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Abstract
Early Exiting is one of the most popular methods to achieve
efficient inference. Current early exiting methods adopt the
(weighted) sum of the cross entropy loss of all internal clas-
sifiers as the objective function during training, imposing all
these classifiers to predict all instances correctly. However,
during inference, as long as one internal classifier predicts
an instance correctly, it can accelerate without losing accu-
racy. Thus, there is a notable gap between training and in-
ference. We propose ConsistentEE, an early exiting method
that is consistent in training and inference. ConsistentEE for-
mulates the early exiting process as a reinforcement learn-
ing problem. A policy network is added to decide whether
an instance should exit or continue. The training objective of
ConsistentEE only requires each instance to be predicted cor-
rectly by one internal classifier. Additionally, we introduce
the concept “Memorized Layer” to measure the hardness of
an instance. We incorporate the memorized layer into reward
function design, which allows “easy” instances to focus more
on acceleration while “hard” instances to focus more on accu-
racy. Experimental results show that our method outperforms
other baselines on various classification and generation tasks
using PLMs and LLMs as backbones respectively.

Introduction
Recently, pre-trained language models (PLMs) (Devlin et al.
2019; Liu et al. 2019; Yang et al. 2019; Brown et al. 2020)
and large language models (LLMs) (Ouyang et al. 2022)
have become fundamental building blocks in the field of nat-
ural language processing (NLP). As the scales of these mod-
els continue to grow, their performance improves but their
inference speed slows down. This hinders their application
in resource-limited scenarios. To address this problem, many
efforts have been made to achieve efficient inference. There
are two lines of work: static and dynamic approaches (Zhou
et al. 2020). Static approaches design lightweight architec-
tures or compress the models while dynamic approaches
aim to make adaptive inference for each instance. Static ap-
proaches include weights pruning (Michel, Levy, and Neu-
big 2019; Voita et al. 2019; Fan, Grave, and Joulin 2020),
quantization (Kim et al. 2021; Yao et al. 2022; Xiao et al.
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Figure 1: The training and inference procedure of Consis-
tentEE which formulates the early exiting process as a re-
inforcement learning problem. A policy network can make
two possible actions, i.e., to exit, or to continue. If it exits,
the corresponding internal classifier is required to predict the
instance correctly, otherwise, no loss is incurred by the cor-
responding internal classifier.

2023), and knowledge distillation (Sanh et al. 2019; Sun
et al. 2019; Jiao et al. 2020). Dynamic approaches (Xu and
McAuley 2023) include token skipping (Goyal et al. 2020;
Kim and Cho 2021; Ye et al. 2021; Kim et al. 2022; Guan
et al. 2022; Sun et al. 2022), and early exiting (Zhou et al.
2020; Xin et al. 2021; Zhang et al. 2022).

As one of the most popular methods, early exiting adds
an internal classifier to each intermediate layer, allowing in-
stances to stop model inference in an early layer instead of
going through the entire model, thus accelerating the infer-
ence time. Early Exiting can be useful, especially in the era
of LLMs. Although the scale of LLMs continues to increase
to deal with challenging tasks like reasoning, planning, etc.,
in the real-world scenario, they may not always encounter
such challenging tasks (Schuster et al. 2022). A small sized
LLM has been good at handling “easy” tasks such as para-
phrasing, translation, etc. When LLMs encounter “easy”
tasks, early exiting can avoid going through the entire model,
thus saving inference time.

Current early exiting methods typically adopt the
(weighted) sum of the cross entropy (CE) loss of all inter-
nal classifiers as the training loss, which imposes that all in-
ternal classifiers should predict all instances correctly. How-
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ever, our experimental analysis (in Figure 2 left) shows that
the classification accuracy of each internal classifier is not as
satisfactory as expected. This observation raises a question:
is it necessary to require all internal classifiers to predict
each instance correctly? Actually, in the inference phase, as
long as one internal classifier predicts an instance correctly,
the inference can be accelerated without sacrificing accu-
racy. Given that there is no such strict requirement during
inference, it is reasonable to abandon such a demanding ob-
jective during the training phase.

