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Abstract

With the boom of Large Language Models (LLMs), the re-
search of solving Math Word Problem (MWP) has recently
made great progress. However, there are few studies to exam-
ine the robustness of LLMs in math solving ability. Instead of
attacking prompts in the use of LLMs, we propose a MathAt-
tack model to attack MWP samples which are closer to the
essence of robustness in solving math problems. Compared
to traditional text adversarial attack, it is essential to pre-
serve the mathematical logic of original MWPs during the at-
tacking. To this end, we propose logical entity recognition to
identify logical entries which are then frozen. Subsequently,
the remaining text are attacked by adopting a word-level at-
tacker. Furthermore, we propose a new dataset RobustMath
to evaluate the robustness of LLMs in math solving ability.
Extensive experiments on our RobustMath and two another
math benchmark datasets GSM8K and MultiAirth show that
MathAttack could effectively attack the math solving abil-
ity of LLMs. In the experiments, we observe that (1) Our
adversarial samples from higher-accuracy LLMs are also ef-
fective for attacking LLMs with lower accuracy (e.g., trans-
fer from larger to smaller-size LLMs, or from few-shot to
zero-shot prompts); (2) Complex MWPs (such as more solv-
ing steps, longer text, more numbers) are more vulnerable
to attack; (3) We can improve the robustness of LLMs by
using our adversarial samples in few-shot prompts. Finally,
we hope our practice and observation can serve as an im-
portant attempt towards enhancing the robustness of LLMs
in math solving ability. The code and dataset is available at:
https://github.com/zhouzihao501/MathAttack.

Introduction
Solving Math Word Problem (MWP) aims to infer a final an-
swer from the natural language description of a math prob-
lem (Wang, Liu, and Shi 2017). With the boom of Large
Language Models (LLMs), the research of solving MWP has
recently made great progress (Qiao et al. 2022; Uesato et al.
2022; Chang et al. 2023). Most of them work on prompt
engineering to improve math solving ability of LLMs (Wei
et al. 2022; Zhou et al. 2023a; Kojima et al. 2022; Chen et al.
2022; Fu et al. 2023b; Wang et al. 2023c; Yao et al. 2023),
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Figure 1: Different input of Large Language Models
(LLMs). (a) Clean input, (b) Adversarial sample generated
by Prompt-Attack (Zhu et al. 2023; Wang et al. 2023a), (c)
Adversarial sample generated by our MathAttack.

and LLMs (e.g., ChatGPT) can provide correct reasoning
process and the final answer for simple math word prob-
lems. Subsequently, they have been progressively applied in
the field of intelligence education (Macina et al. 2023; Wang
and Demszky 2023; Wang et al. 2023d; Handa et al. 2023).
Therefore, it becomes essential to examine the robustness
of LLMs in math solving ability, but this has not attracted
much attention so far. To the best of our knowledge, there
are only a few works (Zhu et al. 2023; Wang et al. 2023a) to
evaluate the robustness of LLMs through attacking prompts
(Figure 1(b)). By comparing to prompt-attack, we argue that
attacking MWP samples themselves is more direct to reflect
the robustness of LLMs in math solving ability, like Fig-
ure 1(c).

On the other hand, general text adversarial attack has
made great progress (Li et al. 2019, 2020; Ye et al. 2022;
Qian et al. 2022). This task aims to generate an adversar-
ial text x′ that is semantically similar to the original text x,
while victim model f can correctly classify x but incorrectly
classify x′ (Jin et al. 2020; Xu et al. 2020). However, it tends
to change mathematical logic by directly applying such tech-
niques of general text adversarial attack. For example, if the
word 140 in Figure 1(c) is modified to another number, the
mathematical logic will be changed and the original ground-
truth will be no longer the correct answer. Therefore, it is es-
sential to preserve the mathematical logic of MWPs, which
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makes MWP adversarial attack more challenging.
To preserve the mathematical logic of MWPs, we propose

MathAttack for attacking the math solving ability of large
language models. Figure 2 shows an overview of our Math-
Attack. We first recognize logical entities, altering these log-
ical entities easily leads to changing the mathematical logic
of math word problems. Then we freeze the logical entities,
preventing the attacker from modifying logical entities. Fi-
nally we attack the LLMs utilizing word-level attacker (Li
et al. 2020) while not changing those frozen logical words.
With the help of MathAttack and manual check, we propose
a new dataset RobustMath, which consists of 300 high-
quality MWP adversarial samples and could measure the ro-
bustness of LLMs’ math solving ability.

