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Abstract

In recent few years, DeepFakes are posing serve threats and
concerns to both individuals and celebrities, as realistic Deep-
Fakes facilitate the spread of disinformation. Model attribu-
tion techniques aim at attributing the adopted forgery mod-
els of DeepFakes for provenance purposes and providing ex-
plainable results to DeepFake forensics. However, the exist-
ing model attribution techniques rely on the trace left in the
DeepFake creation, which can become futile if such traces
were disrupted. Motivated by our observation that certain
traces served for model attribution appeared in both the high-
frequency and low-frequency domains and play a divergent
role in model attribution. In this work, for the first time, we
propose a novel training-free evasion attack, TraceEvader,
in the most practical non-box setting. Specifically, TraceE-
vader injects a universal imitated traces learned from wild
DeepFakes into the high-frequency component and intro-
duces adversarial blur into the domain of the low-frequency
component, where the added distortion confuses the extrac-
tion of certain traces for model attribution. The comprehen-
sive evaluation on 4 state-of-the-art (SOTA) model attribution
techniques and fake images generated by 8 generative models
including generative adversarial networks (GANs) and dif-
fusion models (DMs) demonstrates the effectiveness of our
method. Overall, our TraceEvader achieves the highest av-
erage attack success rate of 79% and is robust against image
transformations and dedicated denoising techniques as well
where the average attack success rate is still around 75%.
Our TraceEvader confirms the limitations of current model
attribution techniques and calls the attention of DeepFake re-
searchers and practitioners for more robust-purpose model at-
tribution techniques.

Introduction
With the rapid development of generative models, such as
GANs (Karras et al. 2020) and DMs (Dhariwal and Nichol
2021; Liu et al. 2022), DeepFakes are becoming real threats
to humans, which could synthesize realistic high-quality au-
dios, images, and videos (Dolhansky et al. 2020; Juefei-Xu
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Figure 1: An overview of our framework. In the top panel, an
adversary creates DeepFakes (i.e., fake image) and releases
them to the social network, then the defender discriminates
the source of such DeepFakes and attributes them to a spe-
cific forgery model successfully for DeepFake forensics pur-
poses. In the bottom panel, the adversary injects our crafted
invisible adversarial perturbations before releasing them and
evades the model attribution.

et al. 2022). Such realistic DeepFakes could be leveraged for
malicious purposes, like producing disinformation, creat-
ing fake pornography, and releasing fake official statements
(Leong 2023; Moneywatch 2023), etc.. Therefore, prevent-
ing the abuse and spread of malicious DeepFake has become
an urgent need (Wang et al. 2021, 2022).

In the current research of DeepFake forensics, the Deep-
Fake detection (Wang et al. 2020b; Zhao et al. 2020) tells us
whether the sample is real or fake, while the DeepFake at-
tribution1 aims at investigating which forgery model is em-
ployed for creating such DeepFakes, further providing ex-
plainable results for DeepFake detection. In this paper, we
explore an interesting question, whether the existing Deep-
Fake attribution techniques are robust enough to serve for
DeepFake forensics and the potentials in deploying in real

1The DeepFake attribution has the same meaning as forgery
model attribution. In this paper, we use them alternately.
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scenarios.
Thus far, the DeepFake attribution could be classified as

model-architecture attribution (Yang et al. 2022) and model-
instance attribution (Yu, Davis, and Fritz 2019) based on
whether the training settings are considered. Specifically, the
model-architecture attribution infers the adopted model ar-
chitecture merely (e.g., CycleGAN (Zhu et al. 2017), Style-
GAN (Karras et al. 2020)), while the model-instance attri-
bution struggles to identify the model architecture equipped
with specific training settings, like training dataset, initial
seeds, etc.. Recent studies have shown that both the model-
architecture and model-instance attribution rely on discrim-
inating the traces left in the DeepFake creation (Yang et al.
2022; Yu, Davis, and Fritz 2019). In this work, we seek a
practical trace disruption method to evade the two different
types of model attribution techniques effectively in a black-
box setting. Figure 1 presents the framework of our work,
where our proposed evasion attack aims at injecting invisible
adversarial perturbations to fool the attribution techniques.