We propose ConsistentEE, an early exiting method that
is consistent in training and inference. Specifically, Consis-
tentEE formulates the training process as a reinforcement
learning (RL) problem. As shown in Figure 1, a policy net-
work is introduced at each intermediate layer to determine
whether to exit or not. If a policy network at an intermediate
layer decides to exit, the corresponding internal classifier is
expected to predict this instance correctly, otherwise no loss
is incurred by this classifier. During training, an instance can
exit at only one layer. Hence, only one internal classifier is
required to predict it correctly. As depicted in Figure 2 right,
unlike existing methods, the ConsistentEE objective enables
each layer’s classification accuracy to consistently remain at
a high level.

For the reward function design, we consider both accuracy
and acceleration. To ensure accuracy, we incorporate the loss
of the internal classifier into the reward function, assigning
higher reward values to instances with lower losses. Addi-
tionally, to consider acceleration, we involve the layer depth
at which an instance exits into the reward function. Although
one can place a trade-off coefficient to balance accuracy and
acceleration in the reward function, we argue that instances
of different hardness levels should put different weights on
accuracy and acceleration. We observe that “easy” instances
generally can be classified correctly at shallow layers. Those
instances should exit as early as possible after they can be
classified correctly. “Hard” instances typically can be clas-
sified correctly at deep layers. Those instances should focus
on accuracy instead of acceleration at early layers. Hence,
we also incorporate the hardness level of an instance into
the reward function design.

However, the identification of “easy” and “hard” instances
is itself a difficult problem and is extensively studied in the
literature (Kumar, Packer, and Koller 2010; Arpit et al. 2017;
Toneva et al. 2019). Inspired by the concept of unforgettable
example (Toneva et al. 2019), we propose a new concept,
Memorized Layer, to measure the hardness. The memorized
layer is the layer where the instance is correctly classified
and continuously correctly classified until the final layer.
Experimental analysis reveals a high and medium correla-
tion between the memorized layer and losses, and forget-
ting events respectively. Our reward function incorporates
the “memorized layer” to encourage “easy instances” to pay
more attention to acceleration while “hard instances” to fo-
cus on accuracy rather than acceleration.

The contributions are summarized as follows,

• We propose an early exiting method that can achieve con-
sistency during training and inference by formulating the

early exiting problem as a reinforcement learning prob-
lem.

• We propose a concept named Memorized Layer to mea-
sure the hardness of an instance. We incorporate it into
the reward function to allow an instance to balance the
accuracy and acceleration depending on individual hard-
ness.

• The experimental results show that our method can out-
perform other baselines on natural language understand-
ing and generation tasks.

Code: https://github.com/ZeroNLP/ConsistentEE.

Related Work
Early Exiting
Early exiting methods insert an internal classifier to each in-
termediate layer, allowing instances to exit at an early classi-
fier rather than at the final classifier. According to the exiting
criterion, early exiting methods can be categorized into three
types: confidence-based or entropy-based, ensemble-based,
and learning-based exiting.

Confidence-based early exiting methods utilize confi-
dence, entropy, or (calibrated) max class probability to exit.
In DeeBERT (Xin et al. 2020), FastBERT (Liu et al. 2020),
RomeBERT (Geng et al. 2021) and Past-Future (Liao et al.
2021), the instance exits if the entropy is less than a pre-
defined threshold. Right-Tool (Schwartz et al. 2020), Skip-
BERT (Wang et al. 2022), and CascadeBERT (Li et al. 2021)
use (calibrated) max class probability as the exiting crite-
rion.

Ensemble-based early exiting methods utilize predictions
from multiple internal classifiers to make better decisions. In
PABEE (Zhou et al. 2020), the instance exits when k consec-
utive internal classifiers make the same prediction. PCEE-
BERT (Zhang et al. 2022) combined both ensemble-based
and confidence-based exiting criteria. The instance exits if
the confidence scores are greater than a predefined threshold
for several consecutive exits.

