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Abstract

The rapidly changing landscape of technology and industries
leads to dynamic skill requirements, making it crucial for em-
ployees and employers to anticipate such shifts to maintain
a competitive edge in the labor market. Existing efforts in
this area either rely on domain-expert knowledge or regarding
skill evolution as a simplified time series forecasting prob-
lem. However, both approaches overlook the sophisticated
relationships among different skills and the inner-connection
between skill demand and supply variations. In this paper, we
propose a Cross-view Hierarchical Graph learning Hypernet-
work (CHGH) framework for joint skill demand-supply pre-
diction. Specifically, CHGH is an encoder-decoder network
consisting of i) a cross-view graph encoder to capture the
interconnection between skill demand and supply, ii) a hi-
erarchical graph encoder to model the co-evolution of skills
from a cluster-wise perspective, and iii) a conditional hyper-
decoder to jointly predict demand and supply variations by
incorporating historical demand-supply gaps. Extensive ex-
periments on three real-world datasets demonstrate the supe-
riority of the proposed framework compared to seven base-
lines and the effectiveness of the three modules.

Introduction
The rapid advancement of information technology (e.g.,
5G, VR, and generative AI) has significantly reshaped the
skill requirements. According to the released reports, the
required skill set in the job market has changed by about
25% since 2015 (Communications 2022). Take machine-
learning-related skills for example, there has been a boom-
ing demand for deep-learning-related skills since 2014 and
Large Language Model (LLM) (Radford et al. 2018) related
skills in the past year, but declining demand on classic sta-
tistical learning skills, as illustrated in Figure 1. Such shifts
in skill requirements have led to a significant imbalance of
skill demand and supply in various industries, commonly re-
ferred to as the skill gap (Larsen et al. 2018), which may
result in unemployment and business failures as industries
evolve (Kim, Hsu, and Stern 2006; McGuinness and Ortiz
2016; Donovan et al. 2022). It is crucial to forecast and ana-
lyze the skill supply and demand to help various stakehold-
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Figure 1: Real-world skill demand variation of machine-
learning related jobs, data ranged from 2015 to 2023.

ers anticipate and proactively handle the skill gap. For in-
stance, job seekers can plan relevant skill-learning paths in
advance, companies can optimize their workforce planning
strategies, and policymakers can develop policies to guide
market development.

Existing studies on skill demand and supply predic-
tion can be broadly categorized into expert-based and
learning-based methods. Expert-based methods analyze skill
shifts by exploring survey data (Belhaj and Tkiouat 2013).
Such methods usually deliver coarse-grained forecasting re-
sults via expert domain knowledge (Bughin et al. 2018).
Learning-based methods predict more fine-grained skill
shifts by exploiting patterns and implications based on ma-
chine learning techniques. For example, Xu et al. (Xu et al.
2018) measure the popularity of skills via topic model and
Macedo et al. (de Macedo et al. 2022) predict skill demands
by adopting the recurrent neural network. However, both
classes of approaches overlook the sophisticated demand-
supply relationships among different skills grounded in
structural and contextual domains. In this work, we inves-
tigate the joint prediction of skill demand and supply by
explicitly modeling the collaborative relationships between
different skills.

However, this is a non-trivial task due to the following
technical challenges. First, the demand and supply varia-
tion of each skill in the labor market is correlated yet di-
versified. For instance, the breakthrough of LLM led to a
great demand for prompt engineering, and the supply of this
skill may slightly be lagged behind the demand to let tal-
ents familiar with it. Capturing the interconnection between
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demand and supply variations perhaps can enhance one an-
other predictive tasks. Second, the demand-supply variation
of different skills is not standalone. Similar skills (e.g., C++
and Java) may share an evolution trend conditioned on the
macro-level technology advancement and economic status.
The challenge is identifying and preserving the synchro-
nized evolution patterns of different skills to improve over-
all prediction accuracy. Third, despite the joint modeling
paradigm sharing knowledge between skill demand and sup-
ply variations, the demand and supply predictions are still
made separately. How to collectively output skill demand-
supply predictions to further calibrate supply and demand
predictions is another challenge.