The prior studies (Wesselkamp et al. 2022; Jia et al. 2022)
are mostly working on exposing the vulnerability of Deep-
Fake detectors by disturbing the clues for discriminating be-
tween real and fake. Actually, such clues should generalize
diverse forgery models, especially unknown forgery mod-
els. However, the traces for model attribution are model-
relevant, where the stable traces appeared in each model ar-
chitecture and distinct traces vary among model instances.
Thus, the evasion attack dedicated to DeepFake detectors is
not appropriate for evading model attribution as their relied
traces are vastly different.

The straightforward idea to evade the DeepFake attribu-
tion techniques in a black-box setting could be generating
adversarial perturbations via accessing a surrogate model
or querying the victim model by sending large amounts of
samples (Chakraborty et al. 2018; Carlini and Farid 2020).
However, both of them suffer poor transferability in tackling
unknown models (Chakraborty et al. 2018; Hussain et al.
2021). Thus, we investigate the possibility of employing
universal adversarial perturbations (Moosavi-Dezfooli et al.
2017; Mopuri et al. 2018) to disrupt the traces in black-box
settings and further evade the target model attribution tech-
niques. First of all, we need to explore a crucial question,
what makes DeepFake traceable? Our preliminary experi-
mental results illustrate that the forgery model leaves traces
in both the high- and low-frequency components of an im-
age. The high-frequency component (HFC) contains a glob-
ally consistent trace relevant to the model architecture, while
the trace in the low-frequency component (LFC) is concen-
trated in specific regions and correlated with the model’s
weights. Both of them are widely served as an asset for
model attribution. More detailed analysis on the exploration
of traces in HFC and LFC refers to Section .

Motivated by the above observation that the traits of the
trace in HFC and LFC are vastly different, in this paper, we
introduce the adversarial distortions to the HFC and LFC,
respectively. Specifically, for the HFC, inspired by the com-
mon ambiguity attack, we craft a universal imitated trace
(UIT) learned from a set of fake images created by popu-
lar generative models to bring confusion to the DeepFake

attribution techniques when extracting traces for model at-
tribution. Inspired by prior works (Hou et al. 2023), blur is
an effective natural degradation to mitigate spatial and fre-
quency differences of DeepFake and real images. We em-
ploy Gaussian blurring mean shift to eliminate subtle traces
varies in the LFC domain. Notably, our proposed evasion at-
tack is training-free without involving any optimization of
the tedious gradient computation, non-box manner working
on black-box settings without obtaining any knowledge of
the target DeepFake attribution techniques, forgery model-
agnostic applicable to the popular generative models (e.g.,
GANs, DMs), and high-transferability capabilities in tack-
ling diverse DeepFake attribution techniques, in terms of
model-architecture and model-instance attribution.

Our in-depth evaluation on 4 SOTA DeepFake attribution
techniques and fake images generated by 6 GANs and 2
DMs demonstrate that our TraceEvader successfully fools
the two types of DeepFake attribution techniques with an av-
erage ASR more than 79% and survives the image transfor-
mations and denoising techniques well. This indicates that
the current DeepFake attribution techniques highly rely on
the stable traces between model architecture and distinct
traces among model instances. Our study presents a new
challenge for future DeepFake attribution techniques served
for multimedia forensics, which needs to look for more ad-
vanced traces introduced in DeepFake creation.

Our main contributions are summarized as follows:

• To the best of our knowledge, this is the very first attempt
to reveal the vulnerability of the existing DeepFake attri-
bution techniques which calls for more robust model at-
tribution techniques for better forgery model provenance
and DeepFake forensics.

• We conduct an in-depth analysis of the model traces in-
troduced in DeepFake creation which are employed for
model attribution and discover the role of the stable traces
in HFC for discriminating model architecture and distinct
traces in LFC for certifying model instances.

• We propose a novel evasion attack, TraceEvader, to pre-
vent the exact traces extraction for model attribution by
injecting crafted universal imitated traces into the HFC
and introducing Gaussian blur mean shift to eliminate the
traces in the LFC, respectively.