Learning-based methods aim to learn a criterion for early
exiting. Our method also falls into this category. BERxiT
(Xin et al. 2021) trained a learning-to-exit (LTE) module
to predict certainty level, indicating the extent to which the
internal classifier can accurately predict the ground truth.
When the output of the LTE is greater than 0.5, an instance
can exit. CAT (Schuster et al. 2021) introduces a “meta
consistency classifier” to predict the conformity level, i.e.,
whether the output of an internal classifier is consistent with
the final classifier. An instance exits when the conformity
level is greater than a threshold. The policy network in Con-
sistentEE is different from LTE in BERxit and the meta con-
sistency classifier in CAT in two aspects. First, the purposes
are different. LTE aims to predict certainty level, and meta
consistency classifier aims to predict conformity level, while
the policy network determines whether to exit. Second, the
ground truth of certainty level and conformity level are avail-
able while the ground truth of the layer at which an instance
should exit is unknown.

There are two types of training objectives in the above
methods, i.e., the weighted sum of cross-entropy losses and
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the sum of cross-entropy losses. SkipBERT (Wang et al.
2022), PABEE (Zhou et al. 2020), Past-Future (Liao et al.
2021), PCEE-BERT (Zhang et al. 2022), and LeeBERT (Zhu
2021)) used weighted sum of cross entropy losses. Dee-
BERT (Xin et al. 2020), Right-Tool (Schwartz et al. 2020),
BERxiT (Xin et al. 2021), and CAT (Schuster et al. 2021)
used sum of cross entropy losses. Both objectives require all
internal classifiers to predict all instances correctly.

The above methods are layer-wise early exiting methods
where the entire input (i.e., all tokens) exits at the same layer.
There are some token-wise early exiting methods such as
HashEE (Sun et al. 2022) and TR-BERT (Ye et al. 2021)
where different tokens can exit at different layers. When a
token exits, the attention computation will not be performed
on this token at later layers. Hence the acceleration comes
from the reduced computation cost in the attention module.
In this sense, token-wise early exiting methods belong to the
family of token skipping methods (Goyal et al. 2020; Kim
and Cho 2021; Kim et al. 2022; Guan et al. 2022).

The above methods are early exiting encoding meth-
ods to accelerate BERT inference. CALM (Schuster et al.
2022) and Free (Bae et al. 2023) focused on early-exiting
for autoregressive models that allocates adaptive computa-
tion paths for each token generation. CALM proposed three
confidence measures as exiting criteria including Softmax
response, hidden-state saturation, and early exit classifier.
A calibration procedure is proposed to find a shared exit
threshold. Free (Bae et al. 2023) is concurrent with our work.
FREE only allowed two exit points and replaced the state
copying mechanism with synchronized parallel decoding to
prevent performance degradation.

Methodology
Background and Motivation
The early exiting method adds an internal classifier to each
intermediate layer, allowing instances to stop model infer-
ence at an early layer without going through the rest of the
layers, thus accelerating the inference time. The traditional
training objective function is a weighted sum of the cross-
entropy loss of each layer.

L =
∑

(x,y)∈D

∑L
i=1i · li∑L
i=1i

, (1)

li = H(y, Pi(x)), (2)
where (x, y) ∈ D is the input-label pair in the dataset, li
is the cross entropy loss of i-th internal classifier, H(·) is
the cross entropy function, y is the ground truth distribution
represented as a one-hot vector, Pi(x) is the probability dis-
tribution produced by the i-th internal classifier. The earlier
internal classifiers have less learning capacity, hence smaller
weights are put on them (Kaya, Hong, and Dumitras 2019;
Zhou et al. 2020). There are also some methods (Xin et al.
2020; Schwartz et al. 2020; Xin et al. 2021; Schuster et al.
2021) that do not consider varying learning capacities and
assign an equal weight to each internal classifier.

During training, this loss (Eq. 2) imposes that all inter-
nal classifiers should predict all instances correctly. To in-
vestigate whether such an objective is suitable, we analyze

the loss values and accuracy of each internal classifier on
the RTE dataset. As shown in Figure 2 (left), with the tradi-
tional training loss, the internal classifiers do not perform as
expected. The accuracy of shallow layers is unsatisfactory.
Especially, the first three layers fall below the random guess
baseline, i.e., 50%. We think that the traditional objective is
too strict that the requirement may have exceeded the limits
of the capabilities of internal classifiers, thus harming their
performance.

