obtain Gα′ , and define πα′ as a
shortest path between u and v in Gα′ . If α′ has level (f + 1)
in the tree, u and v are not connected in Gα′ , or πα′ is longer
than 2t|uv|, we set α′ as a leaf node of FT(u, v;W ).

In the full version of the paper, we show that each node
of FT(u, v;W ) has at most 8t|uv|/W children. By construc-
tion, observe that the depth of FT(u, v;W ) is at most (f+1).
Thus, FT(u, v;W ) has (8t|uv|/W )(f+1) nodes. Note that
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Figure 2: A node α of FT(u, v;W ) has three children, where
each child corresponds to a segment of πα. Those segments
are drawn as dotted line segments. The graph Gα′ of each
child α′ is obtained from Gα by removing several vertices
around the corresponding segment (vertices contained in the
dotted disk). Each node stores the shortest path between u
and v on its corresponding graph.

each non-leaf node of FT(u, v;W ) may have more than
two children. To traverse the tree efficiently, we use a two-
dimensional array so that given a vertex p in Ĝ(u, v) and a
node α in FT(u, v;W ), the child node α′ of α with p ∈ ηα′
can be computed in constant time. We call this array the
assistant array of FT(u, v;W ).

Computation of the FT-Path
Given a query of a set F of at most f failed vertices, we
can find a node α∗ of FT(u, v;W ) such that πα∗ does not
contain any vertex of F as follows. We traverse FT(u, v;W )
starting from the root node r. Let α be the current node. If πα
contains at least one failed vertex, we visit one of its children
α′ such that ηα′ contains a failed vertex using the assistant
array of FT(u, v;W ). We repeat this process until we reach
a node α∗ such that either πα∗ contains no failed vertices, or
α∗ is a leaf node. If πα∗ contains no failed vertices, then we
return πα∗ as output. Clearly, the returned path is in G− F .
We call the returned path the FT-path of G− F . Otherwise,
we reach a leaf node, then we do not return any path.
Lemma 5. Given a set F of at most f failed vertices, we
can compute the node of FT(u, v;W ) storing the FT-path of
G− F in O(f2) time, if it exists.

Lemma 6. Let F be a set of at most f failed vertices and
W be a parameter in [4D,L], where D is the longest edge
length in Ĝ(u, v). For two vertices u, v of V − F , the FT-
path obtained from FT(u, v;W ) with respect to F exists if
there is a (t,W )-safe path γ between u and v in G− F with
|γ| ≤ 2t|uv|. Moreover, the FT-path has length at most |γ|.

Kernel Oracle
For a value ε > 0, we construct a kernel oracle that allows
us to compute an (s, s′, F ; ε)-kernel of small complexity for
moderately far vertices s and s′ and a set F of failed vertices
of G. In particular, we can compute a kernel of size O(t8f2)
in O(t8f4) time, and a path-preserving kernel of size
O(t8f2 log(tf/ε′) log2 n) in O(t8f4 log(tf/ε) log2 n)time.
Recall that m = |E| and n = |V |, and m ∈ O(n). For an
overview of the structure of a kernel oracle, see Figure 3.

The kernel oracle consists of several FT-structures with
different parameters (u, v,W ). For this purpose, we first
choose several values for W such that for any two mod-
erately far vertices s and s′, there are at least one value
W ′ with |ss′| ∈ [W ′/2,W ). Recall that for two moder-
ately far vertices s, s′ in G, their Euclidean distance lies in
[L/m2, L/t) ⊆ [L/(2m6), L). We first decompose the inter-
val [ L

2m6 , L) into (6 logm+ 1) intervals [Wi−1,Wi), where
Wi = (2i ·W0) for i ∈ [1, 6 logm+1] withW0 = L/(2m6).
We say two vertices s and s′ are well separated with respect
to W if |ss′| ∈ [W/2,W ). Note that a moderately far ver-
tices are well separated with respect to Wi for at least one
index i ∈ [1, 6 logm+ 1].

Data Structure
Lemma 3 and Lemma 4 hold only when all edges of G have
length at most r. To satisfy this condition, we modify G
by splitting long edges as preprocessing before constructing
the FT-structures. First, we delete the edges in G of length
at least 2L. Since we want to find an (1 + ε)-approximate
shortest path or distance between two moderately far vertices,
those long edges never participate in a path that we have
desired. Next, for each edge e in G of length larger than
(ε′L)/(4m6) with ε′ = ε

500t3(f+1) , we split e into subedges

of length at most ε
′

4Wj , where Wj is the smallest value such
that |e| ∈ [ ε

′

4Wj , 4tWj ]. This process increases the number
of edges by a factor of O(t/ε′). In the following, to avoid
confusion, we use Go to denote the original given graph.
Furthermore, we denote the number of vertices and edges in
G by n and m, respectively.