Extensive experiments on our proposed Robust-
Math dataset and another two math benchmark datasets
GSM8K (Cobbe et al. 2021) and MultiAirth (Roy and Roth
2015) show that our MathAttack could effectively attack
the math solving ability of LLMs. As far as we know,
most works (Zhu et al. 2023; Wang et al. 2023a) focus the
robustness of LLMs in general tasks, there are not any com-
prehensive study on the robustness of LLMs in math solving
ability. To this end, we conduct a a serious of analysis in
the experiments and observe the following three points: (1)
Transferability of attacking samples. Adversarial samples
generated from higher-accuracy LLMs are also effective for
attacking LLMs with lower accuracy (e.g., transfer from
larger to smaller-size LLMs, or from few-shot to zero-shot
prompts); (2) Complex MWPs (such as more solving steps,
longer text, more numbers) are more vulnerable to attack;
(3) We can improve the robustness of LLMs by using our
attacking samples in few-shot prompts.

In summary, our contributions are as follows:
• In this paper, we make a first attempt to attack MWP sam-

ples to examine the robustness of LLMs in math solving
ability.

• We propose MathAttack for attacking the math solving
ability of LLMs, including Logical Entity Recognition,
Freezing Logical Entity and text Attack.

• We propose a new dataset RobustMath by adopting
MathAttack and manual check. It consists of 300 high-
quality MWP adversarial samples and could measure the
robustness of LLMs’ math solving ability.

• Extensive experiments show that MathAttack could ef-
fectively attack the math solving ability of LLMs.
Through the exhaustive analysis, we obtain three findings
for the robustness of LLMs in math solving ability.

Related Work
MWP Solver Recent proposals intend to solve the
problem by using sequence or tree generation models.
(Wang, Liu, and Shi 2017) presents a sequence-to-sequence
(seq2seq) approach to generate the mathematical equation.
(Xie and Sun 2019) propose a goal-driven tree-structured
(GTS) model to generate the equation tree. This sequence-
to-tree approach significantly improves the performance
over the traditional seq2seq approaches. (Zhang et al. 2020)
adopt a graph-to-tree approach to model the quality relations

using graph convolutional networks (GCN). Previous stud-
ies (Patel, Bhattamishra, and Goyal 2021; Zhou et al. 2023b;
Yao, Zhou, and Wang 2023) indicate these MWP solvers
rely on shallow heuristics to generate equations. With the
boom of Large Language Models (LLMs) and the proposal
of chain-of-thought (Wei et al. 2022), the math solving abil-
ity of the model has recently made great progress. Many re-
search works on prompt engineering to improve math solv-
ing ability (Zhou et al. 2023a; Kojima et al. 2022; Chen et al.
2022; Fu et al. 2023b; Wang et al. 2023c; Yao et al. 2023),
they are capable of effortlessly solving simple MWPs, and
LLMs are gradually being incorporated in the field of intel-
ligent education (Ji, Han, and Ko 2023; Macina et al. 2023;
Wang and Demszky 2023; Wang et al. 2023d; Handa et al.
2023). In this context, examining the robustness of LLMs
in math solving ability becomes essential. In this work, we
make a first attempt to examine this robustness issue by at-
tacking MWP samples.

Large Language Models Attack Previous proposals have
already tried to evaluate the robustness of large language
models (Zhuo et al. 2023; Shi et al. 2023). (Wang et al.
2023b) makes the first attempt to systematically evalu-
ate the robustness of LLMs by using robust datasets. Re-
cently, some works propose to address this issue by attack-
ing prompts (Wang et al. 2023a; Zhu et al. 2023). (Wang
et al. 2023a) introduces the ICL attack based on TextAttack,
which aims to manipulate the prompt only without altering
the input. (Zhu et al. 2023) presents PromptBench, a robust-
ness benchmark specifically designed to evaluate the robust-
ness of LLMs against adversarial prompts. Our work differs
from theirs in two main aspects: (1) We specifically focus
on attacking the MWP sample itself, which provides a more
direct approach and fills the gap of non-prompt attacks on
LLMs. (2) Their works target general tasks, lacking a com-
prehensive analysis of the robustness in math solving ability.