In this paper, we propose a Cross-View Hierarchical
Graph Learning Hypernetwork (CHGH) framework to pre-
dict skill supply and demand variations jointly. Specifi-
cally, the CHGH framework consists of a cross-view graph
encoder module that enhances skill demand and supply
representations by capturing their asymmetric relationship
through an inter-view adaptive matrix. Besides, we devise a
hierarchical graph encoder that models the high-level skill
co-evolve trends by harnessing the cluster-wise skill varia-
tion correlation. Furthermore, we propose a hyper-decoder
that outputs skill variations conditioned on the historical
skill demand-supply gaps. By incorporating the paired rela-
tionship between the supply and demand of each skill, the
hyper-decoder derives more accurate predictions to better
support downstream analysis. The contributions of the pa-
per are summarized as follows:

• To our knowledge, this is the first work that investigates
the skill demand-supply joint prediction problem. By an-
ticipating future skill demand and supply variations, em-
ployees and employers can effectively identify potential
skill gaps and address them accordingly.

• We propose a cross-view hierarchical graph learning with
hyper-decoder framework that simultaneously captures
inter-dependencies between the skill supply and demand
views, as well as the asymmetric cluster-wise correlation
between skills.

• We evaluate the effectiveness of the proposed ap-
proach on three real-world datasets, and the experimen-
tal demonstrates the superiority of CHGH compared with
seven baselines.

Preliminaries
In this section, we first introduce the real-world datasets
used in this paper. Then, we formally define key concepts
used in our task. Finally, we present the problem formula-
tion of skill demand-supply joint prediction.

Data Description
The real-world dataset used in this work is extracted from
an online recruitment platform, consisting of 2,254,733 job
postings and 3,545,908 work experience descriptions. We
divide the datasets into three main categories following the
Global Industry Classification Standard (GICS) (Phillips
and Ormsby 2016), including Information Technology (IT),

Datasets IT FIN CONS
# of job description 902,442 645,899 692,163

# of work experience 363,376 223,330 455,120

Table 1: Statistics of datasets.

Finance (FIN), Consumer Discretionary and Consumer Sta-
ples (CONS), over the period from September 2017 to
March 2019. The details of the dataset are illustrated in Ta-
ble 1. In identifying job skills, we combined a list from Emsi
Burning Glass (de Macedo et al. 2022) with our own addi-
tional skills, ensuring a comprehensive mix that addresses
current industry trends. We preserve 7,446 skills that exist
in the dataset by removing the rest that are too sparse in the
job description. The occurrence relationship of skills in the
job description is reported in Figure 2a.

Skill Supply and Demand Quantification
To quantify skill supply and demand shift, we first denote
the skill set as K and discretize the investigated period into
equal time steps T . The job description jd and work expe-
rience we sets located at time step t ∈ T are denoted as
Jt andWt, respectively. Then, we define the Demand share
and Supply share to measure the relative importance of skills
skill demand and supply, which indicates the proportion of a
particular skill that appeared in the job description and work
experience (de Macedo et al. 2022).

Definition 1 Demand share. Demand share Dt
k is defined

as the percentage of job descriptions that required the skill
k ∈ K at the given time step t ∈ T . The indicator function
1k∈jd is used to represent whether the skill k appears in
the job description. |Jt| represents the total number of job
descriptions at time step t.

Dt
k =

Σjd∈Jt
1k∈jd

|Jt|
. (1)

Definition 2 Supply share. Supply share Stk is defined as
the percentage of work experience that contained the skill
k ∈ K at the time step t ∈ T . |Wt| represents the total
number of work experience at time step t.

Stk =
Σwe∈Wt

1k∈we

|Wt|
. (2)

In this work, we use one month as the basic time step
to derive demand share and supply share. Figure 2b depicts
the distribution of skill demand-supply relationships. We can
observe a strong positive correlation between skill demand
and supply, which validate the necessity of joint demand-
supply prediction. We further quantify the demand share and
supply share difference.

Definition 3 Skill gap. The skill gap SGt
k for skill k at the

time step t is defined as SGt
k = Dt

k − Stk.

The skill gap represents the demand and supply imbal-
ance in the labor market, indicating the scarcity or abun-
dance of skill k. Then we quantify the correlation between
skills based on the co-occurrence information.
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Figure 2: Skill distribution on IT dataset.

Definition 4 Skill demand graph. Skill demand relation
graph is defined as GD = (V , ED,AD). This graph rep-
resents the co-occurrence of skills in all job descriptions
J of the training data. V = K is the set of skills, and
ED contains edges with weights that signify the normal-
ized co-occurrence of skills in J . AD

i,j is the corresponding
weighted adjacency matrix

AD
i,j =

{
Ri,j,J , if Ri,j,J > ϵ

0, otherwise
, (3)