The experimental analysis provokes a question: whether
it is necessary to require all internal classifiers to predict
each instance correctly? Actually, in the inference phase, as
long as one internal classifier predicts an instance correctly,
it can accelerate without sacrificing accuracy. We therefore
propose ConsistentEE, an early exiting method that is con-
sistent in training and inference. With ConsistentEE, for a
training instance, only one internal classifier is required to
predict it correctly and this instance will exit at the corre-
sponding layer. ConsistentEE allows each classifier to focus
on correctly classifying partial instances, reducing the bur-
den of each layer. As shown in Figure 2, the training losses
under ConsistentEE are consistently lower than those under
the traditional training objective at every layer. Additionally,
the accuracy of each layer in the training set remains at a
significantly high level. The accuracy of layer 1 to 4 is not
available becauase if the policy network chooses not to exit
at these layers, then there is no loss and accuracy in these
layers. RTE is a challenging dataset, and no samples exit at
these layers.

ConsistentEE
The primary challenge in ConsistentEE is to determine the
most appropriate layer for an instance to exit. As the ground
truth exit layer is unavailable, ConsistentEE employs the
reinforcement learning (RL) method to automatically learn
the optimal layer for an instance to exit during training. As
shown in Figure 1, a policy network is introduced to an in-
termediate layer besides an internal classifier. This policy
network shares the same input with the internal classifier. It
produces the probability distribution of two actions. One is
exiting at the current layer, and the other one is continuing to
the next layer. If the policy network takes an action to exit,
then the internal classifier at the same layer is required to
predict the instance correctly. Otherwise, if the policy net-
work takes an action to continue, then there is no loss im-
posed on the corresponding internal classifier.

The training objective of ConsistentEE involves two parts.
The first part aims to optimize the policy network so that it
can make a good action, i.e., exit or continue. The second
part aims to optimize the internal classifier so that it can clas-
sify the instance correctly. Only the internal classifier at the
layer at which an instance decides to exit can incur a loss.

Early exiting can be regarded as a sparse reward process
because rewards are only received when an instance decides
to exit at a particular layer, with no feedback provided for
intermediate actions. Considering this characteristic, we use
the Policy Gradient technique to automatically discover the
optimal exit layer for each instance. We introduce relevant
notations in the following.
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Figure 2: Loss values at different layers on the RTE dataset using the weighted sum objective and ConsistentEE objective
respectively. The dashed dot line is the classification boundary. A loss above the boundary means misclassification. The dashed
line is the classification accuracy of each layer. The darker the color, the more samples share the same loss value.

State st is the representation of the input at t-th layer. For
the classification task with PLMs as backbones, st is the rep-
resentation of [CLS] token at t-th layer. For the generation
task with decoder-only LLMs as backbones, st is the hidden
state of the last token of the sequence at t-th layer.

Action at is the action taken at the t-th layer. The action
space is {Exit, Continue}. An instance can exit at the current
layer or continue to the next layer.

Reward The reward function should consider accuracy
and acceleration. For accuracy, we adopt the likelihood of
predicting the ground truth as a part of the reward. A larger
likelihood of predicting the ground truth leads to a larger
reward. For acceleration, we involve the depth of the layer
at which the instance exits. If an instance exits early (late),
then it can gain a larger (smaller) reward. The vanilla version
of reward Rvanilla is defined as:

Rvanilla =

{
−H(y, Pt(x))− α · t at = Exit
0 at = Continue ,

(3)
where α is the trade-off coefficient.

In the vanilla version of the reward function, each in-
stance has the same trade-off coefficient to balance the ac-
curacy and acceleration. However, “easy” instances gener-
ally can be correctly classified at shallow layers. Such in-
stances should exit as early as possible after they can be
correctly classified. “Hard” instances typically can be clas-
sified correctly at deep layers. Such instances should focus
on accuracy instead of acceleration at early layers. Hence,
instances of different hardness levels should put different
weights on accuracy and acceleration. Based on this idea,
we improve the reward function by taking instance hardness
into account:

R =

{
−H(y, Pt(x))− α · (1− M

L ) · t at = Exit
0 at = Continue ,

(4)
where L is the total number of layers; M denotes Memo-
rized Layer, a new concept we introduced to measure the
hardness of an instance. A smaller (larger) value of M in-

dicates an easier (harder) instance. More details about this
concept will be introduced in the next section. With Eq. 4,
for a hard (easy) instance, the trade-off coefficient α·(1−M

L )
is expected to be smaller (larger), causing it to receive more
(less) weight on accuracy compared to the vanilla version.