MWP Attack For the MWP solvers, previous works gen-
erate some MWP adversarial examples by rule-based meth-
ods like reordering the problem description (Kumar, Ma-
heshwary, and Pudi 2021; Patel, Bhattamishra, and Goyal
2021). However, with the development of LLMs, the seman-
tic and logical capabilities of the model have been enhanced,
rendering these adversarial examples ineffective. Adversar-
ial MWP sample datasets SVAMP (Patel, Bhattamishra, and
Goyal 2021) can be solved well by LLMs like ChatGPT. In
this paper, we attack MWP samples of LLMs for the first
time and propose a new dataset RobustMath to evaluate
the robustness of math solving ability of LLMs. It consists
of adversarial examples generated by MathAttack, utilizing
simple MWPs from GSM8K and MultiAirth as seed data.

Methodology
Problem Formulation
Suppose we have a text x with n words x = [w1, w2, ..., wn]
whose ground truth label is y. We call x′ an adversarial ex-
ample when x′ can make the victim model f wrong predic-
tion but original correct prediction (f (x) = y), i.e.,

f (x′) ̸= f (x) . (1)
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Figure 2: The overview of MathAttack. First, we utilize an NER model to identify logical entities. Then we freeze the logical
entities, preventing the attacker from modifying them. Finally, we utilize word-level attacker to attack the LLMs while not
changing those frozen logical entities.

Compared to traditional text attack, math word problem at-
tack need to preserve the mathematical logical L of text sam-
ple x, it is defined as:

L (x′) = L (x) . (2)

The goal of the attack task is to generate an adversarial ex-
ample x∗ among all x′. Since text data consists of discrete
words whose change can be perceived by humans, we al-
ways want the optimized adversarial example x∗ to be se-
mantically closest to the original text sample x. Thus, the
objective function of this task can be defined as follows:

x∗ = argmax
x′

G (x, x′) , s.t.f (x′) ̸= f (x) , L (x′) = L (x) ,

(3)
where G (x, x′) denotes the semantic similarity between x
and x′. In this paper, f is the large language model and we
follow the black-box setting.

The Proposed MathAttack
Overview Figure 2 shows an overview of MathAttack. We
firstly recognize logical entities. Altering these logical enti-
ties easily leads to changing the logic of math word prob-
lems. Then we freeze the logical entities, preventing the at-
tacker from modifying logical entities. Finally we attack the
LLMs utilizing word-level attacker while not changing those
frozen logical entities.

Logical Entity Recognition Logical entities are cru-
cial components that constitute logic in math word prob-
lems (Kumar, Maheshwary, and Pudi 2022; Li et al. 2022).
In order to preserve the logic of a math word problem, it is
indispensable to define and identify which entities as logical
entities. In this paper, we define the following three types of
entities as logical entities. (1) Role Entity: It includes per-
son entity (e.g, Asia in Figure 2). (2) Number Entity: It in-
cludes quantity (e.g, $140 in Figure 2), cardinal number and
ordinal number. (3) Scenario Entity: It includes time entity

and location entity. Altering these environmental factors is
easy to change the logic of math word problems too.

Then we employ Named Entity Recognition (NER) model
to identify them:

Iro = NERro (x) , (4)

Inum = NERnum (x) , (5)

Isce = NERsce (x) , (6)

where It is a word index set if the word belongs to logical
entity type t. The symbols ro, num and sce represent the
Role, Number and Scenario Entity respectively. We utilize
Spacy 1 as our NER model.

Freezing Logical Entity It tends to break the original
logic of MWP by altering logical entities during the attack
process. To this end, we freeze all logical entities in order to
prohibit attackers from modifying them:

If = Iname ∪ Inum ∪ Isce, (7)

where If denotes the frozen word index set.

Attack Text attackers are generally classified into three
types: char-level, word-level and sentence-level. In MathAt-
tack, We choose word-level attacker because the char-level
attacker can distort the semantic meaning of words (like Fig-
ure 1(b)) and sentence-level attacker are prone to disrupting
the mathematical logic of MWP. The attack process of word-
level attacker primarily entails two steps: finding vulnerable
words and words replacement.