Ri,j,J =
Σjd∈J 1ki,kj∈jd

Σjd∈J 1ki∈jd
, (4)

where Ri,j,T is the normalized co-occurrence ratio of skill
ki and kj , and ϵ is a occurrence threshold.
Definition 5 Skill supply graph. Skill supply relation graph
is defined as GS = (V , ES ,AS). This graph represents the
co-occurrence of skills in all work experience descriptions
W of the training data. It is constructed in a similar way as
GD, by utilizing RW

i,j as normalized co-occurrence ratio in
Eq. (4). AS

i,j is the weighted adjacency matrix

AS
i,j =

{
Ri,j,W , if Ri,j,W > ϵ

0, otherwise
. (5)

Problem Statement
Given the demand sequence of all skills DT

K =

{D0
K,D1

K, ...Dt
K}, where Dt

K ∈ R|K|×1 denotes the de-
mand share at time step t, the supply sequence STK ,
and skill gap historical sequence in time series SGT

K =

{SG0
K, SG

1
K, ...SG

t
K} with elements SGt

K ∈ R|K|×1. Our
task is to utilize the skill co-occurrence graphs from the sup-
ply (GS ) and demand (GD) views to jointly predict the de-
mand and supply share of each skill k in the next time step,

Ŷ t+1
D , Ŷ t+1

S ← F(STK ,DT
K , SGT

K,GS ,GD), (6)

where Ŷ t+1
D , Ŷ t+1

S are the estimated supply and demand
share of all skills at time step t+ 1.

Methodology
In this section, we present the CHGH framework in detail.
As depicted in Figure 3, CHGH follows the encoder-decoder
architecture comprising three major modules.

Cross-view Graph Encoder (CGE)
Existing studies on skill variation forecasting solely con-
sider the dependencies in either demand or supply view. In
fact, the demand and supply variation of skills are corre-
lated yet diversified. To share the knowledge between de-
mand and supply graph views (Khan and Blumenstock 2019;
Liang et al. 2020), we propose the cross-view graph encoder,
which consists of three components: skill temporal encod-
ing, cross-view relation learning, and cross-view augmenta-
tion. Specifically, a skill temporal encoding block initially
captures the temporal dependency within skill supply and
demand sequences. After that, a cross-view relation learning
block is invoked to identify the intricate asymmetric skill re-
lationships between the supply and demand views. Finally,
we employ a cross-view augmentation block to propagate
knowledge from one view to another through the learned
cross-view asymmetric skill relationships.

Skill temporal encoding. We first convert each skill k ∈
K to a d-dimensional vector ek via an embedding matrix
E ∈ R|K|×d, where d is the dimension of each skill embed-
ding. Take the supply sequence STk ∈ R|T |×1 of skill k for
illustration, we further convert it to a matrix ST

k ∈ R|T |×d

via a two-layer MLP. Then, we use two Long Short Term
Memory (LSTM) layers to capture the temporal shifts,

ht
k = LSTM(St

k,h
t−1
k ), (7)

where St
k is the supply embedding derived in time step t and

h0
k is initialized by the skill embedding ek. After that, we

adopt the attention mechanism Attn(·) (Wang et al. 2016)
that adaptively reweighting the essential temporal steps for
different skills to obtain the supply sequence-level represen-
tation,

Hs
k = [h1

k; ...;h
T
k ],

Attn(Hs
k, ek) = Softmax

(
Hs

ke
⊤
k /
√
d
)
,

sk = Attn(Hs
k, ek)

⊤Hs
k,

(8)

where [; ] denotes the row-wise concatenation. Finally, we
use an MLP layer to fuse the skill embedding and supply
sequence representation to obtain the supply representation
of the skill,

ŝk = MLP([ek||sk]WS), (9)
where WS ∈ R2d×d is a learnable parameter, || denotes the
column-wise concatenation. Given the demand matrix DT

k ,
we obtain skill demand representation d̂k in the same way.

Cross-view relation learning. The cross-view relation
learning block derives cross-view skill relationships be-
tween the supply and demand views by calculating the sim-
ilarity score given the skill supply and demand representa-
tions. The adaptive matrix Ap ∈ R2|K|×2|K| is defined as

ES = [ŝ1; · · · ; ŝ|K|], ED = [d̂1; · · · ; d̂|K|],

XA = tanh(α[ES ;ED]), XB = tanh(β[ES ;ED]),

Ap = σ(Softmax(σ(X⊤
AXB −X⊤

BXA))− δ),
(10)
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high-level co-evolution patterns between similar skills. (3) The conditional hyper-decoder jointly optimizes the supply and
demand decoders based on historical skill gap tendencies.

where ES and ED are the embedding matrices derived from
the skill temporal encoding block, α, β ∈ R denote learnable
scalars, σ stands for ReLU function, and δ is a hyperparam-
eter to regulate the saturation of the adjacency matrix.

