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Abstract
Most of the existing aspect-based sentiment analysis (ABSA)
models only predict the sentiment polarity of a single as-
pect at a time, focusing primarily on enhancing the repre-
sentation of this single aspect based on the other contexts
or aspects. This one-to-one paradigm ignores the fact that
multi-aspect, multi-sentiment sentences contain not only dis-
tinct specific descriptions for distinct specific aspects, but also
shared global context information for multiple aspects. To
fully consider these issues, we propose a one-to-many ABSA
framework, called You Only Read Once (YORO), that can si-
multaneously model representations of all aspects based on
their specific descriptions and better fuse their relationships
using globally shared contextual information in the sentence.
Predicting the sentiment polarity of multiple aspects simul-
taneously is beneficial to improving the efficacy of calcula-
tion and prediction. Extensive experiments are conducted on
three public datasets (MAMS, Rest14, and Lap14). Experi-
mental results demonstrate the effectiveness of YORO in han-
dling multi-aspect, multi-sentiment scenarios and highlight
the promise of one-to-many ABSA in balancing efficiency
and accuracy.

Introduction
Aspect-based sentiment analysis (ABSA) is a task of fine-
grained sentiment analysis that focuses on inferring the sen-
timent polarity (positive, negative, or neutral) of multiple
aspects in a sentence. For example, consider the sentence
“Food was served very promptly but our wait for drinks was
surprisingly long.” which contains three aspects: “served”,
“wait”, and “drink”. The goal of ABSA is to predict the
sentiment of “served” as positive, “wait” as negative, and
“drink” as neutral. ABSA can be widely used in product re-
views, social media, and user feedback texts to mine emo-
tional information in various aspects of data.

Considering the contexts related to aspects are crucial for
understanding sentiment cues, how to accurately learn and
represent this relevant context information is important for
ABSA. Previous works have modeled aspect-related infor-
mation in multiple ways: 1) Modeling position information
using attention mechanisms, where the core idea is that con-
texts close to the aspect receive greater attention (Wang et al.
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2016; Fan, Feng, and Zhao 2018; Huang, Ou, and Carley
2018; Gu et al. 2018; Li, Liu, and Zhou 2018; Phan and
Ogunbona 2020). 2) Modeling the dependencies between
the words and aspects using graph convolutional networks
(GCN (Kipf and Welling 2017)), where the main idea is to
aggregate the syntactic and semantic dependencies between
words into aspects, so as to obtain semantically and syn-
tactically related aspect representations (Liang et al. 2020;
Li et al. 2021; Zhang, Zhou, and Wang 2022; Tian, Chen,
and Song 2021; Bai, Liu, and Zhang 2021). For example,
Tian, Chen, and Song (2021) proposed a type-aware GCN
to encode different types of dependency relations; Bai, Liu,
and Zhang (2021) incorporated dependency tags to graph
attention networks to better learn the correlation between
words; Liang et al. (2020) proposed two independent GCNs
to model the aspect-focused and inter-aspect features. These
models have proven that relational information is signifi-
cant for determining the contribution of different words. 3)
Aspect-oriented tree construction. In addition to using exist-
ing dependency trees to model relational information, some
researchers transform dependency trees into aspect-oriented
tree structures to enhance GCN structure and better capture
aspect-related information (Wang et al. 2020; Zhou et al.
2021; Chen et al. 2022). For example, Wang et al. (2020) re-
shaped and pruned a dependency parsing tree to construct an
aspect-oriented tree to capture aspect-related information;
Chen et al. (2022) used reinforcement learning and regular-
ization to induce discrete opinion trees to shorten the dis-
tance of corresponding opinion words.

Although the above works achieved remarkable results,
there is still a limitation, which is that they primarily focus
on enhancing the representation of a single specific target
aspect based on other contexts or aspects and only predict
the sentiment polarity of the target aspect at a time. A nat-
ural question arises: can we encode all aspects simultane-
ously with their local specific contexts, fuse their relation-
ships with the global shared contexts, and predict the senti-
ments of all aspects simultaneously?