In order to find vulnerable words, it is necessary to deter-
mine which words are significant. Specifically, we first se-
quentially mask all modifiable words to form new sentences.
Afterward, we predict each new sentence to get the drop in

1https://spacy.io/
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the probability of the correct answer. The more it drops, the
more important the word is. It is defined as:

xmask
i = [w1, w2, , wi−1,mask, wi+1, ..., wn] , i /∈ If ,

(8)
ai = prob (f (x))− prob

(
f
(
xmask
i

))
, (9)

where ai is the important score of xi and prob is the function
to get the probability of the correct answer. After that, we
can get the important scores list a = [a1, a2, ..., an]. Notice
that the length of a is not n because some words are frozen.
Finally, we choose the word which has the max important
score as the vulnerable word:

m = argmax (a) , (10)

where m is the index of the vulnerable word and argmax is
the function to pop the word which has the most important
score and get its index.

After finding the vulnerable word, we proceed to locate
all synonyms of wm in order to substitute it:

S = Synonyms (wm) , (11)

where S is the synonyms set of wm, we sequentially select a
word in S based on the similarity to wm then substitute wm:

s′ = MaxSim (S,wm) , (12)

xs = [w1, w2, , wm−1, s
′, wm+1, ..., wn] , (13)

where xs is the sentence by replacing wm in x with s′.
MaxSim is the function to pop the word in S that is most
similar to wm. Notice that if S is already empty before pop-
ping, we go back to Eqn. (10) and repeat the above process.
After obtaining xs, we perform different actions based on
the following situations, if f (xs) ̸= f (x), the final adver-
sarial sample x∗ is xs:

x∗ = xs. (14)

If f (xs) = f (x) and prob (f (xs)) < prob (f (x)), we will
keep this word change:

x = xs. (15)

Then go back to Eqn. (12) and repeat the above process. If
f (xs) = f (x) and prob (f (xs)) ≥ prob (f (x)), we will
abandon this word change then go back to Eqn. (12) and
repeat the above process.

In our attacker, we utilize BertAttack (Li et al. 2020) as
our backbone, which utilizes [mask] token to mask words
and bert embedding to calculate the similarity of words.

Experiments
Experimental Setting
Victim Models We choose four mainstream large lan-
guage models as our victim models.
• Flan-T5-large (Chung et al. 2022): Flan-T5-large is a

derivative of the Text-to-Text Transfer Transformer (T5)
model, developed by Google. It has 760M parameters.

• Flan-T5-xl (Chung et al. 2022): Flan-T5-xl is a large
version of Flan-T5 than Flan-T5-large, developed by
Google. It has 3B parameters.

• ChatGLM2 (Du et al. 2022): ChatGLM2 is the
second-generation version of the open-source bilingual
(Chinese-English) chat model ChatGLM, developed by
Tsinghua University. It has 6B parameters.

• ChatGPT (OpenAI 2023): Developed by OpenAI, Chat-
GPT is a large language model trained to generate
human-like text. It uses the GPT-3 architecture and has
been fine-tuned for more interactive and conversational
tasks. In detail, we use the gpt-3.5-turbo API.

We set the temperature = 0 to stabilize the output of LLMs.
When attacking victim models, we not only attack them with
zero-shot prompt but also few-shot prompt. Specifically, we
employ four MWP samples as shots and provide Chain-of-
Thought (CoT) (Wei et al. 2022) annotations. This few-shot
prompt serves as a method to enhance the math solving
ability of LLMs. Similar with other prompts, they are not
changed during the attack process.

Datasets Two math word problems benchmark datasets
GSM8K (Cobbe et al. 2021) and MultiArith (Roy and Roth
2015) are adopted in the experiments. However, we only se-
lect the subsets for the following considerations by follow-
ing the previous work (Zhu et al. 2023): (1) we focus on
simple MWPs, because hard samples have very lower ac-
curacy not necessary to attack. (2) Owing to the extensive
computational requirements of generating single adversarial
sample, which necessitates iterating over the entire dataset
100 times on average. Finally, for GSM8K, we firstly re-
move those hard samples labelled by more than three solv-
ing steps, then randomly select half of those remained sim-
ple MWPs and obtain 307 MWP samples. For MultiAirth,
all MWPs are simple thus we randomly select 150 MWPs
similar with the previous work (Zhu et al. 2023).