Cross-view augmentation. Leveraging the adaptive ma-
trix Ap, which encapsulates the cross-view asymmetric re-
lationships, we further augment the cross-view skill de-
mand and supply representations along with the intra-view
skill relationships (i.e., matrices AD and AS ). We devise
a two-layer graph convolution operation (Kipf and Welling
2016) to derive skill supply and demand representations.
The cross-view representation is enhanced in line with the
approach proposed by (Wu et al. 2019b),

Ain =

[
AS 0
0 AD

]
,

[ẼS ; ẼD] = Ap[ES ;ED]Wp +Ain[ES ;ED]Win,

(11)

where [ẼS ; ẼD] denotes the learned embedding from cross-
view graph encoder. Wp, Win ∈ Rd×d are learnable pa-
rameters. We denote Ẽ = [ẼS ; ẼD] in the following sec-
tions for the sake of simplicity.

Hierarchical Graph Encoder (HGE)
As aforementioned, the demand and supply of different
skills may evolve synchronously. For example, the demand
for C++ and Java may boom under the policy of digital
transformation. On the other hand, other skills, such as ac-
counting, may not share such a co-evolve pattern under the
policy guidance. In this part, we introduce the hierarchical
encoder to capture the high-level skill co-evolve patterns to
further enhance the skill relationship modeling.

Hierarchical clustering. To capture the cluster-wise trend
among skills, we adopt Diffpool (Ying et al. 2018) to learn
the cluster assignment in an end-to-end way. Specifically, we
define an soft assignment matrix, S ∈ R2|K|×c, where c is a
hyper-parameter determining the number of trend clusters.
The assignment matrix is derived by

S = Softmax(ẼW⊤
S ), (12)

where S describes the mapping relationship between
bottom-layer skills and top-layer trend clusters, WS ∈ Rc×d

is denoted as a mapping function that maps the node to a
specific cluster. Then, we aggregate the connected skill rep-
resentations to derive the cluster representations,

Xh = S⊤Ẽ. (13)

Hierarchical augmentation. Then, we integrate the
learned cluster representations back into the skill represen-
tations to enhance the skill representations.

Ê = Softmax
(
ẼX⊤

h /
√
d
)
Xh, (14)

where Ê ∈ R2|K|×d denotes the learned skill representations
enhanced by the hierarchical encoder, which including both
ÊS and ÊD.

As clustering skills into appropriate trend clusters is a
non-convex optimization problem, we introduce a clustering
loss function (Ying et al. 2018),

Lcluster =
1

2|K|

2|K|∑
i=1

H(Si),

H(Si) = −
c∑

j=0

Si,j lnSi,j ,

(15)
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where H denotes the entropy functions and Si,j denotes the
probability that skill supply and demand trend i belongs to
the j-th trend cluster. The loss function forces clear distinc-
tions between intra-cluster and inter-cluster skill variations.

Hyper-Decoder
Despite the cross-view encoder and the hierarchical graph
encoder preserving cross-view multi-level skill correlations,
separately output skill demand and supply predictions may
derive inaccurate skill gaps and lead to biased conclusions.
We further elaborate on this problem with the following mo-
tivation example.

Example 1 Consider a machine learning engineer deciding
on acquiring “Prompting” skill in the forthcoming months.
If the predictive model underestimates the number of pro-
fessionals who already have this skill, but correctly antici-
pates its rising demand, the engineer might face a saturated
job market. Despite their investment in learning, they could
struggle to find a competitive advantage for themselves to
secure desired positions.

In this work, we propose to incorporate historical skill
gaps as auxiliary information to further calibrate supply
and demand predictions. Specifically, inspired by the suc-
cess of hypernetwork in generating generalizable parameter
weights based on specific conditions (Pilault, Elhattami, and
Pal 2021; Han et al. 2021), we propose a conditional hyper-
decoder to force the framework collectively make predic-
tions by considering the demand-supply gap. By encoding
the prior skill gap sequence SGT

k as condition ct+1
k , we gen-

erate the weight Θk for the hyper-decoder as follows,

ct+1
k = LSTM(SGt

k, c
t
k),

Θk = P(ct+1
k ,Φ),

(16)

where the LSTM layer transforms the skill gap sequence into
conditions for supply and demand decoders, and c0k is initial-
ized by skill embedding, ek. P(·) is the hyper-network that
generates the weight for the MLP decoder given the condi-
tion ct+1

k , and the gradients are computed with respect to the
weight of hypernet Φ. Θk is the generated decoder parame-
ter for the skill k.

