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Abstract

Recently, lots of works that incorporate external lexicon in-
formation into character-level Chinese named entity recogni-
tion (NER) to overcome the lackness of natural delimiters of
words, have achieved many advanced performance. However,
obtaining and maintaining high-quality lexicons is costly, es-
pecially in special domains. In addition, the entity bound-
ary bias caused by high mention coverage in some bound-
ary characters poses a significant challenge to the generaliza-
tion of NER models but receives little attention in the exist-
ing literature. To address these issues, we propose SENCR, a
Span Enhanced Two-Stage Network with Counterfactual Re-
thinking for Chinese NER, that contains a boundary detector
for boundary supervision, a convolution-based type classifier
for better span representation and a counterfactual rethink-
ing (CR) strategy for debiased boundary detection in infer-
ence. The proposed boundary detector and type classifier are
jointly trained with the same contextual encoder and then the
trained boundary detector is debiased by our proposed CR
strategy without modifying any model parameters in the in-
ference stage. Extensive experiments on four Chinese NER
datasets show the effectiveness of our proposed approach.

Introduction

Named entity recognition (NER) aims to detect the span
and recognize the category of named entities, such as per-
sons, locations, and organizations, in raw sentences. NER is
a fundamental task in the field of natural language process-
ing (NLP), which is necessary for many downstream NLP
applications such as relation extraction (Miwa and Bansal
2016), question answering (Moll4, Van Zaanen, and Smith
2006), and knowledge graph construction (Ji et al. 2021).
Compared with English NER, Chinese NER is more chal-
lenging owing to its lackness of natural delimiters in sen-
tences (Zhu, Wang, and Karlsson 2019).

To tackle this thorny problem, lots of lexicon-based ap-
proaches (Zhang and Yang 2018; Gui et al. 2019a; Li et al.
2020; Zhao et al. 2021, 2023) were proposed to incorporate
lexicon information into character-level Chinese NER mod-
els. These approaches match the input character sequence
with outer lexicon and fuse the matched words’ boundary
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and semantic features into the model’s encoder input or the
character representations. However, the lexicon-based ap-
proaches are suffering two main limits. Firstly, the perfor-
mance of these approaches heavily relies on the quality of
the lexicon, and acquiring and maintaining a high-quality
lexicon can be quite costly, especially in some special do-
mains. Secondly, the fusing strategy needs to be carefully
designed to avoid introducing external noise and biases into
models. These limitations have instigated our pursuit of a
lexicon-free framework while achieving comparable perfor-
mance.

Prior to formulating our model, we investigated the
widely used Chinese NER datasets (Weibo (Peng and
Dredze 2015), MSRA (Levow 2006), Resume (Zhang and
Yang 2018) and CLUENER (Xu et al. 2020)). We calcu-
lated the occurrence frequency for entity boundary charac-
ters in the training sets (see Table 1) and found that the entity
boundaries are dominated by a few characters, i.e., bound-
ary characters appearing with particularly high frequency.
This high-mention coverage aligns with the character-level
zipf’s law in Chinese languages and will contaminate NER
models’ generalization ability by misleading NER models
to simply memorize keywords in those high-frequency men-
tioned boundary characters rather than leverage semantic
features (Liang and Leung 2021; Lin et al. 2020). As a re-
sult, during inference on the test set, the NER model per-
forms better on entities with high mention frequency bound-
ary characters but exhibits lower performance on entities
with less emphasized or new boundary characters. We con-
sider this phenomenon as boundary bias and argue that it
predominantly affects the identification of entity boundaries
by building spurious correlations between boundary charac-
ter mentions and the ground truth labels. This arises from
the fact that contextual features hold greater significance in
defining entity boundaries compared to character mentions.