• Experiments conducted on 4 state-of-the-art DeepFake at-
tribution techniques demonstrate the effectiveness in evad-
ing the existing model attribution techniques and applica-
bility to the GAN-based and DM-based forgery models
and robustness in surviving the common sample transfor-
mations and intentional powerful denoising techniques.

Understanding Model Attribution
In this section, we explore three crucial questions, what
makes the model traceable, where are the traces, and what
kind of features do they exhibit? This in-depth understanding
of model attribution will help us generate dedicated adver-
sarial perturbations to disrupt the traces for DeepFake at-
tribution. Here, we take GAN as an example to answer the
three questions.
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Figure 2: Spectrum analysis for popular generative models.
We visualize the mean DFT spectra of high-pass filtered (a)
generated raw fake images and (b) images added with our
generated adversarial perturbations.

What Makes DeepFakes Traceable?
Studies have shown that GANs have stable fingerprints for
discriminating whether two GANs (e.g., ProGAN, Style-
GAN) have the same architecture and distinct fingerprints
that could be leveraged for distinguishing diverse GAN in-
stances trained with specific training settings.

Stable fingerprints within model-architectures. The
model-architecture attribution refers to attributing fake im-
ages to the specific generator architecture. It drives us to dig
deeper into traces left by the structure of the model itself
during the generative process. In generative models, the gen-
erator is equipped with a set of convolution filtering, upsam-
pling, and non-linear components for learning a specific data
distribution and accomplishing the task of image synthesis
together. Previous studies reveal that specific upsampling
strategies, a widely adopted component in generators, lead
to periodic or chessboard artifacts in high-frequency compo-
nents (Dzanic, Shah, and Witherden 2019; Durall, Keuper,
and Keuper 2020). This regular artifact in GANs is leveraged
for model attribution where the discrepancy in the spectrum
is demonstrated effective for discriminating different GAN
architectures (e.g. DNA-Det (Yang et al. 2022); DCT (Frank
et al. 2020); Reverse (Asnani et al. 2021)). Figure 2 illus-
trates that the spectral artifacts among generators within im-
ages.

Distinct fingerprints among model-instances. Recent
work, AttNet(Yu, Davis, and Fritz 2019), claims that model
traces are characterized by model weights for parameters of
each model instance converging to distinct values after train-
ing. Due to the unstable training phenomenon of GAN, two
GAN instances with the same architecture trained under re-
spective settings could result in individual GANs where their
synthesized outputs are not exactly the same as the output
image quality diverse. This suggests the existence of subtle
spatial traces unique to the model instance even though they
share the same model architecture.

Model Fingerprints in HFC and LFC
As discussed above, the same model architecture shares sta-
ble fingerprints, while the different model instances have

distinct model fingerprints. Here, we explore where are these
fingerprints, their role in model attribution, and further, we
exploit the trait of these model fingerprints to conduct ef-
fective adversarial disruption. To answer the above question
, we conduct several preliminary experiments by introduc-
ing degradation in the HFC and visualizing the regions of
existing model attribution methods focused on. In our pre-
liminary experiments, we consider four popular model attri-
bution techniques, including model-architecture attribution
1) DNA-Det (Yang et al. 2022); 2) DCT (Frank et al. 2020);
3) Reverse (Asnani et al. 2021) and model-instance attribu-
tion 4) AttNet (Yu, Davis, and Fritz 2019). Further details
on related works refer to the technical appendix.

Degradation introduced in HFC. Existing studies
(Wang et al. 2020a) claim that HFC plays a crucial role in
classification of DNNs. Inspired by this insight, we investi-
gate the role of HFC and LFC in the classification results of
model attribution methods. Here, we decompose the infor-
mation of fake images into HFC and LFC via Fast Fourier
Transform (FFT) proposed in a prior study (Wang et al.
2020a). Specifically, we simply drop the HFC and recon-
struct an image xl via inverse FFT with only the LFC rather
than a whole component normally adopted. We have the fol-
lowing equations:

LFC,HFC = f(F(x); r)

xl = F−1 ( LFC )
(1)

where F represents the FFT, x is the original input, F−1 in-
dicates the inverse FFT for input reconstruction, f(·; r) de-
notes a threshold function that separates the HFC and LFC
from F(x) with a specified hyperparameter, radius r, where
a larger r means a wider frequency band is preserved.