Metrics Given a dataset D with N data instance x and la-
bel y, victim model f , an adversarial attack method A that
generates adversarial examples A(x), we adopt following
four metrics:
• Clean Acc: The accuracy before attacking. Clean Acc =∑

(x,y)∈D I[f(x)=y]

N .
• Attack Acc: The accuracy after attacking. Attack Acc =∑

(x,y)∈D I[f(x)=y∩f(A(x))=y]

N .
• Attack Success Rate (ASR) (Wang et al. 2023a):

The rate of samples is successfully attacked. ASR =∑
(x,y)∈D I[f(A(x)) ̸=y]∑

(x,y)∈D I[f(x)=y] .

• Similarity: The average semantic similarity between the
adversarial sample and the original sample. We use Uni-
versal Sentence Encoder (Cer et al. 2018) to measure se-
mantic similarity.

To ensure the correctness in the experiments, we check each
adversarial sample manually, and consider adversarial ex-
amples which are changed mathematical logic as unsuccess-
ful attacks.

Main Results
As shown in Table 1, our approach can effectively attack
the math solving ability of large language models. For
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GSM8K MultiAirth
Prompt Models Clean Acc Attack Acc ASR Similarity Clean Acc Attack Acc ASR Similarity

Zero shot Flan-T5-large 18.24 2.28 87.50 90.55 2.00 0.00 100.00 91.42
Flan-T5-xl 21.17 3.58 83.08 92.86 7.33 0.67 90.90 95.63
ChatGLM2 54.40 23.78 56.29 91.58 71.33 20.67 71.03 94.00
ChatGPT 84.69 49.54 41.15 89.26 98.67 60.00 39.19 91.33

Few shot Flan-T5-large 22.15 10.42 52.94 92.92 5.33 0.67 87.5 95.66
Flan-T5-xl 32.35 17.59 45.45 90.00 10.67 2.67 75.00 95.16
ChatGLM2 64.82 22.80 64.82 90.71 37.33 7.33 80.36 95.75
ChatGPT 88.27 70.68 19.93 87.19 98.00 77.33 21.09 86.97

Table 1: Results of attacking against various large language models.

Figure 3: Transfer Success Rate (TSR) of Y-axis models to
X-axis models. The generated adversarial samples of larger-
size models can attack smaller-size models.

LLMs with zero-shot, we could get the high ASR, even for
ChatGPT, it could achieve an average of 40% on GSM8K
(41.15%) and MultiAirth (39.19%). The average Similarity
is large than 90%, indicating that we can successfully gener-
ate adversarial samples with high similarity and do not alter
mathematical logic.

Comparing different LLMs, we can observe that more
powerful LLMs (i.e., higher Clean Acc) are more difficult
to attack (i.e., lower ASR). For Flan-T5-large and Flan-T5-
xl, their robustness in math solving ability is poor, as even
a slight disturbance can cause them to predict incorrectly.
For ChatGLM2 and ChatGPT, their robustness is noticeably
stronger, as our method fails to attack them on some MWP
samples.

Furthermore, comparing zero-shot and few-shot, we can
see that employing few-shot could enhance the math solv-
ing ability of the LLMs and also make them more ro-
bust, leading to a lower ASR. For models with stronger in-
context ability, the enhancement becomes larger. Like Chat-
GPT, the Attack Success Rate could decrease from 41.15%
to 19.93%. However, we find ChatGLM2 exhibits poor in-
context ability which leads math solving ability as well as
robustness does not improve with the few-shot prompt.

Figure 4: Transfer Success Rate (TSR) of Y-axis prompt to
X-axis prompt. The generated adversarial samples of model
with few-shot can attack model with zero-shot.

Fine-grained Analysis
Transferability To test the transferability of the generated
adversarial samples, we take adversarial samples of model A
to attack other models B. Specifically, we select the samples
that B can correctly predict as the experimental samples.
Subsequently, we provide B with adversarial samples gener-
ated by attacking A on experimental samples. We examine if
these adversarial samples can successfully attack model B.
Here, we propose the metric: Transfer Success Rate (TSR),
if an adversarial sample of A can successfully attack model
B then it means transfer success.

In Figure 3, we show the TSR between Y-axis (i.e., A
model) and X-axis (i.e., B model) models, and we can
observe that the adversarial samples of larger-size mod-
els can attack smaller-size models too. ChatGPT could get
94.44% TSR to Flan-T5-large and 89.47% TSR to Flan-T5-
xl. Specifically, we find that the TSR will increase when
the math solving ability between models grows wider. As
shown in Figure 3, we can see that the adversarial samples of
smaller-size models can not attack larger-size models. Flan-
T5-large and Flan-T5-xl both show low TSR (6.25% and
6.67%) on ChatGPT. In this experiment, all tested models
are in zero-shot setting.

