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Abstract

Deep neural network (DNN) models have been proven vul-
nerable to backdoor attacks. One trend of backdoor attacks
is developing more invisible and dynamic triggers to make
attacks stealthier. However, these invisible and dynamic trig-
gers can be inadvertently mitigated by some widely used pas-
sive denoising operations, such as image compression, mak-
ing the efforts under this trend questionable. Another trend is
to exploit the full potential of backdoor attacks by proposing
new triggering paradigms, such as hibernated or opportunistic
backdoors. In line with these trends, our work investigates the
first conditional backdoor attack, where the backdoor is acti-
vated by a specific condition rather than pre-defined triggers.
Specifically, we take the JPEG compression as our condition
and jointly optimize the compression operator and the target
model’s loss function, which can force the target model to ac-
curately learn the JPEG compression behavior as the trigger-
ing condition. In this case, besides the conditional triggering
feature, our attack is also stealthy and robust to denoising op-
erations. Extensive experiments on the MNIST, GTSRB and
CelebA verify our attack’s effectiveness, stealthiness and re-
sistance to existing backdoor defenses and denoising opera-
tions. As a new triggering paradigm, the conditional backdoor
attack brings a new angle for assessing the vulnerability of
DNN models, and conditioned over JPEG compression mag-
nifies its threat due to the universal usage of JPEG.

Introduction
Deep neural networks (DNNs) have recently been widely
applied in many tasks, such as image classification (He
et al. 2016) and natural language processing (Vaswani et al.
2017). However, training a decent DNN model requires a
large number of good-quality data samples, computation re-
sources and expert personnel. Thus, third-party services are
usually used to train DNN models to reduce the overhead.
However, when training DNN models using third-party ser-
vices, the training process is non-transparent and cannot be
controlled by model users. As a result, these DNN models
are vulnerable to backdoor attacks (Gu et al. 2019; Chen
et al. 2017). Backdoor attacks can be launched in many
DNNs-based applications, such as face recognition and au-
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tonomous driving systems, and thus pose a severe threat to
the security of these applications (Liu et al. 2017).

One trend of backdoor attacks is developing more invis-
ible and dynamic triggers to make attacks stealthier. Some
early backdoor attacks use specific patterns as triggers, such
as image patches (Gu et al. 2019), watermarks (Liu et al.
2017), and sinusoidal strips (Barni, Kallas, and Tondi 2019),
which are visible to human observers. To further improve the
imperceptibility of triggers, many recently proposed back-
door attacks generate invisible and dynamic triggers using
image transformation techniques such as warping (Nguyen
and Tran 2021) and color quantization (Wang, Zhai, and Ma
2022). At the same time, some backdoor attacks use input-
specific tiny perturbations generated by the trained auxiliary
generator as triggers (Doan et al. 2021; Zhong, Qian, and
Zhang 2022). While all the aforementioned studies focus on
spatial-based backdoor attacks, some recent studies (Zeng
et al. 2021; Wang et al. 2022; Feng et al. 2022) have started
exploring adding triggers in the frequency domain, aiming
to further enhance the imperceptibility of triggers.

In response to the excessive number of new backdoor
attacks, many backdoor defensive methods have been pro-
posed, such as reverse engineering defenses (Wang et al.
2019; Zeng et al. 2022), neuron pruning defenses (Liu,
Dolan-Gavitt, and Garg 2018; Wu and Wang 2021), online
defense (Gao et al. 2019), knowledge distillation defense (Li
et al. 2021c) and GradCAM (Selvaraju et al. 2017) based
defenses (Chou, Tramer, and Pellegrino 2020; Doan, Abbas-
nejad, and Ranasinghe 2020). In terms of robustness against
backdoor defenses, the general rule of thumb is that the more
invisible and dynamic a backdoor attack’s triggers are, the
more robust the attack will be. However, as validated in the
experiments, some denoising operations can inadvertently
eliminate these robust attacks.