As illustrated in Figure 3(a), when the r is large, the av-
erage accuracy of xl on four popular attribution models is
close to 100%. If we continue to decrease r, three attribution
techniques experience a significant decline in performance,
except AttNet. This indicates that traces in both HFC and
LFC can be useful for model attribution. Next, we explore
the role of traces in HFC and LFC and their characteristics.

Traces visualization. Figure 3(b) visualizes the regions
of two model attribution techniques (i.e., DNA-Det, AttNet)
focused on. The AttNet mostly relies on the traces of LFC
and tends to focus on local regions rich in semantic infor-
mation like eyes and mouth. In contrast, model attribution
methods mostly rely on HFC, like DNA-Det paying atten-
tion to more evenly distributed over the entire image. Thus,
we have high confidence to believe that the traces in LFC
are semantic-related and the HFC contains more low-level
patterns. A recent study (Yang et al. 2022) also claims that
GAN architecture is likely to leave fingerprints that are glob-
ally consistent across the entire image, while weight traces
vary in different regions.

In summary, our preliminary experimental results prove
that 1) both the HFC and LFC of the images provide useful
traces for model attribution; 2) traces in HFC focus on low-
level patterns better serve the model-architecture attribution,
while the traces in LFC focus on the semantic-level pat-
tern well serve the model-instance attribution; 3) the model-
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Figure 3: (a) The performance of four model attribution
techniques in dealing with HFC removal. A small r indicates
more distortions introduced in HFC. (b) Grad-cam of DNA-
Det(left) method relying on HFC and AttNet(right) relying
on LFC for attribution.

architecture traces exhibit global consistency among full im-
ages, while the weight traces are concentrated on semantic-
related local areas. These three findings tell us that the adver-
sarial perturbations should disrupt the traces in both the HFC
and LFC as the unknown attribution methods will adopt
them possibly.

Methodology
Threat Model
Defender’s Goals and Capabilities. The goal of the de-
fender is to track the adopted forgery model and further
provides explainable results to DeepFake forensics. The de-
fender (1) trains the model attribution model with available
fake images for attributing known forgery models, (2) per-
forms simple input transformations or utilizes dedicated de-
noising methods with the help of collecting a small number
of clean-perturbed pairs to remove the potential added ad-
versarial perturbations intentionally.
Adversary’s Goals and Capabilities. The attacker creates
various realistic DeepFakes and improves the possibilities of
surviving the potential DeepFake forensic methods, such as
passive detection, forgery model attribution, etc.. Especially,
the attacker is the owner of the model and has full knowl-
edge of training dataset. To survive various potential model
attribution techniques, the adversary may remove the traces
involving the model modification or synthesized outputs ma-
nipulation to fool model attribution techniques finally.

Perturbating Model Traces
Our findings in Section indicate that the model fingerprints
in the HFC are global consistency, while the model finger-
prints in the LFC focus on local areas. Thus, it is non-trivial
to generate unified perturbations to disrupt both the stable
model fingerprints in HFC and distinct fingerprints in LFC
as they are vastly different. In this paper, we craft the uni-
versal imitated trace (UIT) added to the HFC to disrupt the
model fingerprints dedicated to the model-architecture attri-
bution and introduce adversarial mean-shift blur to the LFC

Figure 4: Adversarial perturbations crafted by our TraceE-
vader. We divide the HFC and LFC of the image x to add
adversarial perturbations separately. For xHFC , we apply
the UIT attack by injecting a universal imitated trace F ; For
xLFC , we apply the adversarial blur attack. Then we com-
bine two components utilizing hybrid image transformation,
where no visible artifacts exhibited.

to prevent the extraction of model fingerprints for model-
instance attribution, respectively. Figure 4 presents the two
crafted adversarial perturbations for evading model attribu-
tion techniques.

Adversarial Imitated Traces. Motivated by the philoso-
phy of ambiguity attack (Fan, Ng, and Chan 2019) in owner-
ship verification where the adversary embeds a similar wa-
termark into the victim model to claim his ownership. Then,
the ownership of the target model is in doubt as the existence
of their respective vouch. In this paper, we aim at crafting
imitated traces to bring confusion to model attribution tech-
niques like the ambiguous watermark in ownership verifica-
tion in DNN models.