Previous studies (Liang and Leung 2021; Zeng et al.
2020) apply entity-level data manipulations to re-balance the
entity distribution in the training set so as to improve the
generalization ability of NER models. However, manipulat-
ing data at the boundary-level can significantly alter the se-
mantic meaning of words and sentences, which may greatly
undermine the effectiveness of NER models. Fortunately,
counterfactual inference (Pearl 2021) is promising in tack-
ling the above spurious correlation issue caused by the unfair
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high mention coverage in some boundary characters. In this
paper, we aim to teach our model a combined understand-
ing of character mention and textual context and distinguish
between the effects of the character mention and textual con-
text through counterfactual rethinking in the inference stage:
Factual Inference: What will the prediction be if seeing both
the character mention and its textual context?

Inference with Counterfactual Rethinking: What will the
prediction be if seeing the character mention only and had
not seen the textual context?

Datasets | 73y TS, T5o% 0%
Weibo 0.39 0.40 0.51 0.51
MSRA 0.63 0.66 0.76 0.78
Resume |0.61 0.83 0.74 0.90

CLUENER | 0.63 0.66 0.76 0.78

Average \ 0.57 0.64 0.69 0.74

Table 1: Statistics of the frequency ratio (r) for entity bound-
ary characters in training sets of four Chinese NER datasets.
We conducted a frequency analysis of characters appearing
as entity starts and ends, sorted in descending order. Based
on the analysis, we sum up the top 5% (10%) characters’
frequency as entity start or end and divide it by the total fre-
quency to get frequency ratio as riq, e, iy, and 755 .

5 P o0 Factual Output
High mentions in training set : P

4Rl (Financial Street), K %75(Chang An
Street), #£/RfE(Wall Street), ...

Bias Learning

End Other

A X R R A Model Comparing

l Imagine

End Other
Counterfactual Output

Figure 1: Ilustration of counterfactual rethinking on bound-
ary detection. The characters in green squares are the com-
ponents of entity. The black square denotes mask operation
in textual context.

As shown in Figure 1, when predicting the character
“f (street)” in sentence “/ M H = X IR E LR A
) (A comprehensive market in Jingxi Street, Baiyun Dis-
trict, Guangzhou.)”, the model wrongly identifies it as an
entity end because of the learned boundary bias caused by
high mentions of “f7 (street)” as entity boundaries. Through
counterfactual rethinking, the model imagines a counterfac-
tual situation of only seeing the character mention and com-
pares the factual output with the counterfactual, then makes
decisions collectively based on textual context and character
mentions. Thus, the model can focus on the main effect of
the textual context while not losing the character features.

In our work, to study and mitigate the boundary bias
while enhancing boundary supervision and span represen-
tation by multi-task learning in Chinese NER tasks, we
propose SEN, a Span Enhanced Two-Stage Network with
a boundary detector and a convolution-based span classi-
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fier for Chinese NER, and apply the Counterfactual Re-
thinking (CR) strategy on SEN in inference. Specifically,
in the first stage of training, we utilize a boundary detector
to learn entity boundary features for boundary supervision,
and then employ a convolution-based classifier to encode N-
gram features into span presentation and classify spans into
corresponding categories in the second stage. Both mod-
ules utilize the same contextual embedding and are trained
within a multi-task learning architecture using biased train-
ing data. In the inference stage, we first construct a causal
graph for boundary detection to analyze the dependencies
between variables, which acts as a “guidance” for captur-
ing the causal effects of textual context and character men-
tion. Then, to avoid the test instances being poisoned by
boundary bias, our boundary detector “imagines” the coun-
terfactual counterparts on our causal graph to distill the bi-
ases through counterfactual rethinking. Finally, we perform
a bias removal operation to produce a counterfactual predic-
tion that corresponds to a debiased decision.

We highlight that the proposed SEN with the CR strat-
egy (SENCR) is lexicon-free and the CR strategy will not
change any parameters of the trained model. To verify, we
perform extensive experiments on four public Chinese NER
benchmark datasets. The overall results demonstrate that
SENCR achieves new state-of-the-art performance com-
pared to recent competitive lexicon-free models, and even
outperforms some existing lexicon-based models. Moreover,
the improvements of Fl-score (F1) on new boundaries of
SENCR compared with SEN are 0.84%, 1.40%, 1.87% and
1.12% respectively in test sets of four datasets, that shows
the effectiveness of the proposed CR strategy.