Besides the arm-race of designing and detecting stealthier
attacks as above, the most recent trend is to use the wis-
dom in network security (Stallings 2003) to build backdoor
attacks with new triggering paradigms. The work in (Ning
et al. 2022) proposed the hibernated backdoor paradigm,
where the backdoor is planted in a hibernated mode and can
only be activated after the model has been fine-tuned. The
work in (Liu et al. 2022) proposed the opportunistic back-
door attack on speech recognition systems, where the trig-
gers are audible, and the backdoor is passively triggering
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Figure 1: An example of the JPEG-conditioned backdoor at-
tack. The traffic sign “Stop” after JPEG compression is clas-
sified as the wrong traffic sign “Left Turn”.

and opportunistically invoking.
Furthering the newest research trend, this paper explores

backdoor attacks with a new triggering paradigm, termed
conditional backdoor attack. In this paradigm, a specific
condition replaces the role of pre-defined triggers, i.e., the
backdoor will be and can only be automatically activated
when the prescribed condition is met.

As the first attempt in this new paradigm, we choose the
JPEG compression (Wallace 1992) as the specific condi-
tion since it is universally used for digital image transmis-
sion and storage. Technically, referring to the design of the
JPEG compression algorithm, we generate poisoned images
by adaptively discarding some high-frequency information.
The adaptivity is achieved by jointly optimizing the quanti-
zation tables used for quality control and the loss function
of the target DNN model. In this case, our attack is stealthy
since the loss of high-frequency information does not cause
significant distortions and is also robust to denoising oper-
ations. Moreover, validated by experiments, this joint op-
timization process ensures that the target model can accu-
rately learn the JPEG compression behavior as the trigger-
ing condition, rather than using pixel-level artifacts induced
by discarding high-frequency information as triggers, which
is fundamentally different from previous backdoor attacks.
Figure 1 illustrates our JPEG-conditioned backdoor attack.

Our contributions can be summarized as follows:
• We propose a backdoor attack with a new triggering

paradigm, termed conditional backdoor attack, where the
backdoor is activated by a specific condition rather than
pre-defined triggers.

• We instantiate the conditional backdoor attack by using
JPEG compression as the specific condition, i.e., when-
ever the input image is JPEG compressed, the backdoor
will be activated. We formulate this JPEG-conditioned
backdoor attack as a joint optimization problem and solve
it with gradient descent.

• We conduct systematic experimental evaluations on vari-
ous datasets and network architectures to assess our JPEG-
conditioned backdoor attack. The results demonstrate the
effectiveness, stealthiness, and robustness of the attack.

Related Work
Backdoor Attacks. Poisoning the training data with pre-
defined triggers is the most common way to implement
backdoor attacks. Early backdoor attacks utilized fixed trig-
gers, with their patterns evolving from artificial (Gu et al.
2019) to natural (Liu et al. 2020) patterns. However, these
fixed triggers were easily noticeable to human observers.

Recently, many stealthier backdoor attacks with invisi-
ble and dynamic triggers have been proposed, encompassing
both spatial and frequency domains. In the spatial domain,
attacks like WaNet (Nguyen and Tran 2021) utilized image
warping, while BppAttack (Wang, Zhai, and Ma 2022) cre-
ated poisoned images through color quantization, leverag-
ing imperceptible image distortions as triggers. Meanwhile,
other attacks use input-specific perturbations as triggers.
Doan et al. (Doan et al. 2021) used tiny perturbations gener-
ated by auto-encoders as triggers, and Zhong et al. (Zhong,
Qian, and Zhang 2022) used U-Net-controlled multinomial
distributed noises as triggers. In the frequency domain, Zeng
et al. (Zeng et al. 2021) enhanced trigger invisibility using
a low-pass filter, while FTrojan (Wang et al. 2022) crafted
triggers by perturbing mid- and high-frequency components.

In addition to the trend of designing more invisible and
dynamic triggers, recent research suggests new triggering
paradigms. Ning et al. (2022) proposed the first hibernated
backdoor, which can only be activated after fine-tuning the
model. Liu et al. (2022) proposed the first audible backdoor
for speech recognition, relying on passively triggering.