Residuals are shown to contain rich traces information re-
lated to generative models and extra random noises (Marra
et al. 2019; Yu, Davis, and Fritz 2019). In this paper, we are
inspired by previous works (Ulyanov, Vedaldi, and Lempit-
sky 2018; Wang et al. 2020c) that CNN has a tendency to
learn universal and structured features in natural images be-
fore fitting to disordered random noise and are naturally em-
bedded with trace prior (Sinitsa and Fried 2023) as its convo-
lution and sampling operations are widely adopted in gener-
ator architectures. Intuitively, we can learn the universal and
periodic trace pattern as UIT from the residuals by utiliz-
ing this CNN inductive bias. Specifically, let X ∈ R3×h×w

represent image space and ϕ : Rc×h×w → R3×h×w demon-
strate the generation process, which maps latent space to im-
age space utilizing a CNN encoder-decoder network (Sinitsa
and Fried 2023) ϕ. Given a mini-batch of n images X =
[xc1

1 , ...,xcn
n ] where ci ∈ {0, 1} refers to generated images

and real images, residuals R are extracted by a highpass fil-
ter (Zhang et al. 2017) fHP , denoted as R = fHP (X). Our
goal is to generate the universal trace F ∈ R3×h×w exhibits
a strong correlation with the traces in residuals of the gen-
erated images while showing less correlation with the clean
residuals of real images. We formulate our task as follows:

θ∗ = argmin
θ

Lcon (ϕ(z; θ);R) F = ϕ(z; θ∗) (2)

where the the θ∗ is optimized from parameters θ and random
latent vector z follows uniform distribution.
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In order to measure the correlation between the image
residual and the F , we adopt Pearson Correlation Coeffi-
cient as the correlation metric ρ(·), formulated as follows:

ρ(F ,R) =
E [(F − µF ) (R− µR)]

σFσR
(3)

where σ and µ represent the standard deviations and mean
values, respectively, E(·) calculates the mathematic expec-
tation.

We design a contrastive loss function that forces residu-
als from different classes to have greater differentiation in
the correlations with F , promoting similarity in the corre-
lations between F and residuals from the same class. The
Euclidean distance metric is utilized in this work to quantify
the correlation distance Dij between two residual samples:

Dij =
∥∥ρ (F ,Rci

i )− ρ
(
F ,R

cj
j

)∥∥ (4)

where ci ∈ {0, 1} refers to fake images and real images.
When ci = cj , Dij is denoted as Dpos. Likewise, when
ci ̸= cj , Dij is denoted as Dneg . The contrastive loss Lcon

is summarised below:

Lcon =
1

2
D2

pos −
1

2
(max {0,m−Dneg})2 (5)

where m is a predefined margin parameter.
Adversarial Mean-shift Blur. As a self-crafted noise pat-

tern, the former UIT has limited impact on the low frequency
and semantics aspect of images. Due to its global consis-
tency, UIT disturbs the image in a uniform manner, which
shows less effectiveness in altering the overall pixel distri-
bution and removing important local traces. Moreover, the
interested region of the trace exploited by the victim model
attribution techniques is unknown and varies among gener-
ative models. Thus, it is impossible to craft universal traces
to bring confusion for the traces in LFC. In this paper, we
employ the most straightforward idea by introducing blur
to disrupt the model traces in LFC. Gaussian blurring mean
shift (GBMS) is an effective edge-preserving filter that can
smooth the low-frequency component and eliminate the im-
perfection or distortion artifacts of synthesis images (Hou
et al. 2023).

GBMS, denoted as Gσ(·), calculates the positional den-
sity of each pixel in the spatial domain based on its color in-
formation and aggregates pixels with similar colors, result-
ing in a change in pixel distribution and a smoothing effect.
To be specific, we first define a search window W for each
pixel pi in the image x (we set the window size as 3 in this
work). Then we estimate the density of each pixel pj ∈ W
by Gaussian kernel gσ expressed as:

gσ (pi, pj) = exp

(
−1

2
(∥pi − pj∥ /σ)2

)
(6)

where σ determines the width of g and ∥·∥ indicates the Eu-
clidean distance. The GBMS updates the position of the cur-
rent pixel pi with the mean shift vector dp:

dp =

∑
pj∈W (pj − pi) gσ (pi, pj)∑

pj∈W gσ (pi, pj)
(7)

p′i = pi + dp (8)

We repeat this process until each pixel reaches its conver-
gence.