To answer this question, we propose a one-to-many
ABSA framework named you only read once (YORO),
which takes only one sentence as input and outputs the sen-
timent of all aspects, simultaneously. We treat the ABSA
task as a token-level classification task and use the repre-
sentations of all aspect words for the final classification.
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Jointly predicting the sentiment polarity of multiple aspects
requires the model to accurately capture the correspond-
ing important information for each aspect. Therefore, we
propose a constituency-oriented relational graph convolu-
tional network (CorrGCN) to model multi-source relation-
ships. Unlike previous work that uses dependency trees, we
employ constituency parsing trees to construct our graph.
The constituency parsing tree recursively divides sentences
into several phrases according to grammatical rules, and its
hierarchical structure can reflect aspect-context and aspect-
aspect relationships. Based on its hierarchy, we propose four
task-related relationship types, namely aspect-specific, inter-
aspect, globally-shared, and opinion word. Specifically, the
aspect-specific relationship is used to locate the correspond-
ing description for each aspect. This relationship aims to
capture the local contexts that are highly relevant to the spe-
cific aspect. The globally-shared relation provides common
contextual information for each aspect, avoiding the loss of
global information. The sentiment of one aspect may depend
on its neighbor aspects, thus, the purpose of the inter-aspect
relationship is to use the interaction information of other
aspects to assist prediction. In addition, opinion words are
critical sentiment cues, explicitly expressing likes and dis-
likes about aspects. We introduce the opinion word relation
to enhance the attention to opinion words. Furthermore, our
YORO also introduces an opinion sentiment classification
task to help the model learn the sentiment information of
opinion words, and use supervised contrastive learning to
better distinguish the relationship between sentiment polar-
ity labels. The main contributions of this paper can be sum-
marized as follows:

(1)We propose a one-to-many framework called you only
read once (YORO), which provides a new solution for
ABSA, especially fit in the case of multi-aspect multi-
sentiment.

(2)We design a constituency-oriented relational graph
convolutional network (CorrGCN) to learn local, global, in-
teraction, and opinion information.

(3)We conduct comprehensive experiments on three pub-
lic datasets (MAMS, Rest14, and Lap14), the results demon-
strate the effectiveness of our model and the promise of one-
to-many ABSA.

Related Work
The core of ABSA is to capture useful aspect-related con-
texts and obtain their sentiment cues. To this end, the exist-
ing methods mainly focus on modeling the specific aspect
and inter-aspect relationship.

Aspect-specific Modeling. Aspect-specific modeling
methods focus on the individual aspect, and researchers have
proposed various techniques. Early studies have employed
different attention mechanisms to capture aspect and sen-
tence correlations (Wang et al. 2016; Tang, Qin, and Liu
2016; Ma et al. 2017; Chen et al. 2017; Fan, Feng, and Zhao
2018; Huang, Ou, and Carley 2018). Subsequently, position
information was introduced into ABSA. Aspect-based rel-
ative distance modeling makes these models pay more at-
tention to the context around the aspect (Gu et al. 2018; Li,
Liu, and Zhou 2018; Huang et al. 2022). Zeng et al. (2019)

proposed a local context focus (LCF) mechanism based on
the relative distance. Phan and Ogunbona (2020) proposed
a variant of LCF that uses syntactic relative distance over
the dependency tree. With the rise of pre-trained language
models (PLMs) and graph neural networks (GNNs), more
and more studies adopt PLMs (such as BERT (Devlin et al.
2019), RoBERTa (Liu et al. 2019)) to encode semantic rep-
resentations and employ GNNs (such as GCN (Kipf and
Welling 2017), GAT (Veličković et al. 2018)) to fuse syntax
features (Zhou et al. 2021; Li et al. 2021; Tang et al. 2022;
Zhang, Zhou, and Wang 2022; Liu et al. 2022; Wang et al.
2023; Zheng, Li, and Nie 2023).