By construction, it is sufficient to deal with queries of two
vertices s, s′ and a set F of failed vertices in G such that
{s, s′} ∪ F is a subset of V (Go) and |ss′| ∈ [L/m2, L).
That is because [L/m2

o, L) ⊆ [L/m2, L), where mo is the
number of edges in Go. Notice that G is not always a Eu-
clidean t-spanner because of new vertices. However, it has
a weaker property stated as follows. It is not difficult to see
that this property is sufficient for obtaining Lemma 3 and
Lemma 4. Let V(e) be the set of new vertices of G obtained
from splitting an edge e of Go.
Lemma 7. Let u and v be two vertices of G − F with
dG(u, v) ≤ L neither of which is contained in the union
of V(e) for all edges e adjacent to the vertices of F in Go.
Then dG−F (u, v) ≤ t · dG(u, v).

We construct FT(u, v; ε′Wj) for all indices j with j ∈
[1, 6 logm+1] and all net vertex pairs (u, v) of an (ε′Wj)-net
Nj with |uv| ≤ (1+ε)tWj . Here, the netsNj we use must be
aligned, that is, Nj ⊆ Nj′ for any two indices j and j′ with
j ≥ j′. While the work in (Chechik et al. 2017) construct
the FT-structure for all pairs of vertices, we construct the FT-
structure only for pairs (u, v) of net vertices. In this way, we
can improve the space complexity near-linearly. However, it
requires us to design a new algorithm to handle query vertices
that are not net vertices.
Lemma 8. The space complexity of all FT’s and their as-
sistant arrays is (t/ε′)O(f) · n log n. Furthermore, we can
compute all of them in (t/ε′)O(f) · n log2 n time.
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W5 = W`W0 W1 W2 W3

Kernel Oracle (Input: G and ε)

• ε′Wi-Net Ni

• FT(u, v; ε′Wi)
∀(u, v) with |uv| ≤ (1 + ε)tWi

i-th suboracle

1st 4th

• Moderately far vertices (s, s)

• A set F of failed vertices

Query:
Access to the i∗th suboracle:

⇒ small sized (s, s′, F ; ε)-kernel

Access to all suboracles:

⇒ path-preserving (s, s′, F ; ε)-kernel

W4

2nd 3rd 5th suboracles

Figure 3: Overview of a kernel oracle for moderately far vertices.

Kernel Query
Now we describe how to compute an (s, s′, F ; ε)-kernelH of
size O(t8f2) for a pair (s, s′) of moderately far vertices and
a set F of at most f failed vertices given as a query. Let i∗ be
the index such that s and s′ are well separated with respect
to Wi∗ . Here, we look at the FT-structures constructed with
respect to Wi∗ only. For a point x in the plane, let N(x) be
the net vertex in Ni∗ closest to x.

The kernel H is constructed as follows. The vertices of
H are s, s′, N(s), N(s′), and all net vertices u in Ni∗ with
dG(u, F ) ≤ (4t2 + 8t + 5)ε′Wi∗ , where dG(u, F ) is the
minimum of dG(u, xf ) for all xf ∈ F . For two vertices u
and v in V (H), we add uv as an edge of H if the FT-path π
exists for FT(u, v′; ε′Wi∗) with respect to F , or dG(u, v) ≤
(4t2 + 8t+ 5)ε′Wi∗ . For the former case, we set wH(uv) =
|π|. For the latter case, we set wH(uv) = 40t3ε′Wi∗ .
Lemma 9. A (s, s′, F ; ε)-kernel of sizeO(t8f2) can be com-
puted in O(t8f4) time for two well separated vertices s, s′
with respect to Wi for i ∈ [1, 6 logm+ 1] and a set F of at
most f failed vertices given as a query.

Sketch of the proof. For easy understanding, we assume that
s and s′ are net vertices in Ni∗ , and thus N(s) = s and
N(s′) = s′. Since an analysis of the query time and the size
of the kernel is straightforward, we only show that H is
indeed a (s, s′, F ; ε)-kernel. For clarity, we omit the param-
eters for safe and weakly safe paths: safe and weakly safe
paths mean (t, ε′Wi∗)-safe and (t, ε′Wi∗)-weakly safe paths,
respectively. We have Wi∗ ∈ (|ss′|, 2|ss′|] since s and s′ are
well separated with respect to Wi∗ .