Hybrid Image Transformation
After preparing the adversarial perturbations for the HFC
and LFC, respectively, we add the adversarial perturbations
in the created fake images with hybrid image transformation
in a non-box manner. Formally, we separate the HFC and
LFC of the image and perform attacks on both components.
Then, these two perturbed components are combined to form
the final adversarial hybrid image.

Specifically, we inject the crafted UIT into HFC residu-
als in order to produce ambiguous traces that are difficult to
distinguish. This process can be formulated as:

xHFC = λ · [fHP (x) + F ] (9)

where λ is a weight factor to control the intensity of per-
turbations. Next, we apply the GBMS function defined in
Section to blur the low-frequency parts of the image:

xLFC = Gσ (x− fHP (x)) (10)

Finally, we synthesize two-step manipulation to generate our
adversarial hybrid image xadv for evading model attribution
techniques:

xadv = xHFC + xLFC

= Gσ (x− fHP (x)) + λ · [fHP (x) + F ] (11)

Experiments
Experiments Setup
Our experiments are conducted across two types of model
attribution (e.g., model-architecture attribution, model-
instance attribution) on highly diverse data from 8 forgery
models (e.g., GANs, DMs). In experiments, we employ two
kinds of adversarial attacks as the baselines, the one is the
transfer-based attack (i.e., BIM (Kurakin, Goodfellow, and
Bengio 2016), MI-FGSM (Dong et al. 2018)). The other
one is the non-box attack that served for evading the Deep-
Fake detectors (i.e., peak attack (Wesselkamp et al. 2022)
and FakePolisher(Huang et al. 2020)). More details w.r.t.
the evaluated model attribution techniques, evaluation met-
rics, employed baselines, and implementation details of our
TraceEvader are available at the technical appendix.

To comprehensively evaluate our method, we perform ef-
fectiveness evaluation to explore whether the functionality
has been compromised when we apply TraceEvader, ro-
bustness against common image transformation and inten-
tional image denoising, and comparison with four baselines.
Additionally, we also conduct ablation studies and extensive
experiments to evaluate the effectiveness of our proposed
method in evading GAN instance attribution and popular
DeepFake detectors. The ablation studies and extensive ex-
perimental results refer to the technical appendix.

Effectiveness Evaluation
In this section, we evaluate the effectiveness of our TraceE-
vader against the model-architecture and model-instance
techniques in the black-box setting and compare them with
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four baselines. For the two transfer-based baselines (i.e.,
BIM, MI-FGSM), adversarial perturbations are crafted by
attacking DNA-Det in a white-box setting and hoping that
it can be transferred to other model attribution techniques.
For qualitative analysis, we visualize the spectrum of adver-
sarial examples crafted by TraceEvader in Figure 2 (refer to
the bottom row), where adversarial examples exhibit distinct
frequency patterns from the original ones.

Evading Model-architecture Attribution. Experiments
are conducted on DNA-Det (Yang et al. 2022), Re-
verse(Asnani et al. 2021) and DCT (Frank et al. 2020) where
all of them focus on the traces in HFC. Experimental re-
sults in Table 1 illustrate that TraceEvader gives an aver-
age ASR 83.6%. This indicates that all the model attribution
techniques failed to serve the DeepFake forensic purposes.
Our TraceEvader work perfectly in evading DNA-Det with
an average ASR 97.95% and Reverse with average ASR
90.6%, outperforming all baselines. Our method yields rela-
tively low ASR against DCT in some cases. Taking SNGAN
as an example, we believe that this is because the added per-
turbation is not strong enough to cover up the strong peaks
throughout the spectrum exhibited by SNGAN, referring to
Figure 2. Therefore, we raise the value of λ to 0.02, and the
attack success rate increases to 80.5% with a PSNR value
of 35.5 and an SSIM value of 0.9977, where the perturbed
images do not show any visible artifacts.