Related Work

Lexicon-Based Chinese NER. In Chinese NER, recent
studies adopt lexicons to enhance boundary and semantic
features in character-level representation. Zhang and Yang
(2018) introduced a lattice LSTM structure to encode all
characters and potential words recognized by a lexicon in
a sentence, avoiding the error propagation of segmentation
while leveraging the word information. CNN (Gui et al.
2019a) and GNN (Gui et al. 2019b) models were also em-
ployed to leverage better lexicon-based information. To fully
utilize the parallel computation of GPUs, Li et al. (2020) in-
troduced a flat-lattice transformer architecture to encode lex-
icon features. Moreover, Liu et al. (2021) proposed a novel
method to integrate external lexicon knowledge into BERT
layers for Chinese sequence labelling. However, the effec-
tiveness of these aforementioned approaches heavily hinges
on the quality of external lexicons.

Two-Stage NER. Two-stage NER refers to a process in
which the identification and classification of named entities
is performed in two separate stages. The first stage involves
detecting and labeling the entity spans in the text, while the
second stage involves assigning the appropriate categories to
the detected spans. Zheng et al. (2019) combines sequence
labeling model and region classification model to locate and
classify nested entities with high performance. Tan et al.
(2020) first predict boundary and then perform classifica-
tion over span features. Wu et al. (2022) presents a novel
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Figure 2: Overall architecture of SEN. The left part is the whole structure of SEN, which contains a boundary detection module
and a type classification module. The right part illustrates the convolution operation of our SPAN-CONYV block on the span.

two-stage set prediction network named Propose-and-Refine
Network for nested English NER. Shen et al. (2021) treat
NER as a joint task of boundary regression and span classi-
fication and propose a two-stage entity identifier. The main
differences between our network and the above methods are
that our model consists of a convolution-based neural net-
work to capture different n-gram features for span enhance-
ment and a novel CR strategy for debiased boundary predic-
tion.

Causal Inference Causal inference (Pearl 2009; Pearl and
Mackenzie 2018) aims to determine the independent, ac-
tual effect of a particular phenomenon, which has been em-
ployed in psychology, politics and epidemiology for many
years (Sobel 1995; Richiardi, Bellocco, and Zugna 2013;
Keele 2015). By removing confounding bias in data, causal
inference can provide debiased solutions through estimating
the causal effect rather than correlation. Inspired by causal
inference, Liu et al. (2022) proposed a causal context de-
biasing recognition framework to remove the effect of con-
textual bias in vision recognition. Lin et al. (2022) utilized
a new causal debiasing framework to eradicate the detri-
mental contrast distribution bias and spatial distribution bias
in Unsupervised Salient Object Detection (USOD). In NLP,
Qian et al. (2021) designed a counterfactual framework for
text classification debiasing. A counterfactual analysis based
method is proposed by Wang et al. (2022) to debias Relation
Extraction (RE). Tian et al. (2022) propose a novel bias mit-
igation strategy to reduce known biases learned by Natural
Language Understanding (NLU) models based on causal in-
ference. Zhang et al. (2021) proposed a framework to iden-
tify and resolve the dictionary bias in Distant-Supervised
NER via causal intervention. Inspired by these applications
of causal inference, we aim to teach our model a debiased
prediction by distinguish the main effects between the char-
acter mention and textual context in entity boundary detec-
tion through our proposed CR strategy.
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Method
Span Enhanced Two-Stage Network

In this section, we introduce the proposed Span Enhanced
Two-Stage Network (SEN) in details, as illustrated in Fig-
ure 2. We initially acquire character-level contextual em-
beddings using a conventional lexicon-free BERT-BiLSTM
encoder. In order to achieve the goal of boundary supervi-
sion and span enhancement, we then construct SEN with two
modules, including a boundary detector for boundary detec-
tion and a type classifier for span classification. Finally, we
jointly train our SEN under a multi-task learning architec-
ture to benefit the both two modules.