Inter-aspect Modeling. Inter-aspect modeling methods
aim to explore the interactions and dependencies among
multiple aspects within a sentence. Early studies have pro-
posed a two-stage strategy to classify aspects simultaneously
(Majumder et al. 2018; Hazarika et al. 2018; Ma et al. 2019;
Zhou et al. 2020; Zhang et al. 2022; Li et al. 2022). Re-
cent work utilized GCNs to model different relational infor-
mation. For example, Zhao, Hou, and Wu (2020) regarded
aspects as nodes in a graph and proposed two relational con-
nection strategies. Wang et al. (2020), Tian, Chen, and Song
(2021), and Bai, Liu, and Zhang (2021) focus on modeling
the dependencies between words, considering the fusion of
edge labels. Zeng et al. (2022) and Li, Li, and Xiao (2023)
introduced auxiliary tasks to jointly learn relational informa-
tion and help the model capture multi-aspect potential asso-
ciations.

Although these models achieved outstanding perfor-
mance, predicting one aspect at a time is less efficient in
real-world scenarios. In addition, previous models that pre-
dict simultaneously require multiple inputs, and their perfor-
mance is inferior to that of the former. Unlike previous work,
we propose a one-to-many ABSA framework that requires
only one input to predict the sentiment polarity of each as-
pect simultaneously. We propose a constituency-oriented re-
lational graph convolutional network (CorrGCN) to model
local, global, interaction, and opinion information in order
to fully exploit relational information.

Approach
As shown in Figure 1, the overall architecture of our YORO
framework consists of the encoder module, the constituency-
oriented graph module, and the output module.

Task Definition
Given a n-word sentence S = {w1, w2, ...wn} with m as-
pects A = {a11, a21, a22, ..., am1 , ..., amk }, in which each aspect
has k-word, amk denotes the k-th word of the m-th aspect.
The goal of our model is to predict the sentiment polarity of
all aspects Y = {y1, y2, ...ym} of a sentence at once.

Encoder Module
Similar to previous work, we use BERT (Devlin et al. 2019)
as the basic encoder. Previous ABSA models mainly used
the sequence “[CLS] + sentence + [SEP] + aspect + [SEP]”
as input, where “aspect” is used to indicate the specific as-
pect and distinguish different aspects in the same sentence.
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Figure 1: The overall architecture of our proposed YORO. ASC and OSC represent aspect sentiment classification and opinion
sentiment classification.

However, our input sequence only needs the sentence since
our model can predict all aspects at once. As shown in Equa-
tion 1, we obtain the hidden states of the last layer of BERT
to encode the sentence.

H = BERT([CLS] + sentence + [SEP]) (1)

Constituency-oriented Graph Module
Graph neural networks can aggregate information of various
neighbors, which is suitable for aspects to learn more con-
textual features. Previous work mainly constructed graphs
based on dependency parsing trees containing the dependen-
cies between words. In fact, the words directly connected
to the aspect in the dependency tree are limited, and much
important information needs to be captured through multi-
hop aggregation. In addition, dependency tags reflect the
relationship of words in syntactic rules, and cannot cap-
ture task-related relationships, such as aspect-specific con-
text and inter-aspect relationships.

Considering the above issue, we propose a constituency-
oriented graph that uses constituency parsing trees to
achieve the aim of modeling fine-grained task-related re-
lationships. Constituency parsing trees split sentences into
phrases and words, with the root node representing the en-
tire sentence, internal nodes representing phrases, and leaf
nodes representing individual words. This “sentence-phrase-
word” hierarchy facilitates understanding the correspond-
ing descriptions of aspects and the connections between as-
pects. As shown in Figure 2, we take the sentence “Food
was served very promptly but our wait for drinks was sur-
prisingly long” as an example to illustrate the details of the
construction of our graph. The aspects in this example are
“served”, “wait”, and “drink”, and their corresponding sen-
timent polarities are positive, negative, and neutral. The con-
struction of our graph contains four steps, representing four
useful task-related relationships.

Aspect-specific Some aspects have detailed descriptions
that indicate their sentiment polarity. For example, the
phrase “Food was served very promptly” is the description
of the aspect “served”, expressing positive sentiment explic-
itly. Thus, we first extract the aspect-specific phrase in order
to obtain as much local information as possible. We consider
that an aspect-specific phrase must contain the correspond-
ing aspect, and no other aspects will appear. To this end, we
adopt a top-down strategy to traverse the constituency pars-
ing tree and stop until we obtain aspect-specific phrases for
all aspects. Specifically, we regard the first word of the as-
pect as the root node (an aspect may have multiple words)
and the rest words in the aspect-specific phrase are the chil-
dren nodes of the aspect. In this way, we obtain three sub-
trees of aspects, aiming to learn their respective local infor-
mation.