Evading Model-instance Attribution. Experiments are
conducted on AttNet (Yu, Davis, and Fritz 2019) where At-
tNet relies on traces in LFC. The huge gap between features
exploited by AttNet and the other three methods leads to
poor transfer performance of BIM and MI-FGSM. For non-
box peak attack methods, they can only manipulate high fre-
quencies of images, limiting their ability to attack AttNet.
Our TraceEvader outperforms BIM, MI-FGSM and peak
in all cases and obtains better average average attack suc-
cess rate and image quality than FakePolisher. After retrain-
ing AttNet, the effectiveness of our attacks is not as signifi-
cant as on the pre-trained model, yet this does not hinder us
from achieving the highest average attack success rate up to
50.9% against AttNet.

Image Quality Assessment. To demonstrate the imper-
ceptibility of TraceEvader, we conduct both qualitative and
quantitative analyses of perturbated examples. As illustrated
in Figure 5, TraceEvader generates high quality samples
with invisible perturbation. In contrast, samples with pertur-
bations generated by MI-FGSM exhibit more noticeable dis-
tortions and images reconstructed by FakePolisher display a
discernible level of blurriness. More samples can be found
in the technical appendix. We present a detailed quality as-
sessment with PSNR which is shown in the last columns of
Table 1.

In summary, our TraceEvader achieves the highest aver-
age attack success rate of 79.07% against both types of attri-
bution, while the best average attack success rate among the
four SOTA model attribution techniques is up to 97.95%.
Furthermore, our method had a top-2 attack success rate in
more than 84% of cases. Furthermore, MI-FGSM and Fake-
Polisher introduce visible noise, while our method maintain
a relatively good image quality.

Figure 5: Visualization of the crafted adversarial examples.
The visualizations include the raw fake images (a) and the
perturbated images generated with BIM (b), peak (c), MI-
FGSM (d), FakePolisher (e) and our proposed TraceEvader
(f). Samples generated by MI-FGSM and FakePolisher ex-
hibit visible artifacts when zoom in them.

Figure 6: Visualization of the (a) original fake images (b)
fake images added with crafted adversarial perturbations and
(c) reconstructed images with denoising technique. To better
illustrate the effectiveness of the employed denoising tech-
nique, the intensity of perturbations in the top row is larger
than in the bottom row.

Robustness Evaluation
In a more real-world scenario, we consider a common phe-
nomenon that the DeepFakes injected with our added pertur-
bations will be corrupted via the popular image transforma-
tions (e.g., compression, noise) and a strict assumption that
the defender knows that the adversary may inject adversarial
perturbations into the inputs to mislead the DeepFake attri-
bution. In such circumstances, the defender will employ a
powerful image-denoising method to defend the confusion
of injected perturbations. Thus, in our experiments, we also
investigate the robustness evaluation when the added pertur-
bations are corrupted or maliciously denoised.

Surviving the intentional image denoising. To prove the
strong capabilities of our proposed method in surviving the
various attacks, we assume the defender collects a certain
number of clean images and corresponding images injected
with perturbations generated by our TraceEvader. In this
paper, the popular Denoising Autoencoder (Vincent et al.
2008; Chiang et al. 2019; Zhang et al. 2020; Lee et al. 2021)
is adopted as the backbone to remove noises. We train this
denoise model with the supervision of image pairs and test
it on new adversarial samples. As illustrated in Figure 6, the
denoising model indeed eliminates the noticeable fingerprint
artifacts. However, the result in Table 2, reconstructed adver-
sarial examples still maintain high ASR, demonstrate that
our attack survive from intentional image denoising well.