We follow the latest design trend and propose a novel
backdoor attack with a new triggering paradigm, called
conditional backdoor attack, and instantiate it with JPEG
compression. Specifically, we generate poisoned images by
adaptively discarding some high-frequency information, the
triggers can be regarded as some imperceptible distortions of
the poisoned images, which are also invisible and dynamic.
Backdoor Defenses. Backdoor defenses are broadly divided
into two categories: model-based and input-based. Model-
based defenses aim to detect or mitigate possible backdoors
in models. Neural Cleanse (Wang et al. 2019) used reverse-
engineered triggers and anomaly detection for backdoor de-
tection. I-BAU (Zeng et al. 2022) synthesized additive per-
turbations as reverse-engineered triggers to fine-tune the
backdoored model. Fine-Pruning (Liu, Dolan-Gavitt, and
Garg 2018) mitigated backdoors by pruning dormant neu-
rons, while ANP (Wu and Wang 2021) focused on pruning
neurons sensitive to adversarial perturbations. NAD (Li et al.
2021c) mitigated the backdoors through knowledge distilla-
tion techniques. Some defenses (Chou, Tramer, and Pelle-
grino 2020; Doan, Abbasnejad, and Ranasinghe 2020) used
GradCAM to identify the potential trigger regions.

Input-based defenses focus on filtering poisoned inputs.
Tran et al. (2018) used singular value decomposition to filter
poisoned inputs. STRIP (Gao et al. 2019) detected poisoned
inputs by analyzing the persistent predictions of inputs under
intentional perturbations.

Stealthy backdoor attacks with invisible and dynamic trig-
gers challenge existing backdoor defenses (Li et al. 2021b),
but experiments have shown that some denoising operations
can inadvertently mitigate such subtle triggers. However, our
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attack has been experimentally verified to be more robust to
denoising operations while remaining stealthy.

Conditional Backdoor Attack
Threat Model
Adversary’s Capabilities. Following the assumption of
previous backdoor attacks (Nguyen and Tran 2021; Wang,
Zhai, and Ma 2022), the adversary in our attack also has
full access to the training process, including the datasets and
training schedule. The backdoor is injected into the model at
the training stage, and the backdoored model is delivered to
users after training.
Adversary’s Goals. Similar to previous works proposing
new triggering paradigms, the adversary’s primary goal is to
plant a backdoor attack conditioned on JPEG compression
effectively. In particular, the backdoor will be and can only
be automatically activated when the inputs undergo JPEG
compression. Besides effectiveness, the JPEG-conditioned
backdoor attack should also possess the properties of stealth-
iness and robustness. The stealthiness means that the poi-
soned images are visually the same as the clean images,
allowing them to bypass human inspection. The robustness
means that the attack can resist existing backdoor defenses
and common denoising operations.

Overview
We consider backdoor attacks on the image classification
task. For a given DNN classifier fθ with parameter θ, and
a training dataset D = {(xi, yi)}Ni=1, where xi ∈ X is an
image and yi ∈ Y is the label of xi. Let yt ∈ Y denote
one target label of the adversary. The backdoor attack aims
to use a backdoor injection function B to create a poisoned
sample (B(x), yt) from a clean sample (x, y), then train the
classifier fθ with the clean and poisoned samples such that
fθ behaves normally for the clean inputs and outputs the tar-
get label for the poisoned inputs, namely

fθ(x) = y, fθ(B(x)) = yt. (1)

For our JPEG-conditioned backdoor attack, any image x ∈
X and its JPEG compressed version xJc should satisfy

fθ(x) = y, fθ(xJc) = yt. (2)

To achieve this goal, we develop a mechanism to ensure that
the model can learn the JPEG compression behavior as the
triggering condition of the backdoor through training. Fig-
ure 2 illustrates the overview of our JPEG-conditioned back-
door attack, which comprises the following parts:
• Color space transformation: It converts the color space of

an input image from RGB to YCbCr. The YCbCr color
space represents an image as luminance components (i.e.,
Y channel) and chrominance components (i.e., Cb and Cr
channels), and it has better visual perception by human
eyes compared to the RGB color space. We denote the
transformation as T (·), with its inverse as T −1(·).

• DCT: It converts an input image from the spatial domain
to the frequency domain via the Discrete Cosine Trans-
form (DCT), which is denoted as D(·). The inverse DCT
(IDCT) is denoted as D−1(·).