Inter-aspect In addition to relying on aspect-specific con-
text, inferring the sentiment of an aspect may require lever-
aging information from other aspects. For example, there is
a latent comparison between the aspect “served” and “wait”.
According to this comparative relationship, we can infer the
sentiment of “wait” is negative. Therefore, the second step
is to establish inter-aspect connections, thus mining poten-
tial associations between aspects. As shown in Figure 2, we
interconnect the first word of the aspect, namely “served”,
“wait”, and “drink”, to learn the interactions of aspects.

Globally-shared After the operation of aspect-specific
and inter-aspect, there are still some words that are not
linked. These contexts also contain useful information and
may be related to multiple aspects. For example, the phrase
“was surprisingly long” both related to the aspect “wait” and
“drink”. And “but” reflects the reversal of the sentiments of
“served” and “wait”. Practically, we connect the words that
have not been linked in the first two steps with the first word
of each aspect. We provide these words as shared informa-
tion to aspects, avoiding the loss of global semantics.
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Food was served very promptly but our wait for drinks was surprisingly long
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Figure 2: An example of constructing a constituency-oriented graph for CorrGCN. Our graph has four types of relations,
including aspect-specific (orange), inter-aspect (blue), globally-shared (purple), and opinion word (green), to learn specific,
interaction, shared, and opinion information.

Opinion word The opinion lexicon is an important exter-
nal resource for sentiment analysis, as it annotates the senti-
ment polarity of various common opinion words. And opin-
ion words are key cues for guiding the model to make cor-
rect predictions. We use Bing Liu’s opinion lexicon (Hu and
Liu 2004) to look up the sentiment polarity of non-aspect
words and find that “promptly” is a positive opinion word.
As shown in Figure 2, we add an opinion relationship be-
tween “served” and “promptly”. It is worth noting that we do
not consider whether aspects are opinion words because if
aspects belong to the opinion word, they will establish opin-
ion relations with all their neighbors, leading to the intro-
duction of a useless connection. In addition, we do not con-
struct different relationships for opinion words with different
sentiment polarities, such as positive, negative, and neutral,
because we hope that the model just pays more attention to
these opinion words, rather than predicting directly based on
the sentiment polarity of opinion words.

Since some sentences may have only one aspect, if we
construct the graph structure as above, we will obtain a
graph in which all words are connected to the aspect as
the aspect-specific relation. This fully connected graph does
not contain inter-aspect and globally-shared relations, which
is not conducive to the model to better learn the context.
To solve this problem, we propose the idea of “pseudo-
aspects” to obtain multiple aspects. Specifically, we first se-
lect the constituent containing the aspect from the first level
of the constituency tree as the aspect-specific phrase. Then,
according to the constituent labels of the aspect-specific
phrase, the rest constituents with the same label are treated
as aspect-specific phrases for pseudo aspects. It should be
noted that if a phrase is considered as an aspect-specific
phrase, we will skip traverse its subtree to ensure that each
aspect-specific phrase is independent. We take the first word

of these phrases as pseudo aspects, which are used to con-
struct aspect-specific relations within their aspect-specific
phrases, as well as inter-aspect relations between the real as-
pect and pseudo-aspects. Besides, the rest words and opinion
words are connected to real and pseudo aspects as mentioned
above. In this way, we can generate a graph structure for a
single aspect sentence.

Relational Graph Convolutional Network
According to our constituency-oriented graph, the adjacency
matrix can be written as Equation 2:

Dij =


1, if (wi, wj) ∈ Rel

1, if i = j

0, otherwise
(2)

where wi and wj denotes i-th and j-th word in sen-
tence. Rel ∈ {AS, IA,GS,OW} denotes four types
of relations: Aspect-specific, Inter-aspect, Globally-shared,
Opinion word. The diagonal elements Dii of the adjacency
matrix D ∈ Rn×n are set to one for self-loop.