Character-Level Encoder. Character-level encoder is used
to map discrete characters into continuous input vectors.
Considering a Chinese sentence s = {c1,¢2,...,cn} € Ve
where V. is the character vocabulary, we map each character
into a real-valued embedding to represent its semantic and
syntactic meaning. Each character c; is encoded as:

x; = BERT(¢;) (D

where BERT denotes a standard BERT (Devlin et al. 2019)
encoder. Then, the sequence of character embeddings will
be fed to the bidirectional LSTM (BiLSTM) layer to get the
character-level contextual embeddings as follows:

- o —
h = LSTM (21, hi 1) ©
_>
hi = [y e @)
where [;] denotes concatenation, and the final character-
level sequence representation can be expressed as H =

{h1,ha,....;hn}.

Entity Boundary Detector. Instead of classifying char-
acters into B (Begin), M (Middle), E (End), S (Single),
O (Other) to denote their roles in entities, our Entity Bound-
ary Detector aims to predict whether a character in the sen-
tence is the start or end of an entity. Specifically, we design
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two task-oriented multi-layer perceptron (MLP) classifiers
to predict the entity start and end positions.

In order to get the probability of the character ¢; being the
start or end of an entity, we employ layer normalization (Ba,
Kiros, and Hinton 2016) to process the character representa-
tion h;, and then feed it into the MLP classifier and apply a
softmax layer on the output.

g; = softmax(MLPg(LayerNorm((h;)))) )

7y = softmax(MLP,(LayerNorm((h;)))) (6)

After obtaining the start probability ¢ and the end prob-
ability ¢ of character c;, we apply a argmax function to
get the final predlctlon cg,c¢ € {0,1}, where O repre-
sents that ¢; is not an entity start or end, and 1 denotes
that c; is an entity start or end. Finally, we get the sequen-
tial start prediction s* = {c$,c3, ..., ¢} and end prediction
5 = {55, ... 5.

Entity Type Classifier. In order to classify spans into corre-
sponding categories, we design a span-specific Entity Type
Classifier to leverage span features and predict the tags. Spe-
cially, we add a additional NoneType category to denote that
the span is not belong to any named entity types.

Instead of enumerating all possible spans from the raw
sentence, for every positive start prediction in s°, we match
its corresponding end pair by simply searching the nearest
positive end prediction in s° to get the final span bound-
ary (7,7). Inspired by TextCNN (Kim 2014), we propose
a convolution-based neural network to enhance span rep-
resentations by extracting k-gram features from spans. As
illustrated in the right part of Figure 2, we employ multiple
convolutional networks with different kernel sizes to capture
multi-scale span representations as follows:

° IL

k-gram = MaxPooling(Convg(h;.;) @)

where k denotes the kernel size of convolutional network,
h;:; denotes the span character representation extracted by
the boundary (3, j).

Finally, we concatenate n-gram features leveraged by our
span enhanced convolutional network to obtain the final rep-
resentation of the span 7, then feed it into a multi-layer
perceptron classifier, and apply a softmax layer to obtain the
probability §°P of the corresponding category.

rsp = [L-gram; 2-gram; ...; 8)

§°P = softmax(MLPg, (LayerNorm(rgp)) )

Joint Training. During training, we jointly minimize the
cross-entropy loss of two subtasks in a multi-task learning
form. For the boundary detection loss, we apply a binary

cross-entropy loss to calculate the start loss £; and end loss
Ly, respectively.

k-gram)

n

Ly == [ylog(y) + (1 —y)log(L —§;)]  (10)
i=1
Ly == [yilog(§5) + (1 = y)log(1 = §5)] (A1)
=1
1
L= (L3 + L) (12)
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where y? and y§ are the golden label indicating whether the
i-th character is the start or end of an entity or not. The
loss function of the entity type classifier is defined as cross-

entropy:
Ly == y"log(§*)

where y°P denotes the ground truth of span type. Finally, we
define the total training loss £ of SEN as below:

L=MCh+ (1= X)Ly,

13)

(14)

where ) is the hyper-parameter that balances two subtasks.