• Quantization and inverse quantization: Two quantization
tables (qy and qc) are used for the quantization and inverse
quantization operation to discard high-frequency informa-
tion of the input image since such information is insensi-
tive to the human perceptual system. These two tables are
continuously optimized during the training process. We
denote the quantization and inverse quantization as Q(·).

Overall, we first convert the color space of an input im-
age from RGB to YCbCr, then transform the image from the
spatial domain to the frequency domain, and discard some
high-frequency information of the image via quantization.
Finally, the RGB poisoned image is obtained by performing
the inverse operations of the previous operations to the above
quantization result. The whole process can be presented as

B(x) = T −1(D−1(Q(D(T (x)), qy, qc))). (3)

Color Space Transformation and DCT
During JPEG compression, an image is converted from RGB
color space to YCbCr color space, and luminance com-
ponents of the image are preserved as much as possible
while chrominance components are compressed consider-
ably, since the human visual system is more sensitive to
the former. Following this principle, we use two different
quantization tables qy and qc to quantize the luminance and
chrominance components, respectively.

We utilize DCT to convert an image from the spatial do-
main to the frequency domain. Following the JPEG com-
pression process, we split an input image into a set of
nonoverlapping blocks of size K × K and set K = 8.
Then we perform the 2-D Type-II DCT transform (Ahmed,
Natarajan, and Rao 1974) to the image block by block.

After performing DCT, an input image is converted into a
series of DCT blocks. The top left coefficient of these blocks
expresses the lowest-frequency components of the image,
while the bottom right coefficient expresses the highest-
frequency components. As shown in Figure 2, the coeffi-
cients of the high-frequency components are significantly
smaller than those of the low-frequency components since
they contribute less to the human perception of the image.
Therefore, high-frequency components are more likely to be
discarded during quantization. We utilize IDCT to convert
the image back to the spatial domain.

Quantization and Inverse Quantization
Quantization is a lossy operation that will discard some fre-
quency components of the DCT results while preserving the
image’s quality for the human eye. In this operation, quanti-
zation tables control the loss of frequency components. In
our JPEG-conditioned backdoor attack, we should ensure
that the model learns the exact JPEG compression behav-
ior rather than the noise-like artifacts induced by discarding
frequency information. The key insight of our design is to
calibrate the quantization tables.

We use two quantization tables qy, qc ∈ N8×8
+ to quantize

the frequency information of the input image x, where qy
is used for Y channel and qc for Cb and Cr channels. The
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Figure 2: Framework of the JPEG-conditioned backdoor attack.

quantization and inverse quantization can be formalized as

Q(x, qy, qc) =


⌊x(Y)

qy
⌉ × qy,

⌊x(Cb,Cr)

qc
⌉ × qc,

(4)

where ⌊·⌉ is the rounding operation that maps the original
value to its nearest integer. As can be seen from Eq. (4), after
quantization, each quantization result multiplies the corre-
sponding values in the qy or qc to perform the inverse quan-
tization. In this process, some high-frequency components
become zero due to the rounding operation. The larger the
values of the quantization tables, the more information loss.
Considering that all the other operations in JPEG compres-
sion are reversible and lossless, we can translate the task of
learning JPEG compression behavior into the task of learn-
ing the JPEG lossy quantization.

To this end, we jointly optimize the two quantization ta-
bles qy, qc and the loss function of the classifier fθ via back-
propagation. The loss function is defined as

L = ℓ (fθ (x, y)) + ℓ (fθ (B(x), yt)) , (5)
where ℓ(·) is the cross-entropy loss, and B(x) is Eq. (3).

Clearly, the rounding function ⌊·⌉ in Q(·, qy, qc) is not dif-
ferentiable, thus making it incompatible with the joint op-
timization via gradient descent. As a workaround, we use
a differential approximation function ⌊·⌉diff to replace the
original ⌊·⌉. Based on the property of the Dirac delta func-
tion and the analysis in (Biswas et al. 2022), we approximate
the function ⌊·⌉ in the range [−M,N ] as

⌊x⌉ ≈ ⌊x⌉diff =
0∑

n=−M

[
Φ(x−n+

1

2
)−1

]
+

N∑
n=1

Φ(x−n+
1

2
),

(6)
where Φ(x) = 1

1+e−tx is a variant of the sigmoid function.
The approximation precision can be improved by increasing
the value of t, and we empirically set t as 50. The details and
effect of this approximation are shown in the supplementary
material.