Previous studies demonstrate that position information is
a useful feature for aspects to capture important context. To
introduce hierarchical position information and better model
the importance of words, we use syntactic distance as po-
sition information based on the depth of the constituency
parsing tree. To fully understand how we calculate the syn-
tactic distance SD, we take the word “served” as an exam-
ple in Figure 2. Since each word in the tree is a leaf node, it
does not belong to a constituent phrase. Therefore, we start
from the parent node of the leaf node and end at the root
node of the whole tree. Since the word “promptly” can di-
rectly arrive at the word “served” in the phrase “served very
promptly”, SD(served, promptly) is 0. And the word “was”

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19718



in the phrase “was served very promptly” requires one hop
to reach the word “served”, SD(served,was)=1.

As shown in Equation 3 and 4, we incorporate syntactic
distance into the original adjacency matrix D to obtain an
updated adjacency matrix A.

Aij =


1 + pij , if (wi, wj) ∈ Rel

1, if i = j

0, otherwise
(3)

pij = 1− SD(wi, wj)

maxnk=0 SD(wi, wk) + 1
(4)

where pij denotes the position weight. SD(wi, wj) denotes
the syntactic distance between i-th word and j-th word.
maxnk=0 SD(wi, wk) denotes the maximum hops in the path
of the i-th word. Relational graph convolutional network
(Schlichtkrull et al. 2018) is suitable for modeling relational
data. To better model our proposed four relations, we pro-
pose a constituency-oriented relational graph convolutional
network (CorrGCN) to help aspects aggregate neighbors
with different relations. We stack multi-layer CorrGCN to
enhance the model performance. The operation of each layer
of CorrGCN is shown in Equation 5:

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

ÂW (l)
r h

(l)
j +W (l)

s h
(l)
i

 (5)

where Nr
i denotes all neighbor nodes of node i under rela-

tion r ∈ R. Â = D̂− 1
2AD̂− 1

2 is the normalized adjacency
matrix and D̂ =

∑
j Aij is the degree of i-th row of adja-

cency matrix A. W (l)
r is a relation-specific trainable weight

matrix and W
(l)
s is used to learn the self-loop relation. σ is

rectified linear unit (ReLU) activation function.

Output Layer Module
To improve the sensitivity of the model to opinion words
(Chen and Li 2020), we jointly use multi-task learning for
aspect sentiment classification and opinion sentiment clas-
sification. We perform non-aspect zero-masking and aspect
zero-masking on the output of CorrGCN to obtain aspect
and context representations Ha and Hc in Equation 6 and
7. We then feed the masked hidden state into two indepen-
dent fully connected layers for aspect and opinion sentiment
classification in Equation 8 and 9. We argue that predicting
the sentiment of aspects is based on context, and opinion is
based on the word itself. Therefore, we use two classifiers to
predict the sentiment of aspect and context respectively.

Ha = [ha
0 ,h

a
1 ,h

a
2 , ...,h

a
m] (6)

Hc = [hw
0 ,hw

1 ,hw
2 , ...,hw

o ] (7)
ya = softmax(WaHa + ba) (8)
yc = softmax(WcHc + bc) (9)

where ha
m denotes the m-th aspect. For the convenience of

training and testing, we use the first word of each aspect to
represent the whole aspect for classification. hw

o denotes the

o-th context word in the sentence. It is worth mentioning
that ya ∈ Rm×d and yc ∈ Rn×d denote the prediction of
aspects and context words, d is the number of labels to be
classified.

Loss Function
For the aspect sentiment classification task and opinion sen-
timent classification task, we use two cross entropy as loss
functions in Equation 10 and 11.

Lasp = − 1

N

N∑
i=1

1

M

M∑
j=1

C∑
k=1

ya
ij,k log(ŷ

a
ij,k) (10)

Lopi = − 1

N

N∑
i=1

1

M ′

M ′∑
j=1

C∑
k=1

yc
ij,k log(ŷ

c
ij,k) (11)

where N and C denote the number of training samples and
sentiment classes. i and k is the index of the sentence and
sentiment class, respectively. M and M ′ denote the number
of aspect and non-aspect words in one sentence. j is the in-
dex of hidden state of ya or yc. ya

ij,k and yc
ij,k are predicted

labels and ŷa
ij,k and ŷc

ij,k are gold labels.
Besides, to further enhance the inter-aspect modeling and

distinguish inter-class relationships, we use supervised con-
trastive learning to assist model training. As shown in Equa-
tion 12, we regard aspect representations with the same sen-
timent polarity in the mini-batch as positive examples and
the different ones as negative examples.