)

m character mention; s: input sequence;
H contextual embeddmg,Y boundary prediction

‘e ® 1300 -’,

(c)
Figure 3: Causal graphs for boundary detector: (a). the orig-
inal causal graph of boundary detection, (b). the counterfac-
tual rethinking variant on boundary bias, (c). the counterfac-
tual rethinking variant on dataset bias. The shading denotes
the mask of corresponding variables.

Counterfactual Rethinking Strategy

In this section, we study and debias the boundary bias
learned by our trained boundary detector using the CR strat-
egy. We firstly formulate a causal graph for the boundary
detection task from a causal perspective and then introduce
the CR strategy to distill the boundary bias. Finally, we re-
move the distilled bias from the predictions of our boundary
detector to improve its generalization.

Causal Graph for Boundary Detection. In order to
implement the CR strategy, we first construct the causal
graph (Pear]l 2009; Pearl and Mackenzie 2018) for bound-
ary detection in the inference stage, as shown in Figure 3(a).
Causal graph is expressed visually by using directed acyclic
graphs (DAGs), whose vertices are random variables and di-
rected edges represent direct causation from variable A to
variable B. This graph reveals how the character mention
and its context influence the contextual embedding of each
word in the sequence, thereby impacting the prediction of
boundaries.

Concretely in Figure 3(a), (1) the causal link s — m : the
character mention is determined by the input sequence; (2)
the causal link s — [ :in inference, contextual embeddings
are encoded from input sequence by our trained BERT-
BiLSTM encoder; (3) the causal link m — H : Also, char-
acter mention is inevitably encoded into contextual embed-
dings by the trained encoder; (4) the causal link H — Y :
the boundary detector utilizes contextual embeddings to get
boundary prediction; (5) the causal link m — H — Y : the
boundary detector is misled by character mention encoded
in contextual embeddings and get the biased boundary pre-
diction; (6) the causal link s — H — Y : both characters
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and its context are comprehensive understood and encoded
in contextual embeddings and the boundary detector gets the
fair prediction of each character.

Bias Distillation. Based on the causal links in Figure 3(a),
we analyze how the boundary bias affects boundary detec-
tor in inference. In the inference stage, the learned model
parameters indicates causal dependencies among the vari-
ables. The boundary bias hurts the model generalization
to make wrong predictions mainly through the causal link
m — H — Y while ignoring the real main causal link
s — H — Y. Thanks to causal inference, we no longer
treat the whole inference process as a black box. In contrast,
we utilize the causal intervention which is denoted as do() to
realize our CR strategy on the trained boundary detector by
manipulating the nodes and observe the new output.

To distill the boundary bias by counterfactual rethinking,
we apply do-operation on s which wipes out all the incom-
ing links of s and alter it to the counterfactual. Here, we
mask the textual context, but maintain m as the original to
get the output logits Y7,/ (see Figure 3(b))as follows:

Yy =Y(do(s = s)) (15)

H' denotes the contextual embeddings after intervention

s=s, the original prediction can be denote as Y.

By masking textual context in s, the character will not
indicate any boundary preference in sentence. In this case,
since the model cannot see any textual context in the fact

input s after the invention s = s', but still has access to the
original character mention m as the inputs, the prediction
Y} purely reflects the side effect from m. In other words,
Yy, refers to the output affected by boundary bias, where
only the character mentions are available as input while tex-
tual context is masked.

In addition to Yy, that reflects the side causal effects of
character mentions, there is another kind of bias not condi-
tioned on the character mentions m, but reflecting the gen-
eral bias in the whole dataset caused by its collection and
annotation procedure, which is Y. The output Y cor-
responds to the counterfactual input sequence s where both
textual context and character mentions are removed. In this
case, since the model cannot see any information from the
input sequence s afterinterventions = s (see Figure 3(c)),
Y} naturally reflects the dataset bias that was learned by
the trained model in training.