When using this approximation to get the gradients of L,
the quantization tables qy and qc, and the model parameter θ
are updated as

q′ = q − sign (∇qL(θ, q)) , s.t. q ∈ [ϵmin, ϵmax] ,

θ′ = θ − η (∇θL(θ, q)) ,

where ϵmin and ϵmax are two hyperparameters used to con-
strain the ranges of values of qy and qc, and η is the learning
rate. We experimentally determine the values of the two hy-
perparameters ϵmin and ϵmax.

Evaluation
Experimental Settings
Dataset. We conduct experiments on three classical image
classification datasets: MNIST1, GTSRB and CelebA. For
CelebA, following the settings of WaNet (Nguyen and Tran
2021), we choose its top three most balanced attributes (i.e.,
Smiling, Mouth Slightly Open and Heavy Makeup) and then
concatenate them to build eight classification classes. The
classifier f is also set to the same settings as WaNet. Specif-
ically, we use Pre-activation Resnet-18 for GTSRB, Resnet-
18 for CelebA, and a 5-Layer CNN model for MNIST. The
details of the datasets and classifiers can be found in supple-
mentary material.
Compared Backdoor Attacks. As the first conditional
backdoor attack, there are no other attacks with the same
triggering paradigm to compare. Thus, we chose Bad-
Nets (Gu et al. 2019), WaNet, BppAttack (Wang, Zhai, and
Ma 2022), and FTrojan (Wang et al. 2022) as baselines,
as they, like ours, rely on poisoning training data and re-
quire the properties of effectiveness, stealthiness, and ro-
bustness. BadNets is a classic and commonly used base-
line. WaNet and BppAttack are two state-of-the-art (SOTA)
spatial-based stealthy backdoor attacks, while FTrojan is a
SOTA frequency-based stealthy backdoor attack. The trig-
ger in BadNets is a white-square with the size of 6× 6. For
WaNet, BppAttack and FTrojan, we directly use their source
codes and reported hyperparameters.
Evaluation Metrics. We use two widely used metrics to
evaluate the effectiveness of different attacks: Benign Ac-
curacy (BA) and Attack Success Rate (ASR). The former
measures the classification accuracy of the classifier on
clean images, while the latter measures the ratio of the poi-
soned images that successfully activate the target label. For
our JPEG-conditioned backdoor attack, the ASR also mea-
sures the ratio of JPEG compressed images (not the poi-
soned images) that successfully activate the target label.

1MNIST consists of single-channel grayscale images, and we
directly operated on this channel with a single quantization table.
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Attack MNIST GTSRB CelebA

BA (%) ASR (%) BA (%) ASR (%) BA (%) ASR (%)

No Attack 99.67 - 99.52 - 79.14 -

BadNets 99.43 100.00 99.40 100.00 78.54 100.00
WaNet 99.52 99.86 99.39 98.78 78.89 99.51
BppAttack 99.36 99.79 99.46 99.96 78.91 99.97
FTrojan 99.34 99.97 99.36 100.00 78.50 99.93
Ours 99.40 99.95 99.48 99.98 78.60 100.00

Table 1: Effectiveness comparison among different back-
door attacks. No attack represents the classification accuracy
of the clean classifier on clean images.
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Figure 3: ASRs of our attack when the inputs are JPEG com-
pressed with different quality factors.

To evaluate the stealthiness of different attacks, following
the previous works (Li et al. 2021a; Zhao et al. 2022), we
adopt three similarity metrics: Peak Signal-to-Noise-Ratio
(PSNR), Structural Similarity (SSIM), and Learned Percep-
tual Image Patch Similarity (LPIPS) (Zhang et al. 2018).
These metrics measure the similarity between the poisoned
and clean images and provide quantitative values to assess
the perceptual difference between them.