It’s worth noting that updating the conditional hyper-
decoder necessitates a carefully adjusted learning rate. An
inappropriate learning rate may lead to slow convergence or
exploding gradient issues. Thus, we normalize the condition
ct+1
k and introduce another three-layer MLP decoder as a

supportive function to stabilize the training process,

ŷSk = Softmax(MLP(ēSk ,Θk) +MLP(ēSk )),

ŷDk = Softmax(MLP(ēDk ,Θk) +MLP(ēDk )),
(17)

where ŷSk , ŷ
D
k represent our prediction goals for the next

timestamp, and Θk is the replaced weight of MLP. ēSk and
ēDk are the aggregated representations learned from cross-
view graph encoder and hierarchical graph encoder, i.e.,
ēSk = ẽSk + êSk , ēDk = ẽDk + êDk , where ẽSk ∈ ẼS , ẽDk ∈ ẼD,
êSk ∈ ÊS , êDk ∈ ÊD.

Optimization
Following (Guo et al. 2022), we discretize the skill demand
and supply into five trend categories, i.e., high, medium-
high, medium, medium-low, and low. Please refer to Ap-
pendix for a detailed processing procedure. The predictive
loss is defined as

Lmain = − 1

2|K|

|K|∑
k=1

m∑
j=1

ySk,j log ŷ
S
k,j + yDk,j log ŷ

D
k,j , (18)

where yDk,j and ySk,j are the ground truth labels of the skill k
and transformed from the ground truth supply and demand
shares in time period t+1. Take the demand label for exam-
ple, yDk is a one-hot vector, and yDk,j = 1 if the demand share
Dt+1

k locates at the j-th trend class, otherwise yDk,j = 0. m
denotes the number of trend classes.

The overall training objective of CHGH is to minimize

L = Lmain + λ1Lcluster + λ2||θ||22, (19)

where Lmain is predictive loss, Lcluster is the cluster assign-
ment loss as defined in Eq. (15), and ||θ||22 denotes the L2
regularization of learned parameters. λ1 and λ2 are the ratio
of the clustering loss and the regularizer.

Experiments
In this section, we conduct extensive experiments to evalu-
ate the effectiveness of our proposed framework. The source
code of CHGH and all baselines are available online1.

Experimental Setup
Data Processing and Evaluation metrics. For evalua-
tion, we split each dataset described in Section into train-
ing, validation, and testing subsets with a ratio of 8:1:1. In
our study, we formulate the demand and supply forecasting
task as a classification problem. Our primary evaluation met-
rics include accuracy (ACC), weighted F1-score (F1), and
the area under the receiver operating characteristic (AUC).
We particularly underscore the importance of joint accuracy
(J-ACC) as it represents the overall correctness of supply
and demand predictions for a given skill. The definition of
J-ACC is provided in Appendix. The hyper-parameters and
implementation details are reported in Appendix.

Baselines. We compare CHGH with the following seven
baselines and divide them into three classes:
• Statistical Time Series Model: ARIMA (Box and Pierce

1970) is a classical time series prediction model by
taking differencing and moving the average into auto-
regression. Vector Auto-Regressor (Stock and Watson
2001) is a multivariate regressive model by capturing the
relationship among variables.

• Recurrent-based Model: Long-Short Term Memory
(LSTM) (Hochreiter and Schmidhuber 1997) introduces
the forget gate and output gate to RNN to solve the van-
ishing gradient problem.
1https://github.com/vincent40416/Skill-Demand-Supply-Joint-

Prediction
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Datasets IT FIN CONS

Models ACC F1 AUC J-ACC ACC F1 AUC J-ACC ACC F1 AUC J-ACC

ARIMA 0.3294 0.3314 0.5809 0.1161 0.3226 0.3256 0.5766 0.1072 0.3343 0.3375 0.5839 0.1140
VAR 0.3324 0.3264 0.5827 0.1170 0.3190 0.3216 0.5744 0.0997 0.3366 0.3424 0.5854 0.1049
LSTM 0.4864 0.4812 0.7878 0.2361 0.5058 0.5014 0.7960 0.2555 0.4810 0.4751 0.7852 0.2278
Transformer 0.4583 0.4544 0.7618 0.1893 0.4847 0.4818 0.7778 0.2340 0.3995 0.3927 0.7103 0.1675
Autoformer 0.3899 0.3700 0.7125 0.1540 0.3593 0.3314 0.6940 0.1312 0.3834 0.3614 0.7104 0.1476
Wavenet 0.6170 0.6163 0.8867 0.3816 0.5914 0.5919 0.8683 0.3567 0.6702 0.6727 0.9157 0.4491
MTGNN 0.6061 0.6040 0.8688 0.3881 0.6621 0.7044 0.9209 0.4302 0.6086 0.6085 0.8658 0.3522
Ours 0.6777 0.6784 0.8968 0.4674 0.7227 0.7229 0.9234 0.5390 0.7704 0.7713 0.9398 0.6236

Table 2: Overall performance comparison. The best results among all the models are highlighted in bold. The best baseline
results are marked by underline.