Bias Removal. Our final goal is to use the direct effect
from H to Y for debiased boundary prediction while re-
moving the boundary bias and dataset bias learned by our
boundary detector in biased training. The debiased predic-
tion via bias removal can be formalized via the conceptually
simple and empirically powerful element-wise subtraction
operation:

(16)

where Yjepiaseq 1S the final debiased boundary prediction;
Y} and Yy~ correspond to the boundary bias and dataset
bias distilled from the trained boundary detector, respec-
tively; a1 and a are two independent hyper-parameters bal-
ancing the two types of biases. We adaptively set the values

Yieviased = Yu — C¥1YH’ — OéQYH//
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of a; and «y for different datasets using grid search in a
scoped two dimensional space:

o, a5 =arg é?%x)é Y(ag, ) aq,a9 € [d,l;] 17

where 1) is the F1 metric, d,g are the boundaries of the
search range. The two hyper-parameters are at dataset-level
and thus searched only once for each validation set, and
would be used in inference all testing instances.

Experiments

To evaluate the performance of the proposed SEN and the
CR strategy in inference, we conducted extensive exper-
iments on four Chinese NER datasets covering different
domains. In this section, we describe the details of the
four datasets, implementation settings, main results, abla-
tion study, F1 against N-gram selections and analysis on CR
strategy in the experiments.

Datasets

CLUENER (Xu et al. 2020). It is a well-defined fine-
grained dataset for Chinese NER collected from Sina News.
Its entities contain 10 different categories, including organi-
zation, person name, address, company, government, book,
game, movie, position, and scene.

MSRA (Levow 2006). MSRA is also a dataset annotated
from news domain and contains 3 types of named entities:
LOC (Location), PER (Person) and ORG (Organization).
Resume (Zhang and Yang 2018). Resume dataset is com-
posed of resumes from Sina Finance and is annotated with 8
types of named entities: LOC, PER, ORG, CONT (Coun-
try), EDU (Educational Institution), PRO (Profession),
RACE (Ethnicity) and TITLE (Job Title).

Weibo (Peng and Dredze 2015). Weibo social dataset con-
tains 4 different categories, including LOC, PER, ORG,
GPE (Geo-Political Entity).

We followed the same training, development, test split on
Weibo and Resume datasets as Li et al. (2020). Develop-
ment set and test set are not available for MSRA dataset and
CLUENER2020 dataset respectively, we followed Gui et al.
(2019b) to use test set or dev set instead.

Implementation Details

Our proposed SENCR is implemented with the Pytorch
framework. For the BERT encoder, we utilize the stan-
dard pre-trained Chinese BERT-base model with 768-
dimensional hidden representations to acquire character em-
beddings, completely free from any outer lexicons. As
for hyper-parameter configurations, we search for the best
hyper-parameters in development set and evaluate on test
set to obtain the final performance for different datasets
respectively. The hidden states of the BiLSTM and span-
convolution neural network are set to 256 and 200 for Re-
sume and Weibo datasets, 200 and 100 for CLUENER
dataset, and 300 and 200 for MSRA dataset, respectively.
To avoid overfitting, we employ a dropout rate of 0.1 on
the BiLSTM, convolution-based neural network, and MLPs
for the Resume and MSRA datasets. For the Weibo and
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Models Weibo Resume MSRA CLUENER
BERT+FLAT(2020) 68.55 95.86 96.09 -
SoftLexicon(2019) 70.50 96.11 95.42 -

LEBERT(2021) 70.75 96.08 95.70 -
MECT(2021) 70.43 9598 96.24 -
DCSAN(2021) 71.27 96.67 96.41 -
MCL(2023) 73.08 96.46 96.11 -
BERT+CRF" 67.33 9551 94283 79.65
BERT+GAM" (2022a) 63.60 - 94.97 81.08
W2NER"(2022b) 7232 96.65 96.08 -
SEN(base) 7273 96.86 96.12 81.61
SENCR 7342 97.13 96.17 81.86

Table 2: Main Results(F1) on Resume, MSRA, Weibo and
CLUENER datasets. * denotes model with no lexicons.
BERT+FLAT (Li et al. 2020), SoftLexicon (Ma et al. 2019),
LEBERT (Liu et al. 2021), MECT (Wu, Song, and Feng
2021), DCSAN (Zhao et al. 2021), MCL (Zhao et al. 2023),
BERT+GAM (Li et al. 2022a), W2NER (Li et al. 2022b).