In order to see the transferability performance between
zero-shot and few-shot, we conducted the same experiment
on ChatGPT. As shown in Figure 4, the ChatGPT with few-
shot can achieve 45.24% TSR to ChatGPT with zero-shot
however the reverse is only 20.56%. It indicates that the ad-
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Figure 5: Analysis which MWPs are easier to attack. (a) shows the effect of answer reasoning steps on the ASR. (b) shows the
effect of problem length on the ASR. (c) shows the effect of numbers’ count in MWP on the ASR.

Clean Acc Attack Acc ASR Similarity
GSM8K 87.95 75.57 14.07 88.33

MultiAirth 98.00 82.00 16.33 88.15

Table 2: Results of attacking against large language models
with adversarial samples prompt on ChatGPT.

versarial samples of LLM with few-shot can attack that with
zero-shot. And adversarial samples of LLM with zero-shot
can not transfer to that with few-shot.

Analysis on MWPs To know which MWPs are easier to
attack, we investigate the effects of MWPs reasoning steps,
problem length and number count on ASR. Specifically, we
conducted the experiment on ChatGPT in zero-shot setting.
As shown in Figure 5: (a) with the increase of reasoning
steps of ground truth, we can observe that the ASR will in-
crease when the reasoning steps from 2 to 3. Reasoning steps
of ground truth can be regarded as a metric to measure the
difficulty of MWP. Difficult MWPs are easier to attack. (b)
with the increase in problem length, we can observe a grad-
ual increase in the ASR as the length of the math word prob-
lems become longer. Long MWPs are easier to attack. (c)
with the increase in the quantity of numbers in MWPs, we
can observe a gradual increase in ASR as the number counts
become more. All the above three factors can be used to
measure the complexity of an MWP (Fu et al. 2023b), there-
fore, we can draw a conclusion that more complex MWPs
are easier to attack. It shows that LLMs are sensitive to dis-
turbances on MWPs with complex mathematical logic.

Using Attacking Samples as Prompts We also study the
impact of adversarial samples on improving the robustness
of large language models. In the few-shot prompts, we re-
place normal MWP examples by corresponding adversarial
examples generated by our MathAttack but with correct la-
bels, and observe their impact on the math solving ability
and robustness of the LLMs. As shown in Table 2, we can
see the Clean ACC still maintains a high level of accuracy
(87.95% on GSM8K and 98.00% on MultiAirth), because
the adversarial examples generated by our MathAttack ex-

Figure 6: Trend of ASR after utilizing different prompts, At-
tack Few Shot means replacing the MWP samples of Few
Shot to their corresponding adversarial samples.

hibit high similarity to the original samples. By comparing
the Attack Acc and ASR in Table 1, it is surprised to find
the use of adversarial examples in the few-shot prompts can
enhance the robustness of LLMs (i.e., much lower ASR by
comparing to the normal results in Table 1). When we use
adversarial examples in the prompt, the LLM could see these
examples that are disturbed but still able to predict correctly,
therefore they will not affected by some small disturbances
when predict. Figure 6 provides a more intuitive visualiza-
tion, demonstrating that the robustness of LLMs utilizing
few-shot prompt can be significantly improved by compar-
ing to zero-shot prompt. When employing adversarial exam-
ples as few-shot prompt, it will further strengthen their ro-
bustness and the ASR of large language models further de-
crease. This observation motivates us to enhance the robust-
ness of large language models without compromising their
math solving ability by employing the adversarial examples
generated by MathAttack as few-shot prompt.
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Orginal Sample Adversarial Sample
A class of 50 students has various hobbies. 10 like to bake
5 like to play basketball and the rest like to either play
video games or play music. How many like to play video
games if the number that like to play music is twice the
number that prefer playing basketball?

A group of 50 students has various hobbies. 10 like to bake
5 like to play basketball and the rest like to either play
video games or play music. How many like to play video
games if the number that like to play music is twice the
number that prefer playing basketball?

Solution:
Let’s assume the number of students who like to
play video games is ”x”. ...... So, we can set up an equation:
10 + 5 + x + 10 = 50. Simplifying the equation:
10 + 5 + x + 10 = 50. 25 + x = 50. x = 50 - 25. x = 25.
Therefore, the number of students who like to play video
games is 25. (Correct!)