Models ACC F1 AUC J-ACC

Static Graph 0.5398 0.5378 0.8372 0.2944
+ Adaptive Graph 0.5724 0.5684 0.8638 0.3333
+ CGE 0.6179 0.6160 0.8814 0.3980
+ HGE 0.6596 0.6563 0.9082 0.4447
+ Hyper-Decoder 0.6777 0.6784 0.8968 0.4674

Table 3: Ablation study of each module on IT dataset.

• Transformer-based model: Transformer (Vaswani et al.
2017) adopts self-attention mechanism along with po-
sitional encoding. AutoFormer (Wu et al. 2021) intro-
duces series decomposition blocks to capture series peri-
odicity in long sequence prediction.

• Graph Neural Network based multivariate model:
Wavenet (Wu et al. 2019b) uses graph convolutions
and temporal 1D convolutions for spatio-temporal rela-
tion modeling. MTGNN (Wu et al. 2020) exploits uni-
directed dependencies among variables with mix-hop
propagation to model the spatio-temporal dependencies.

Performance Comparison
Table 2 presents the overall performance comparison of
various models across three different datasets: Informa-
tion Technology (IT), Financial Industry (FIN), and Con-
sumer Discretionary and Consumer Staples (CONS). The
results lead us to the following observations. First, our pro-
posed model outperforms all the baseline models across all
datasets on all the evaluation metrics, demonstrating the ef-
fectiveness of our CHGH framework on skill supply de-
mand joint prediction. Moreover, traditional time series fore-
casting models yield lower performance across all datasets
and metrics, and the models based on neural networks
demonstrate a significant improvement over traditional mod-
els. Furthermore, it is worth noting that the Recurrent-
based method outperforms the Transformer-based meth-
ods in these datasets since the Transformer-based meth-
ods mainly focus on tackling long-horizon auto-correlation
while overlooking the trend of variables. This outcome un-
derscores the importance of the Recurrent-based model.

Besides, the results of Wavenet and MTGNN outperform
statistical- and recurrent-based models. This is attributed to

their ability to propagate information through adaptive adja-
cency matrices grounded in skill embedding. Our proposed
model further achieves noticeable improvement by preserv-
ing the demand-supply relationship and cluster-wise skill re-
lationships, which were overlooked in previous studies.

Ablation Study
To delve deeper into the contributions of each component of
our framework, we conducted an ablation study by gradu-
ally introducing designed modules into a basic model un-
til forming the complete CHGH model. The variants of
the model are as follows: Static Graph is the basic model
which propagates the embedding learned from Skill En-
coder based on fixed co-occurrence matrices and uses the
plain MLP decoder. Adaptive Graph introduces the adap-
tive graph learner to generate an adjacency matrix on de-
mand and supply views separately. Cross-view Graph En-
coder (CGE) introduces asymmetric relations between de-
mand and supply views to enhance skill representations (re-
fer to Eq. (11)). Hierarchical Graph Encoder (HGE) fur-
ther involves cluster-wise skill trend information (refer to
Eq. (14)). Hyper-Decoder introduces the Hyper-decoder
conditioned on historical skill gap sequences to enhance the
joint prediction (refer to Eq. (17)). This represents the com-
plete framework of CHGH.

As evident from Table 3, while introducing static and
adaptive graphs offers performance improvements over
naive sequential models, it is the cross-view learning frame-
work that significantly boosts prediction results. The cross-
view learning framework, which interchanges the relations
between the demand and supply views, enhances the ac-
curacy of the adaptive graph. The hierarchical graph en-
coder, designed to capture high-level trend information, fur-
ther augments the accuracy. Lastly, introducing the condi-
tional hyper-decoder showcases a marked improvement, es-
pecially in joint prediction accuracy, which indicates the ef-
fectiveness of joint prediction conditioned on historical skill
gaps. The ablation study on other datasets is in Appendix.

Parameter Sensitivity
We present a sensitivity analysis of CHGH. We report ACC,
F1, and AUC on the IT dataset.