CLUENER datasets, the dropout rate is set to 0.5. To train
the model, we use AdamW (Loshchilov and Hutter 2017)
optimizer with a learning rate of 1e-5 for fine-tuning BERT
and a learning rate of le-3 for other part of the proposed
SEN. In addition, we randomly sample part of negative
spans detected from the boundary detector as the additional
NoneType for data augmentation to the entity type classifier.
For the CR strategy, we search the best «; and as in devel-
opment set with range [-2, 2] and step 0.02. For evaluation,
Standard Precision (P), Recall (R), and F1 are employed as
evaluation metrics for both boundary and entity. All of our
experiments are conducted on the same machine with two
Nvidia RTX 3090 GPUs.

Overall Performance

We present the overall results on four Chinese NER datasets
in Table 2. As shown in this table, we can observe that
our proposed SEN achieves the state-of-the-art performance
compared with lexicon-free models on these datasets. More-
over, SEN with CR strategy (SENCR) even outperforms re-
cent lexicon-based methods on Weibo and Resume. Con-
cretely, on Weibo, SEN achieves 0.41 absolute F1 improve-
ment over the lexicon-free method W?NER and with CR
strategy integrated, the F1 improves 0.69 and surpasses all
the recent methods. On Resume, SEN obtains a improve-
ment compared to the SOTA approach DCSAN by 0.19
F1 and a decent improvement of 0.27 F1 after applying
CR strategy. On MSRA, although the improvement of SEN
and SENCR over the lexicon-free SOTA model W?NER
is limited, our models still surpass some of the lexicon-
based models such as BERT-FLAT, SoftLexicon, LEBERT
and MCL. In addition, on CLUENER, we can only find
two lexicon-free models for comparison since CLUENER is
released recently. Compared with BERT+GAM, SEN out-
performs it by 0.53 F1 and with the CR strategy, the im-
provements is 0.25 F1. The above results demonstrates that
our proposed lexicon-free SEN can achieve comparable per-
formance by boundary supervision and span enhancement
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under a multi-task training architecture. Moreover, the im-
provements of SENCR compared to SEN on four datasets
show the effectiveness of our proposed CR strategy.

Ablation Study

We conduct the ablation study in the following three aspects
on Resume and CLUENER datasets, as shown in Table 3.

Span enhancement. To validate the effectiveness of our
proposed convolution-based network for span enhancement,
we replace this block with the concatenation of start and end
tokens’ representation and the span length embedding. The
F1 drops by -0.60 and -0.92 on Resume and CLUENER
datasets without span enhancement. It shows that our pro-
posed convolution-based network can leverage richer se-
mantic features by n-gram convolutions than traditional con-
catenation method.

NoneType augmentation. In the ablation experiment
without data augmentation on our entity classifier, we do
not sample any negative spans from the boundary detector.
The performance drops by -0.49 and -0.64 on Resume and
CLUENER datasets compared with random sampling. This
indicates random sampling negative spans from boundary
detection as additional NoneType can enhance robustness of
the entity classifier and endow the classifier to distinguish
negative spans originating from the upstream task.

Multi-task joint training. In the ablation experiment
without multi-task joint training, we train the two-stage
model SEN in a pipeline manner. The performance drops
significantly by -2.36 and -3.33 on Resume and CLUENER
datasets. This demonstrates the substantial mutual benefits
that can be derived from the interplay between boundary
detection and entity classification tasks within a multi-task
joint training architecture.

Resume CLUENER
Model P R Fl [P R FI
SEN(base) 97.16 96.56 96.86 [81.97 81.25 81.61
- SE. 96.26 96.26 96.26 |81.92 79.49 80.69
-DA. 9651 9622 96.37 |81.86 80.08 80.97
-JT. 94.35 94.64 9450 |77.35 79.42 78.28

Table 3: Ablation Study. SE denotes span enhancement, DA
means NoneType data augmentation on our entity classifier
and JT is the multi-task joint training.