Lsup = −
∑
i∈B

1

C(i)

∑
yi=yc,c ̸=i

exp(zi · zc/τ)∑
b∈B,b ̸=i exp(zi · zb/τ)

(12)
where i ∈ B denotes the index of an aspect sample in the
entire mini-batch B. C(i) = |{c|yc = yi, c ̸= i}| is the
number of positive samples of the i aspect. z is aspect rep-
resentations from Equation 6. τ is the temperature hyper-
parameter.

The total loss of our model is defined as:

L = Lasp + Lopi + αLsup + λ||Θ||2 (13)

where α is a hyper-parameter. λ is the coefficient of L2 reg-
ularization and θ are all trainable parameters.

Experiments and Discussion
Datasets
We use three benchmark datasets to evaluate our proposed
model, including Multi-Aspect Multi-Sentiment (Jiang et al.
2019), SemEval 2014 Restaurants (Pontiki et al. 2014), and
SemEval 2014 Laptops (Pontiki et al. 2014)). All datasets
have only three sentiment polarities, which are positive,
neutral, and negative. For Multi-Aspect Multi-Sentiment
(MAMS), all sentences contain multiple aspects with dif-
ferent sentiment polarities. For SemEval 2014 Restaurants
(Rest14) and SemEval 2014 Laptops (Lap14), sentences
have one or multiple aspects, and multiple aspects may
have the same or different sentiment polarities. Therefore,
MAMS is a more challenging dataset.
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Model MAMS Rest14 Lap14
Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

IARM (Majumder et al. 2018) 74.48∗ 73.66∗ 80.00 - 73.80 -
MIAD (Hazarika et al. 2018) - - 79.00 - 72.50 -
StageI+StageII (Ma et al. 2019) - - 80.10 - 73.10 -
CDT (Sun et al. 2019) 80.70† 79.79† 82.30 74.02 77.19 72.99
Joint+PRET (Zhou et al. 2020) - - 81.96 71.80 73.04 69.16
RepWalk (Zheng et al. 2020) - - 83.80 76.90 78.20 74.30
BERT-SPC (Song et al. 2019) 82.82† 81.90† 84.46 76.98 78.99 75.03
CapsNet♯ (Jiang et al. 2019) 83.46 82.89 84.91 76.59 77.12 71.84
SDGCN (Zhao, Hou, and Wu 2020) 77.10‡ 75.99‡ 83.57 76.47 81.35 78.34
InterGCN∗ (Liang et al. 2020) 82.49 81.95 85.45 77.64 78.06 73.83
R-GAT(Wang et al. 2020) 83.16∗ 82.42∗ 86.60 81.35 78.21 74.07
T-GCN (Tian, Chen, and Song 2021) 83.38 82.77 86.16 79.95 80.88 77.03
RGAT (Bai, Liu, and Zhang 2021) 84.52 83.74 86.68 80.92 80.94 78.20
RMN (Zeng et al. 2022) 79.97 78.79 84.56 79.05 77.95 70.83
dotGCN (Chen et al. 2022) 84.95 84.44 86.16 80.49 81.03 78.10
CHGMAN (Niu et al. 2022) 85.05 84.29 86.88 81.62 81.52 77.68
APSCL (Li, Li, and Xiao 2023) 84.06 83.50 86.86 81.28 81.02 78.47
YORO 86.08 85.51 87.14 81.83 81.82 78.32

Table 1: The performance of different models on MAMS, Rest14, and Lap14. Acc and F1 indicate the accuracy and macro-
average F1 score, respectively. The results with ∗, † ,and ‡ are retrieved from (Niu et al. 2022), (Bai, Liu, and Zhang 2021), and
(Zeng et al. 2022). ♯ denotes our implementation according to the released code of the published paper. ‘-’ means not reported
and no implementation available. The best results are in bold.