Surviving the common image transformations. We
consider two common image transformations (e.g., Gaussian
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GMs Methods DNA-Det Reverse DCT AttNet PSNR GMs DNA-Det Reverse DCT AttNet PSNR

BIM - 96.0 46.3 3.0 41.1 - 0 78.1 0 40.5
MI-FGSM - 85.0 54.0 10.2 30.5 - 1.7 98.0 11.6 30.5

ProGAN Vera22-peak 97.4 51.5 81.8 0 50.0 MMDGAN 0 1.7 0 0 50.9
FakePolisher 0 70.2 84.0* 30.8* 31.8 100.0 98.3 24.7 39.5* 32.4
TraceEvader 96.9* 92.3* 99.6 59.0 36.6 98.7* 78.8* 96.4* 82.7 36.3

BIM - 61.9 64.6 0 41.5 - 17.2 0 0 40.2
MI-FGSM - 83.8 100.0 3.1 30.5 - 99.8* 69.0* 10.9 30.6

SNGAN Vera22-peak 48.2 9.7 75.2* 1.0 41 CramerGAN 0 10.1 2.2 0 50.5
FakePolisher 100.0 94.6* 72.9 48.4* 32.5 100 98.2 33.2 45.1* 31.9
TraceEvader 100.0 98.5 65.8 71.0 36.3 97.5* 100.0 93.4 48.2 37.5

BIM - 23.7 3.7 2.2 38.0 - 42.5 100.0 0 37.32
MI-FGSM - 34.1 80.0* 2.3 30.6 - 99.8* 100.0 0 30.4

CycleGAN Vera22-peak 94.8 79.5* 8.3 2.1 50.6 StyleGAN2 94.4 47.8 12.0 1.9 51.1
FakePolisher 100.0 88.1 100.0 45.2 27.7 100.0 14.0 100.0 46.0 27.6
TraceEvader 96.2* 55.9 46.9 17.4* 36.9 99.1* 100.0 60.1 17.8* 38.2

BIM - 98.0 73.3 15.3 38.2 - 100.0 3.6 9.4 38.2
MI-FGSM - 94.6 100.0 61.5* 30.4 - 99.7 100.0 10.1 30.5

PNDM Vera22-peak 72.0 99.0* 4.5 0 51.2 LDM 100.0 60.0 20.8 0.3 51.1
FakePolisher 100.0 52.9 0 28.1 28.5 100.0 0 100.0 89.9 28.7
TraceEvader 95.2* 99.3 90.6* 88.3 36.3 100.0 100.0 61.8 22.7* 38.4

Table 1: The performance of TraceEvader in evading the four model attribution techniques measured by ASR (%). PSNR and
SSIM are employed for measuring the image quality after adding adversarial perturbations. The symbol - denotes a white-box
attack. We mark the top-2 ASR by bold and *, respectively. For the first two rows (e.g., ProGAN, MMDGAN, SNGAN, and
CramerGAN), we attack the pre-trained models provided by the four model attribution techniques. For the last two rows (e.g.,
CycleGAN, StyleGNA2, PNDM, LDM), we train the model by ourselves for conducting the evasion attack.

DNA-Det Reverse DCT AttNet

Adv 73.4 65.4 100 50.1
Recovered 75 65.9 75 84

Table 2: Comparison of ASR(%) between original adversar-
ial samples and carefully denoised ones.

noises, and JPEG compression) to explore whether the trans-
formation brings any degradation to our adversarial samples.
Figure 7(a) shows that adding noise will not degrade our at-
tack performance, because the traceable fingerprint has been
destroyed already. In fact, noises will introduce even greater
perturbations to images, which can further increase the at-
tack success rate. Figure 7(b) shows that the attack perfor-
mance will drop slightly only after extremely heavy com-
pression. Experimental results illustrate that our method can
survive common image degradation well.

Conclusion
In this paper, we investigate and introduce a non-box and
training-free evasion attack TraceEvader against the popular
model attribution techniques. To the best of our knowledge,
this is the very first work to reveal the vulnerability of model
attribution techniques which are vulnerable to imitated ad-
versarial perturbations. Moreover, our studies observe that
model traces appeared in both HFC and LFC where the
traces in HFC are architecture-relevant and the traces in LFC
are instance-relevant. More powerful defense mechanisms

Figure 7: Performance in surviving the image transformation
under different intensities.

for DeepFake forensics should be proposed.

Technical Appendix
In the technical appendix, we present the related works, the
details of experimental setting, ablation studies, extensive
experiments results. Additionally, the limitation and social
impacts of our proposed TraceEvader are also refer to the
technical appendix2.
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