Attack Effectiveness
We first test the effectiveness of our attack on the poisoned
images, which are generated by Eq. (3) with the two opti-
mized quantization tables. The BAs and ASRs of our attack
and baselines are calculated under the MNIST, GTSRB, and
CelebA datasets. As seen from Table 1, our attack has very
high ASRs (around 100%) on all three datasets, which is
comparable to other SOTA attacks. Besides, the BAs of our
attack degrade very little (less than 1%) on all datasets.

To verify that the backdoor in our attack can be condi-
tional activated by JPEG compression, we also need to test
the generalization ability of our attack to JPEG compres-
sion (i.e., the ability of the backdoored model that learns the
JPEG compression behavior).

We apply the standard JPEG compression algorithm
to compress clean test images with various quality fac-
tors, ranging from 90 (i.e., slightly compressed) to 10
(i.e., severely compressed), to generate compressed images.
These compressed images are different from the poisoned

Metric BadNets WaNet BppAttack FTrojan Ours

PSNR ↑ 31.56 34.51 40.72 39.55 42.00
SSIM ↑ 0.9983 0.9854 0.9883 0.9847 0.9933
LPIPS ↓ 0.0037 0.0128 0.0021 0.0008 0.0015

Table 2: Stealthiness comparison among different backdoor
attacks on CelebA dataset. A higher PSNR and SSIM, and a
lower LPIPS mean better stealthiness.

Clean BadNets WaNet BppAttack Ours

Im
ag
e

R
es
id
ua
l

FTrojan

Figure 4: Visual effects of the poisoned images generated by
different backdoor attacks (top: clean and poisoned images,
bottom: residuals ×15 magnification).

images. We then calculate their ASRs and show the results
in Figure 3. As observed, our attack can achieve high ASRs
with different compressed images on all datasets. The com-
pressed images with a quality factor of 90 are not signifi-
cantly different from the original clean images, so the ASR
is a little lower (> 97.5%), but for all other cases, the ASRs
are above 99%. These results indicate that the backdoor in
our attack can be activated with a very high probability when
the inputs undergo JPEG compression.

Attack Stealthiness
Table 2 compares the stealthiness of different backdoor at-
tacks using the three metrics (i.e., PSNR, SSIM, and LPIPS)
on CelebA. The results on other datasets can be found
in supplementary material. Obviously, our attack achieves
the highest PSNR, second-highest SSIM, and second-lowest
LPIPS compared to other SOTA stealthy attacks, which indi-
cates the superior stealthiness of our attack. Moreover, Fig-
ure 4 plots the visual effects of poisoned images and their
residuals with clean images for different backdoor attacks.
Notably, the visual stealthiness of these poisoned images is
consistent with our quantitative evaluation results. Our at-
tack generates a poisoned image with an extremely small
residual, making it imperceptible to human observers.

Resistance to Backdoor Defenses
We evaluate the resistance of our backdoor attack against
seven backdoor defenses, including Neural Cleanse (Wang
et al. 2019), STRIP (Gao et al. 2019), Adversarial Neu-
ron Pruning (Wu and Wang 2021), Implicit-Hypergradient-
based Backdoor Unlearning (Zeng et al. 2022), Further-
more, we compare the resistance of different backdoor at-
tacks against some common passive denoising operations.
Neural Cleanse. Neural Cleanse (NC) is a well-known and
effective model-defense method. For each class label of the
model, it reverses engineers the optimal trigger and detects
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Figure 5: Resistance to Neural Cleanse.
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Figure 6: Resistance to STRIP.

Defense MNIST GTSRB CelebA

No Defense 0.9940 / 0.9995 0.9947 / 0.9998 0.7860 / 1.0000
I-BAU 0.9830 / 0.8327 0.9364 / 0.9033 0.7210 / 0.9750

↓Deviation 0.0110 / 0.1668 0.0583 / 0.0965 0.0650 / 0.0250

Table 3: Resistance to I-BAU. The deviation indicates the
decrease in BA / ASR compared to no defense case.