F1 against N-gram Selections

To analyze the impact of N-gram selections on model per-
formance, we conduct experiments on CLUENER and Re-
sume datasets by employing our convolution-based network
with different kernel size lists. As shown in Figure 4, SEN
with kernel size list of 1-4: [1,2,3,4] and 1-5: [1,2, 3,4, 5]
achieves the best F1 on CLUENER and Resume datasets
respectively. The results above indicate that leveraging n-
gram features to enhance span representations with our
convolution-based network can improve the performance
of SEN to a certain extent. However, it also suggests that
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Figure 4: F1 against N-gram selections on CLUENER and
Resume datasets. 1-n denotes span-convolution network

with kernel size list: 1, 2, ..., n.
e Caser
I Sentence
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Sentence:
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(Blacklight) [21,36]

(Blacklight)
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Figure 5: Case Study on CLUENER dataset. In the figure,
the green characters are the golden and the correctly iden-
tified entities and boundaries. The red characters are the
wrongly identified items.

the model’s performance does not necessarily improve with
more N-grams. This observation can be attributed to the fact
that N-grams with longer lengths than spans may introduce
noise rather than conveying meaningful semantic features.

Analysis on CR Strategy

Our proposed CR strategy aims to distill and remove bias
caused by boundary character with high mention frequency
so as to improve the generalization ability of boundary de-
tector in inference stage. To verify the effectiveness of CR
strategy on boundary detection, we evaluated and compared
the performance of SEN and SENCR on new boundaries in
test sets of four Chinese datasets. As shown in Table 4, af-
ter applying our CR strategy on boundary detector of SEN,
the F1 of new boundaries improves 0.84, 1.40, 1.87 and 1.12
on Resume, CLUENER, Weibo and MSRA datasets respec-
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Model Resume CLUENER

All New All New
SEN(base) 98.02 96.20 89.08 67.13
SENCR 98.41 97.04 89.54 68.53
Model ATl Weillzl(;w ATl MSIf@w
SEN(base) 77.68 61.65 97.31 88.50
SENCR 78.40 63.52 97.42 89.62

Table 4: F1 for all and new boundaries in test sets of four
Chinese datasets. All denotes all boundaries in the test set.
New denotes boundaries in the test set that have not been
seen in the training set.

tively. Moreover, we analyze two cases from the CLUENER
test set, as shown in Figure 5. In the first case, character
“f£f (Street)” mislead the boundary detector of SEN to iden-
tify it as end of an entity because of “f (Street)” is usu-
ally appears as entity ends in training set such as “} %
£ (Chang An Street)”, “5€ B (Food Street)” and so on.
In the second case, the highly mentioned special character
‘) is regarded as entity end for thousands of times in train-
ing set that guide the boundary detector to simply remember
it as boundaries. As a result, SEN wrongly identified /" /!
Hz X 50 (Jingxi Street, Baiyun District, Guangzhou)”
and “ (%) (Blacklight)” as final entity predictions while
ignored the textual context “}:£5-4 7% (a comprehensive
market)” and “ (Blacklight) . With CR strategy, SENCR
can correctly identify “J M HZ= X FEHELZETY (a
comprehensive market in Jingxi Street, Baiyun District,
Guangzhou)” and * (#£5t)  (Blacklight) (Blacklight)”
as debiased prediction by removing the negative impact of
boundary bias in inference. The improvements of F1 on
new boundaries and the case study on CLUENER dataset
indicate that the CR strategy can help the boundary detec-
tor achieve higher generalization by mitigating the bound-
ary bias learned in the training procedure.

Conclusion

In this paper, we proposed a lexicon-free Chinese NER
framework called SENCR that incorporates a boundary
detector for boundary supervision, a span-convolutional
network for better span representation and classification
and a novel counterfactual rethinking strategy in infer-
ence for debiased boundary detection. The experimental
results on four Chinese NER datasets show that SENCR
achieves state-of-the-art performance compared to other
lexicon-free approaches on four datasets and even outper-
formed lexicon-based approaches on Resume, Weibo and
CLUENER datasets. In addition, evaluation on new bound-
aries in test sets of four Chinese datasets proves the effec-
tiveness of our proposed CR strategy.
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