Solution:
Let’s assume the number of students who like to
play video games is ”x”. ...... We can set up the equation:
x + 10 = 50. Now, let’s solve for x: x = 50 - 10. x = 40.
Therefore, the number of students who like to play video
games is 40. (Wrong!)

Table 3: A real case predicted by ChatGPT on original MWP (left) and its adversarial sample (right).

Zero-shot Few-shot
Original RobustMath Original RobustMath

Flan-T5-large 10.75 4.67 13.08 10.67
Flan-T5-xl 17.76 6.00 26.17 20.33

Flan-T5-xl-F 16.36 12.33 10.19 9.33
ChatGLM2 47.08 36.67 54.67 33.67

Table 4: Accuracy of large language models on RobustMath
and its original samples set. Flan-T5-xl-F is the finetuned
model on 200k MWP data (Fu et al. 2023a).

Case Study
Table 3 reports a real case predicted by ChatGPT on the orig-
inal MWP and its adversarial sample generated by Math-
Attack. We can find that the adversarial sample generated
by MathAttack is similar to the original sample with few
changes. For the original sample, ChatGPT can give the cor-
rect reasoning process step by step and finally get the correct
answer 25. But when MathAttack simply changed class in
the original sample to group, ChatGPT can come up with
the wrong reasoning process and get the wrong equation
(x+10=50), end up with the wrong answer 40. These cases
show that the robustness of LLMs in math solving ability
still needs to be strengthened.

New MWP Dataset RobustMath
Using the transferability of adversarial samples, we attack
ChatGPT by MathAttack to build our RobustMath dataset.
Specifically, we first utilize GSM8K and MultiAirth as our
seed data then attack ChatGPT to generate adversarial sam-
ples. After that, in order to ensure the high quality of Ro-
bustMath, we manually check each adversarial sample and
filter out samples which change the mathematical logic. Ul-
timately, our RobustMath has 300 high-quality adversarial
samples that can be used to measure the robustness of large
language models’ math solving ability.

To verify the effectiveness of our RobustMath, we evalu-
ate large language models on RobustMath. In addition to the
models mentioned above, we also evaluate large language
model that is fine-tuned on MWP datasets. Specifically, we
follow (Fu et al. 2023a) to finetune Flan-T5-xl with 200k
MWP data. In Table 4, we observe that the performance of
the LLMs on RobustMath is significantly worse compared to

the performance on its original samples. This indicates that
our RobustMath can effectively measure the robustness of
the model’s math solving ability. When examining the per-
formance of models with zero-shot performance, we can see
that as the model’s capability increases, its performance on
RobustMath also increases. However, it still does not ex-
ceed 37.00%. Moreover, after finetuning, the performance
of Flan-T5-xl increases from 6.00% to 12.33%. It indicates
that finetuning on specific data could help improve the ro-
bustness of models. Observing the performance of models
with few-shot prompt, we find that models with a strong
in-context ability such as Flan-T5-large and Flan-T5-xl can
effectively enhance their performance on RobustMath. In
contrast, ChatGLM2 and finetuned Flan-T5-xl which have
weaker in-context ability do not exhibit significant improve-
ments on both the original samples set and RobustMath un-
der few-shot prompt.

Conclusion and Future Work
In this paper, we make a first attempt to attack MWP sam-
ples to examine the security of LLMs in math solving abil-
ity. To preserve the mathematical logic of MWPs, we pro-
pose a MathAttack model with a logical entity recognition
block. Extensive experiments show that MathAttack could
effectively attack the math solving ability. Through the com-
prehensive experimental analysis, we have three significant
findings: (1) Transferability of attacking samples (2) Com-
plex MWPs (such as more solving steps, longer text, more
numbers) are more vulnerable to attack, and (3) Attacking
samples used in few-shot prompts can improve robustness of
LLMs. Furthermore, we propose a new dataset RobustMath
by utilizing MathAttack and manual check, which consists
of high-quality MWP Adversarial samples and could mea-
sure the robustness of LLMs’ math solving ability. We hope
our practice and observations can serve as an important at-
tempt to enhance the robustness of LLMs in math solving
ability. In the future, we will explore methods such as in-
struction learning or reinforcement learning to enhance the
robustness of the models. As large language models are in-
creasingly being applied in the field of intelligence educa-
tion, the importance of improving their robustness becomes
more significant.
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