the presence of abnormally small optimal triggers. NC quan-
tifies such anomalies using the Anomaly Index metric. The
model is considered as a backdoored model if any label has
an Anomaly Index greater than 2. As shown in Figure 5, our
attack can bypass NC since the maximum Anomaly Index is
smaller than 2 for all labels across all datasets.
STRIP. STRIP is an online detection method. It detects the
backdoor by evaluating the model’s predictions of perturbed
inputs generated by superimposing different clean images.
It asserts the existence of poisoned images if the predictions
are consistent, which is indicated by low entropy. We run
STRIP on our attack and show the results in Figure 6. For
MNIST and CelebA, the entropy distribution of the poisoned
images is very similar to that of the clean images. For GT-
SRB, poisoned images have even higher entropy than clean
images, which is completely opposite to the criterion relied
upon by STRIP, indicating that our attack can resist STRIP.
I-BAU. Implicit-Hypergradient-based Backdoor Unlearning
(I-BAU) is a novel defense method that alternates between
trigger synthesis and unlearning iteratively. It proposes a
minmax formulation for backdoor removal and utilizes an
implicit hypergradient for resolution. We use I-BAU’s open-
source code and launch it with the SGD optimizer with a
learning rate of 0.001. The defense’s performance over 100
rounds on our attack is shown in Table 3. Although I-BAU
eliminates backdoors in many existing attacks within a sin-
gle round, as stated in the original work, our attack main-
tains a high ASR (> 80%) even after 100 rounds, indicating
I-BAU’s limited resilience against our attack.
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Figure 7: Resistance to ANP.
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Figure 8: Performance of different backdoor attacks under
JPEG compression-based denoising.

ANP. Adversarial Neuron Pruning (ANP) is a defense that
employs adversarial weight perturbation to distinguish back-
doored neurons from benign neurons. It prunes neurons sen-
sitive to adversarial perturbations to purify the backdoored
model. We apply ANP to our attack and halt pruning upon
reaching a predefined threshold of 0.9. Figure 7 shows the
results. Obviously, as the threshold increases, the BAs de-
grade more significantly than the ASRs across datasets, il-
lustrating that ANP is ineffective in mitigating our backdoor.
Denoising by Compression. As previously mentioned, de-
noising operations can inadvertently mitigate invisible and
dynamic triggers in previous stealthy backdoor attacks, de-
spite their strong resistance to existing backdoor defenses.
Given that the JPEG compression can be considered a pas-
sive denoising operation, we first evaluate the resistance of
our attack and the compared attacks in this regard.

We use the JPEG compression algorithm as the input
preprocessing step to compress the poisoned images gen-
erated by different attacks, and then calculate their ASRs.
As shown in Figure 8, the ASRs of the compared attacks
are reduced to varying degrees on GTSRB and CelebA. The
stealthy backdoor attacks (i.e., WaNet, BppAttack and Ftro-
jan) degrade more severely than the visible backdoor attacks
(i.e., BadNets). In contrast, the ASRs of our attack are al-
most unaffected under JPEG compression. For MNIST, as
it consists of single background grayscale images without
much high-frequency information, JPEG compression has
little effect on the ASRs for all attacks.

More experimental results for other denoising-based de-
fenses (i.e., JPEG2000 compression, WEBP compression,
median filter and low-pass filter) can be found in supple-
mentary material.

Pseudo Triggering
Note that the backdoored model of our attack learns the
JPEG compression behavior as the triggering condition
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Triggering Mechanism MNIST GTSRB CelebA

JPEG2000 0.0984 0.0055 0.2808
Color Quantization 0.0984 0.0055 0.2808
Gaussian Noise 0.0984 0.0055 0.2808

Table 4: ASRs of different pseudo triggering mechanisms.
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Figure 9: ASRs of our attack with the fixed quantization ta-
bles when the inputs are JPEG compressed with different
quality factors.

rather than some pixel-level artifacts induced by discarding
frequency information. To verify this effect, we conducted
a pseudo triggering experiment. Specifically, we generate
different pseudo poisoned images using JPEG2000 com-
pression (Christopoulos, Skodras, and Ebrahimi 2000), color
quantization and adding Gaussian noise. We then calculate
their ASRs and show the results in Table 4. It shows that
the ASRs of different pseudo triggering mechanisms are the
same for the same dataset. In addition, all three pseudo trig-
gering mechanisms cannot successfully activate our back-
door, which verifies that the backdoor can only be activated
when the JPEG compression condition is met.