We first show that if a short safe or weakly safe path be-
tween two vertices u and v inG−F exists, then their distance
in H approximates the length of a shortest safe or weakly
safe path inG−F with a small additive error. In this case, we
call a shortest path inG−F between u and v a base path. For
each edge of H , either it corresponds to an FT-path, or it has
small weight. By Lemma 6, for any u and v in V (H) and a
safe path γ in G−F between them, we have dH(u, v) ≤ |γ|.
Moreover, Lemma 3 says that if a weakly safe path γ exists
in G−F between u and v, then there are three edges uz, zz′,
and z′v in H such that uz and z′v have small weights, and
there exists a safe path between zz′. Refer to Figure 1. This
implies that dH(u, v) is at most the sum of |γ| and the two
small weights wH(uz) and wH(z′v). This implies the claim.

Then we show that there is a path inG−F between s and s′
of length at most (1+ε)dG−F (s, s′) consisting of base paths.

This implies that dH(s, s′) ≤ (1 + ε)dG−F (s, s′) as each
base path corresponds to a path in H . Let πG−F (s, s′) be a
shortest path in G− F between s and s′. If this shortest path
is safe or weakly safe, then it is already a base path, and thus
we are done. Otherwise, we apply Lemma 4 to πG−F (s, s′).
Then we have two vertices y and z, and consider the concate-
nation of πG−F (s, y), πG−F (y, z), and πG−F (z, s′). Note
that both y and z are vertices of G since V (H) contains the
net vertices in Ni∗ lying close to s, s′ ∪ F . The length of the
concatenation is at least the length of πG−F (s, s′). The differ-
ence (additive error) is at most 2t · ε′Wi∗ by Lemma 4. Since
πG−F (s, y) · πG−F (y, z) is already a base path, it suffices to
consider πG−F (z, s′) recursively. We can show that the recur-
sive step occurs at most f times as the vertices z we obtained
for the recursion steps have distinct closest failed vertices.
Therefore, the additive error is at most 2tε′Wi∗f , and thus
the resulting path has length at most (1+ε)dG−F (s, s′) since
Wi∗ ∈ (|ss′|, 2|ss′|].

Path-Preserving Kernel Query
Now we describe how to compute a path-preserving
(s, s′, F ; ε)-kernel H of size for a pair (s, s′) of moderately
far vertices and a set F of at most f failed vertices given
as a query. Let i∗ be the index with |ss′| ∈ [Wi∗/2,Wi∗).
The kernel H0 we constructed before is not necessarily path-
preserving. For an edge uv added to H0 due to its corre-
sponding FT-path, we can compute the FT-path in time lin-
ear in its complexity using FT(u, v; ε′Wi∗). On the other
hand, an edge uv added to H0 because of its small length
(i.e., dG(u, v) ≤ (4t2 + 8t+ 5)ε′Wi∗) can violate the path-
preserving property of H0. For such an edge, by the spanner
property of G, dG−F (u, v) is at most 40t3ε′Wi∗ , and this
is why we set the weight of uv as 40t3ε′Wi∗ . However, al-
though there is a path of G− F of length at most 40t3ε′Wi∗ ,
we do not know how to compute it efficiently.

To obtain a path-preserving kernel, we first compute a
(u, v, F ; ε)-kernel for the violating edges uv of H0, and
take the union of them together with H0. Since dG(u, v) ≤
(4t2 + 8t+ 5)ε′Wi∗ , |uv| is significantly smaller than |ss′|,
and thus the value Wi with |uv| ∈ [Wi/2,Wi] is smaller.
Although there might still exist violating edges u′v′, the dis-
tance in G between u′ and v′ becomes smaller. Then we
repeat this procedure until for any violating edge uv, their
distance in G becomes at most tL/m6. In this case, uv is
not violating the path-preserving kernel anymore due to the
second condition for path-preserving kernels. Although this
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recursive description conveys our intuition effectively, it is
more convenient to describe it in an integrated way as follows
for formal proofs.

The construction of H works as follows. The vertices of
H are s, s′, and all net vertices u from Nj with dG(u, F ∪
{s, s′}) ≤ (4t2 + 8t + 5)ε′Wj for some index j ∈ [1, i∗].
The edge set of H comprises the edges from the (p, q, F ; ε)-
kernels constructed by the previous query algorithm for all
indices j ∈ [1, i∗] and two well separated net vertices p, q ∈
Nj ∩ V (H) with respect to Wj .
Lemma 10. If an edge uv lies in a shortest path in H , either
it corresponds to an FT-path, or dG−F (u, v) ≤ tL/m6.

Lemma 10 together with the fact that H is a supergraph of
the (s, s′, F ; ε)-kernel H0 we constructed before implies that
H is a path-preserving (s, s′, F ; ε)-kernel. The query time
and the size of H are analyzed in the full version.
Lemma 11. For a query of two moderately far vertices s, s′
and a set F of at most f failed vertices, a path-preserving
(s, s′, F ; ε)-kernel of size O(t8f2 log(t/ε′) log2 n) can be
computed in O(t8f4 log(t/ε′) log2 n) time.