Implementation Details
For the encoder module, we employ the “bert-base-uncased”
version of BERT with 110 million parameters. For the
graph module, we use Berkeley Neural Parser (Kitaev, Cao,
and Klein 2019) to obtain the constituency parsing trees
(https://parser.kitaev.io/). We adopt two-layer CorrGCN and
the dimension of hidden states is 768. The supervised con-
trastive loss uses a temperature τ of 0.07 and the hyper-
parameter of α is weighted to 0.5. The coefficient λ of L2
regularization is 0.0001. We fine-tune the entire model using
the Adam optimizer (Kingma and Ba 2015) with a learning
rate of 0.00002 and a batch size of 16. We train the model
for 20 epochs, implementing the early stopping strategy with
a patience of 5. Additionally, we applied a dropout strategy
with a ratio of 0.3. Following previous work, we adopt accu-
racy and macro-average F1 as metrics to evaluate the model.
Our code is available at https://github.com/gdufsnlp/YORO.

Baselines
In this paper, we compare with some baselines as follows.
We use IARM (Majumder et al. 2018), MIAD (Hazarika
et al. 2018), StageI+StageII (Ma et al. 2019), CDT (Sun et al.
2019) as baselines for their modeling aspect-related infor-
mation using LSTMs. We also use Joint+PRET (Zhou et al.
2020), RepWalk (Zheng et al. 2020), BERT-SPC (Song et al.
2019), CapsNet (Jiang et al. 2019), SDGCN (Zhao, Hou,
and Wu 2020), InterGCN (Liang et al. 2020), R-GAT (Wang
et al. 2020), T-GCN (Tian, Chen, and Song 2021), RGAT
(Bai, Liu, and Zhang 2021), RMN (Zeng et al. 2022), dot-
GCN (Chen et al. 2022), CHGMAN (Niu et al. 2022) and
APSCL (Li, Li, and Xiao 2023) as baselines, as they focus

on inter-aspect relations or aspect-oriented tree structure us-
ing GCNs and BERT.

Main Results
We compare our proposed model (YORO) with the base-
lines mentioned in Table 1. YORO achieves the best perfor-
mance in MAMS, Rest14, and the accuracy of Lap14, the
F1 score of Lap14 is also close to SDGCN and APSCL. In
particular, our model performs well on MAMS, with 1.03%
and 2.62% higher accuracy and 1.22% and 2.62% higher
F1 scores than CHGMAN and CapsNet. This outstanding
improvement shows that YORO is suitable for multi-aspect
multi-sentiment complex situations.

For Rest14, the accuracy of YORO is 0.26% and 0.28%
higher than CHGMAN and APSCL, and the F1 score is
0.21% and 0.55% higher than that of CHGMAN and AP-
SCL. These results also prove the effectiveness of our pro-
posed method. For Lap14, despite achieving a good perfor-
mance of 81.82 in accuracy, the F1 score is slightly lower
than SDGCN and APSCL by 0.02% and 0.15%. We argue
that “pseudo aspect” is an effective idea for a single aspect
sentence, but it still has room for improvement. We intend to
leave it for future work because our paper focuses more on
how to improve multi-aspect relationship modeling.

Ablation Study
The ablation results in Table 2 provide valuable insights into
the contribution of different components in YORO. We ob-
serve the following trends: 1) Removing the CorrGCN mod-
ule (w/o CorrGCN) leads to an explicit drop in performance
on all datasets. This shows that the constituency-oriented re-
lational graph convolutional network is crucial in capturing
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Model MAMS Rest14 Lap14
Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

YORO 86.08 85.51 87.14 81.83 81.82 78.32
w/o CorrGCN 84.06 83.57 85.54 79.05 79.00 74.74
w/o Relational 82.49 82.09 84.82 77.40 77.59 73.28
w/o Lopi&Lsup 85.18 84.67 86.70 81.51 79.94 76.10
w/o Lopi 85.10 84.63 85.71 79.14 79.47 75.34
w/o Lsup 84.43 83.74 85.62 79.99 79.78 75.08
w/o OW 85.63 85.05 86.88 81.39 81.19 77.97
w/o pseudo - - 86.34 79.07 80.72 77.85
single - - 84.56 77.89 80.69 74.58
multi - - 88.02 83.19 82.59 79.30
benepar2 85.63 85.12 86.52 80.89 79.78 76.70