First, we vary δ, which regulates the saturation of the edge
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Figure 4: Parameter sensitivity on IT dataset.

generation, from 0.0001 to 0.5. A higher value implies that
the generated edge becomes less. Figure 4a illustrates that
when setting too large δ, the Aadp is likely to become so
sparse that there exists no connection between views. Be-
sides, when setting δ too small, the connection will reach to
near fully connected graph, also degrading the performance.

Then, we vary d, the dimension of the skill embed-
ding, from 4 to 64. As shown in Figure 4b, we observe
that small dimension is insufficient to learn informative
embedding, while high embedding dimension risks over-
parameterization, causing the model to overfit to the dataset.

Case Study
As illustrated in Figure 5, there is a noticeable increase in
both supply and demand in the Natural Language Process-
ing (NLP) domain around the time of BERT model publica-
tion by Google in October 2018 (Devlin et al. 2018). Consid-
ering other concurrent factors that might have influenced the
trend, many companies recognized the potential applications
and advancements associated with BERT and other simi-
lar models, leading to increased interest in the field. Based
on the prediction results of our model, there is an expected
rise in both supply and demand for Deep Learning and NLP
skills, which is consistent with observed real-world scenar-
ios. Conversely, skills such as HTML, primarily associated
with web development, do not appear to follow the same
trend as NLP and Deep Learning, facing an oversupply after
October 2018. Overall, the study illustrates how our model
facilitates users in selecting suitable skills to learn.

Related Works
Skill supply and demand analysis. Traditional skill
demand-supply analysis primarily involves statistical meth-
ods with expert knowledge to understand the pattern of
transition of skills. Some researchers analyzed the skill
demand shift caused by technology advancement (Bughin
et al. 2018) and identified skill obsolescence (De Grip
and Van Loo 2002) based on surveys. Due to the increas-
ing usable data resources from online recruitment services,
machine-learning-based models emerged as a powerful tool
for substituting traditional statistic models. Xu et al. (2018)
measures the popularity of skills with the topic model
across various job criteria, such as company size and salary.
de Macedo et al. (2022) adopted recurrent neural network
in skill demand prediction. Despite the existence of research
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Figure 5: Visualization of ground truth and predicted skill
demand and supply variations.

on skill-level supply (Belhaj and Tkiouat 2013) and demand
prediction (de Macedo et al. 2022), they fail to address the
connection between demand-supply in the predicting model.
Besides, there are studies that delve into company-position-
level analyses of supply and demand. These research efforts
model the competitive nature of recruitment strategies em-
ployed by various companies (Wu et al. 2019a; Zhang et al.
2021; Guo et al. 2022; Qin et al. 2023).

Graph neural network. Graph neural networks received
significant attention from academia and industry owing
to their capability on learning non-Euclidean relation-
ships (Shih, Sun, and Lee 2019; Wu et al. 2023; Zheng
et al. 2021, 2023). The existing work could be divided into
two categories, spectral-based methods (Defferrard, Bres-
son, and Vandergheynst 2016; Wu et al. 2019b) and spatial-
based methods (Kipf and Welling 2016; Hamilton, Ying,
and Leskovec 2017; Velickovic et al. 2017). The former
adopted the message-filtering process and the latter follow
the message-passing rule to aggregate information. In this
work, we employ the GNN to facilitate information propa-
gation across views and capture skill variation correlations.

Conclusion
In this work, we investigate the skill demand-supply joint
prediction task, empowering employees and employers to
anticipate future skill demand and supply variations and ad-
dress potential skill gaps accordingly. To tackle the inher-
ent challenges of this task, we proposed the CHGH frame-
work. Specifically, a cross-view graph encoder is proposed
to capture the inherent relationships between the skill sup-
ply and demand graph views. Furthermore, a hierarchical
module was used to identify and preserve high-level skill
trends that were caused by technological advancements or
policy changes. We also constructed a conditioned hyper-
decoder to calibrate supply and demand predictions by ex-
ploiting historical skill gaps as auxiliary signals. Extensive
experiments demonstrated the superiority of CHGH against
seven baselines, and the ablation study showed the effective-
ness of each proposed module. By bridging the gap between
employees’ skills and industry requirements, this work facil-
itates a better alignment between individuals and the evolv-
ing labor market requirements.
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Mathematical Notation
Symbol Description

K Skill sets.
t Timestamp.
T Time range T = {0, 1, ...t}.
Jt Job description at time t.
Wt Work experience at time t.
Dt

k Demand share of skill k at time t.
St
k Supply share of skill k at time t.

SGt
k Skill gap of skill k at time t.