In the preprocessing step, We split long edges. This in-
creases the number of its vertices and edges by a factor of
O(t/ε′) ⊆ poly{t, f, 1/ε}. So far, we use n andm to denote
the numbers of vertices and edges, respectively, of the result-
ing graph. To get the final results in Table 1 (for kernel and
path-preserving kernel oracles) with respect to the complex-
ity of the original input graph, we simply replace both n and
m with (t/ε′) ·m ∈ (tf/ε)O(1) · n.

Distance / Shortest Path Oracles
In this section, we construct approximate distance oracle and
shortest path oracle for moderately far vertex queries. Let G
be an L-partial f -fault-tolerant Euclidean t-spanner. Here, G
might have long edges as the preprocessing step mentioned
before only spans the previous section. Let n and m denote
the numbers of vertices and edges of G, respectively.

For an approximate distance oracle, it suffices to construct
a kernel oracle. Recall that the approximation factor ε must
be give in the construction of the oracles. Given two moder-
ately far vertices s and s′ and a set F of failed vertices, we
simply compute an (s, s′, F ; ε)-kernel H , and then compute
the distance between s and s′ inH using Dijkstra’s algorithm.
This value is an approximate distance between s and s′ by
the definition of kernels. Therefore, the performance of our
distance oracle is the same as the one for a kernel oracle as
stated in Table 1.

For an approximate shortest-path oracle, we construct a
path-preserving kernel oracle. Given two moderately far ver-
tices s and s′, and a set F of failed vertices, we simply
compute a path-preserving (s, s′, F ; ε)-kernel H , and then
compute a shortest path π between s and s′ in H using Dijk-
stra’s algorithm. Since π might contain an edge not in G−F ,
we replace each edge of π with their corresponding path in
G − F . More specifically, for an edge uv of π, either its
length is at most tL/m6, or there is an FT-path between u
and v of length wH(uv). For the former case, we replace
uv with an arbitrary path of G − F consisting of edges of

length at most tL/m6. By the spanner property, u and v are
connected in G− F , and moreover, a shortest path between
them consists of edges of length at most tL/m6. For the latter
case, we simply replace uv with the FT-path.

We have two issues here. First, we have to show how to
compute an arbitrary path of G− F consisting of edges of
length at most tL/m6. Second, this replacement increases
the length of π by tL/m5. We have to argue that this value is
negligible for our purpose.

We handle the first issue by constructing a fault-tolerant
connectivity oracle introduced in (Duan and Pettie 2017).
Given a set of failed vertices and two query vertices, it allows
us to check if the two query vertices are connected in the
graph in the presence of the failed vertices. By slightly modi-
fying this data structure, we can report an arbitrary path as
well. More specifically, we construct this data structure on the
subgraph of G induced by edges of length at most tL/m6.
The size of this data structure is O(fm log n log log n). It
can be computed in O(mn log n) time, and its query time is
O(f4 log2 n log log n) plus the number of returned edges.

The second issue can be handled using the fact that s
and s′ are moderately far. Even if the replacement increases
the length of π, the returned path has length at most (1 +
2ε)dG−F (s, s′) as proved below.

Lemma 12. The returned path has length at most (1 +
2ε)dG−F (s, s′).

Proof. Since s and s′ are moderately far, |ss′| ∈
[L/m2, L/t). The total weight of all edges inG−F of length
at most tL/m6 is at most tL/m5. For sufficiently large m
with m ∈ Ω(t/ε), the following holds.

L/m5 ≤ dG−F (s, s′)/m3 ≤ ε

t
dG−F (s, s′). (1)

The length of the returned path is at most dH(s, s′)+ tL/m5,
and the distance dH(s, s′) is at most (1+ε)dG−F (s, s′) since
H is a (s, s′, F ; ε)-kernel of G. Thus, the lemma holds by
Inequality 1.

In this way, we can use the path-preserving kernel oracle
to compute an approximate shortest path correctly.

Conclusion
In this paper, we presented efficient approximate distance
and shortest-path oracles for an f -fault-tolerant Euclidean
t-spanner and a value ε > 0. Although this is the first near-
linear-sized approximate shortest-path oracle for graphs with
vertex failures, one might think that it is still not practical
because of large hidden constants in the performance guaran-
tees. Although it seems hard to avoid the exponential depen-
dency on t and f in the oracle sizes theoretically, we believe
that it can be made more efficient in practice by applying
several optimization tricks. This is indeed one of interesting
directions for future work; our work is just a starting point.
We hope that our work would be a stepping stone towards
bridging the gap between theory and practice in the routing
problem for dynamic networks.
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