Ablation Studies
Impact of the Joint Optimization Process. To investigate
the impact of the joint optimization process, we design ex-
periments using the fixed quantization tables (i.e., standard
quantization tables with a quality factor of 90 in JPEG) dur-
ing the training process. In this way, we could still train a
backdoored model with a similar BA (99.27%) and ASR
(99.99%) on GTSRB. Then we test the generalization ability
of this attack on JPEG compressed images. As shown in Fig-
ure 9, the attack’s generalization ability to JPEG compres-
sion is much reduced under the new backdoored model. That
is said, without the joint optimization, the model learns the
artifacts as the specific triggers, rather than the exact JPEG
compression behavior as the desired triggering condition.
Impact of the Hyperparameters ϵmin and ϵmax. We eval-
uate the performance of our attack with different ϵmin and
ϵmax on GTSRB. First, We keep the ϵmin as a constant and
set different ϵmax. As shown in Table 5, our attack has a
similar resistance to JPEG compression with different ϵmax.
However, the generalization ability of our attack decreases
with the increase of ϵmax. Next, we keep the ϵmax as a con-
stant and set different ϵmin. As the ϵmin increases, i.e., the
range of constraint of quantization tables shrinks, the ability
of our attack’s generalization and resistance to JPEG com-
pression keeps decreasing. In view of this, we set ϵmin = 2
and ϵmax = 15 in our experiment for all datasets.

ϵmin ϵmax BA (%) Avg. ASR (%)

Poisoned Images Compressed Images

2
15 99.29 99.70 99.67
45 99.30 99.67 84.63
75 99.30 99.95 82.03

5
15

99.30 34.03 33.37
8 99.26 31.16 29.97
11 99.28 23.67 23.53

Table 5: Performance of our attack with different ϵmin and
ϵmax. The Avg. ASR means the averaged ASRs of poi-
soned/compressed images at quality factors from 90 to 10.

Discussions
Analogy to Real World Attacks. Different from previous
backdoor attacks, the conditional backdoor attack does not
rely on the active injection of elaborately-crafted triggers.
Thus it can avoid the degradation of attack success rate
caused by some common denoising operations and can eas-
ily be invoked in real-world scenarios. In this concern, con-
ditional triggering magnifies the threat of backdoor attacks
by attacking the victims as long as the conditions are estab-
lished, which is similar to the worms in network security.
Inadvertent Activation of Our Backdoor. Admittedly, our
JPEG-conditioned backdoor can be inadvertently activated
by normal users through commonly used JPEG compres-
sion, which may expose the backdoor before it gets de-
ployed. However, noting that the conditional backdoor is or-
thogonal to the design of secret triggers like BadNets. Thus,
such inadvertent activation can be eliminated by planting a
backdoor that can be only activated when a secret trigger ap-
pears on the input image and the input image is subsequently
JPEG compressed. We implement such a secret conditional
backdoor attack and the experimental results in supplemen-
tary material demonstrate that this native workaround is
valid. Moreover, as shown in Table 5, the generalization
ability of our attack to JPEG compression decreases with
the increase of ϵmax. Thus, by controlling the value of ϵmax,
we can also control the possibility of the JPEG-conditioned
backdoor being inadvertently activated. In this way, we can
keep the occurrence of “users inadvertently activate back-
door” within a reasonable range. More detailed experiments
about ϵmax can be found in supplementary material.

Conclusion
This work moves one step further in assessing the vulnera-
bilities of DNN models by proposing a conditional backdoor
attack. In particular, the universally used JPEG compression
is used as the triggering condition. The JPEG-conditioned
backdoor attack is made possible by jointly optimizing the
compression operator and the target model’s loss function.
Extensive experimental results validate that the backdoor
will be and can only be automatically activated when inputs
undergo JPEG compression. Besides the conditional trigger-
ing feature, our attack is still effective, stealthy, and robust.
We believe this new triggering paradigm offers a new realm
of backdoor attacks and motivates further defense research.
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