GD Skill demand relation graph.
AD Adjacency derived from GD .
GS Skill supply relation graph.
AS Adjacency matrix derived from GS .
Ŷ t+1
D Estimated target of demand share

Ŷ t+1
S Estimated target of supply share

W∗ Model parameters
E Embedding derived from skill encoder.
Ap Learned adjacency matrix
Ain Combined intra-view adjacency matrix
Ẽ Skill embedding derived from cross-view graph

encoder.
c Number of clusters.
S Assignment matrix.
Xh Trend embedding.
Ê Skill embedding derived from hierarchical graph

encoder.
ct+1
k Conditions of hyper-decoder.

ēD
k Demand embedding as input of hyper-decoder.

ēS
k Supply embedding as input of hyper-decoder.

yD
k Predicted demand share of skill k.

yS
k Predicted supply share of skill k.

Discretizing Algorithm
The algorithm maps the demand share prediction goal yDk to
discrete classes, the detail of the algorithm is formulated as:

stdk = STD(DT
k ),

D̄k =
t∑

i=1

Di
k,

D̂t+1
k =

Dt+1
k − D̄k

stdk
,

D̂t+1
K = {D̂t+1

0 , D̂t+1
1 , . . . , D̂t+1

|K| },

(20)

where STD(∗) calculates the standard deviation of the se-
quence. After sorting D̂t+1

K in ascending order, as D̃t+1
K , we

divide them into n classes with an equal number of elements
in each class. The classes is represented as C1, C2, . . . , Cn.
which is formulated as:

D̃t+1
K = {D̃t+1

0 , D̃t+1
1 , . . . , D̃t+1

|K| },

D̃t+1
0 ≤ D̃t+1

1 ≤ · · · ≤ D̃t+1
|K| ,

Ci = {D̃t+1
(i−1)×n

k
, D̃t+1

(i−1)×n
k +1, . . . , D̃

t+1
i×n

k −1},

(21)

where n is set to five trends in our experiment, represent-
ing high, medium-high, medium, medium-low, and low. The
ground truth yDk,i = 1 if D̂t+1

k ∈ Ci, otherwise yDk,i = 0.

Models ACC F1 AUC J-ACC

Static Graph 0.4546 0.4348 0.7771 0.2230
+ Adaptive Graph 0.5826 0.5784 0.8627 0.3615
+ CGE 0.6839 0.6831 0.9135 0.4833
+ HGE 0.7218 0.7220 0.9170 0.5158
+ Hyper-Decoder 0.7227 0.7229 0.9234 0.5390

Table 4: Ablation study of each module on FIN dataset.

Models ACC F1 AUC J-ACC

Static Graph 0.5183 0.5135 0.8177 0.2773
+ Adaptive Graph 0.5660 0.5628 0.8509 0.3242
+ CGE 0.7167 0.7172 0.9237 0.5414
+ HGE 0.7440 0.7441 0.9328 0.5800
+ Hyper-Decoder 0.7704 0.7713 0.9398 0.6236

Table 5: Ablation study of each module on CONS dataset.

ySk is discretized in a similar way based on the supply share
sequence.

Joint Accuracy
To verify that both supply and demand are correctly pre-
dicted. We use ySk and ŷSk as the true and predicted labels
for the supply of the kth skill, yDk and ŷDk be the true and
predicted labels for the D goal of the kth instance.|K| is the
total number of instances. Define the indicator function I as:

I(ySk , ŷ
S
k , y

D
k , ŷDk ) =

{
1 if ySk = ŷSk and yDk = ŷDk
0 otherwise

.

(22)
The joint accuracy (J-ACC) is then given by:

ACC =

∑|K|
k=1 I(y

S
k , ŷ

S
k , y

D
k , ŷDk )

|K|
. (23)

Implementation Details
For hyper-parameters, we choose the number of trend types
as 5, the minimum length of sequences as 5, the embedding
dim d as 32, the number of clusters c is 100, the head num-
ber of multi-head attention as 4, the number of LSTM layers
as 3, and the output dimension of any other multi-layer per-
ceptron as 32. We use Adam Optimization with a learning
rate of 1e-3. The dropout is set to 0.3. The reducing rate of
the learning rate scheduler is 0.1, step as 50. λ1, λ2 are set
as 1e-5. We run each method 5 times and report the aver-
age results. The model is run on the machine with Intel(R)
Xeon(R) Gold 5118 CPU @ 2.30GHz, NVIDIA GeForce
RTX 3090 with 24G memory. The operating system is Cen-
tos Linux 7 (Core).

Ablation Study
The ablation study on the other dataset is shown in Table 4
and 5. The results show the same tendency as discussed in
the study, indicating the effectiveness of the designed mod-
ule across all the datasets.
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