Table 2: The performance of ablation models on MAMS, Rest14, and Lap14. w/o CorrGCN: remove CorrGCN; w/o Relational:
do not distinguish edge relationships; w/o Lopi&Lsup: remove both opinion sentiment classification and supervised contrastive
learning; w/o Lopi and w/oLsup are removed them separately; w/o OW: removes the relationship of the opinion word in
CorrGCN; w/o pseudo: do not use the “pseudo aspects” strategy; single: only conduct experiment on single-aspect instances;
multi: only conduct experiment on multi-aspect instances; benepar2: use another parser.

No. Sentence YORO w/o Relational YORO

1 It’s sad that everything about this place was great
(even the service and decor) except for the steak. (Pos✓, Pos✓, Pos×) (Pos✓, Pos✓, Neg✓)

2 nice place, good service but the price is a little bit more expensive
when compare with the area, location and small dishes. (Neu×, Neu✓ , Neu×) (Pos✓, Neu✓, Neg✓)

Table 3: Case studies of our YORO model and YORO w/o Relational.

aspect-specific context and inter-aspect relations, which sig-
nificantly enhances the overall performance of YORO. 2)
When replacing CorrGCN with a vanilla GCN (w/o Rela-
tional), the performance degrades rapidly. This demonstrates
that relational information is a vital feature for CorrGCN
to distinguish different neighbors and learn correlations be-
tween neighbors. 3) The importance of both the opinion sen-
timent classification task and supervised contrastive learning
is evident from the results of w/o Lopi&Lsup. Although re-
moving both auxiliary tasks results in a notable decrease, its
performance is still higher than w/o CorrGCN. This proves
that the effectiveness of our model does not completely de-
pend on the auxiliary tasks. 4) Individually removing the
opinion sentiment classification task (w/o Lopi), opinion
word relations (w/o OW), or supervised contrastive learn-
ing (w/o Lsup) also leads to reduced performance, although
the impact is not as significant as when both tasks are re-
moved. This indicates that ABSA models can take into ac-
count the role of the opinion lexicon and the internal connec-
tions of sentiment labels. 5) YORO performs stably in dif-
ferent scenarios (single and multi) and the “pseudo aspects”
strategy is suitable for dealing with single aspect instances
(w/o pseudo). 6) We use another parser (benepar2) for com-
parative experiments, where the performance of the parser is
Berkeley (YORO used) > benepar2. As the performance of
the parser improves, our model obtains better results.

Case Study
To better understand the behavior of the model, we use
two examples to compare YORO and YORO w/o Relational

models in Table 3. For the first example, YORO makes a
correct prediction of all aspects. YORO w/o Relational cor-
rectly predicts “service” and “decor” as positive, but incor-
rectly predicts “steak” as positive. We believe that the mis-
prediction of “steak” is due to ignoring the important global
information of “sad”. In addition, “except for” indicates that
the sentiment of “service” and “decor” are different from
“steak”, while YORO w/o Relational does not capture the
inter-aspect relationship. For the second example, YORO
successfully predicts three aspects with different sentiment
polarities. However, YORO w/o Relational predicts them all
to be neutral. We argue that it is difficult for the model to
identify the most relevant context for each aspect after re-
moving relational information.

Conclusions
In this paper, we propose a one-to-many ABSA framework
named you only read once (YORO) to predict the sentiment
polarities of all aspects in a sentence at once. In the frame-
work, a constituency-oriented relational graph convolutional
network (CorrGCN) is proposed to capture multiple rela-
tions about all aspects in a sentence. We also introduce two
auxiliary tasks to help the model learn sentiment knowledge
and the internal relationship of sentiment labels. We conduct
extensive experiments on three public datasets and achieve
excellent results in the MAMS dataset, demonstrating the
effectiveness of YORO in dealing with multi-aspect multi-
sentiment complex situations. In future work, we intend to
focus on aspect interactions between those sentences with
only one aspect to further improve the efficiency of YORO.
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