Policy Network π(at|st; θ) produces the probability of
taking action at given the current state st. The Policy net-
work is parameterized by θ.

Policy Objective Function We optimize the policy net-
work to maximize the expected reward. The policy objective
function is defined as:

J(θ) = Eτ∼π(at|st;θ)

[
R(τ) ·

T∏
t=1

π(at|st; θ)

]
, (5)

where τ are the trajectories (s1, a1) · · · (sT , aT ), T is the
number of states in the trajectories. Note that T ≤ L. When
aT = Exit, trajectories terminate at step T . There is no fur-
ther action in the remaining layers. The maximum length
of the trajectory is the number of layers. We adopt repeated
sampling and ϵ-greedy techniques to allow each instance to
have multiple trajectories. Eq 5 is optimized on trajectories
generated by all data in the dataset.

Task Objective Function We optimize the internal clas-
sifiers and the backbone to accomplish the task (e.g., clas-
sification, generation, etc.) The internal classifiers and the
backbone are parameterized by ω. The task objective func-
tion is defined as:

J(ω) =
∑

(x,y)∈D

T∑
t=1

H(y, Pt(x)) · 1(at = Exit), (6)

where 1(·) is an indicator function that returns 1 if the con-
dition is satisfied. Otherwise, it returns 0.

Memorized Layer and Hardness of Instance
Identifying easy and hard instances is the core problem in
curriculum learning and has been extensively studied. (Ku-
mar, Packer, and Koller 2010; Arpit et al. 2017) use losses
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Spearman Correlation Loss Forgetting Events
RTE 0.76 0.59
MRPC 0.84 0.43
SST-2 0.66 0.32

Table 1: Spearman Correlation between memorized layer
and loss, and between memorized layer and forgetting events
on RTE, MRPC, and SST-2 datasets.

at some points during training to measure the hardness of
instances. (Toneva et al. 2019) proposed a concept named
unforgettable example which is predicted correctly at some
point and is persistently correct until the end of training. Un-
forgettable examples are typically learned in the early stage
of training, and may have a low loss during most of the train-
ing process. As a result, they may be considered as easy in-
stances according to (Kumar, Packer, and Koller 2010; Arpit
et al. 2017).

Inspired by the concept of unforgettable examples
(Toneva et al. 2019), we propose a new concept named Mem-
orized Layer to measure the hardness of the instance. If an
instance is correctly classified at a certain layer and remains
correctly classified until the final layer, we consider this in-
stance to be successfully memorized at that layer. If an in-
stance is memorized at an early (late) layer, we consider it
easy (hard). We define the layer at which an instance starts
to be memorized as memorized layer, denoted as M.

M = k : ∀i ≥ k, ŷi = y, (7)

where ŷi is the prediction distribution of i-th internal classi-
fier in a one-hot vector form. In the case that an instance is
never predicted correctly, then M = L, where L is the total
number of layers of the backbone. Note that 1 ≤ M ≤ L,
which means it is a bounded variable. The hardness of the
instance can be quantified by the memorized layer.

Table 1 shows that Spearman’s ρ correlation between
memorized layer and loss (Arpit et al. 2017), memorized
layer and forgetting events (Toneva et al. 2019) on three
different datasets. An example undergoes a forgetting event
when it was correctly classified at step t − 1 but is misclas-
sified at the current step t. We observe a high correlation
between memorized layer and loss (Arpit et al. 2017) and
a medium correlation between memorized layer and forget-
ting events, which indicates that memorized layer generally
agrees with other measures of hardness.

Model Training and Inference
During training, we adopt the iterative training tech-
nique which iteratively improves the capacity of the pol-
icy network and the internal classifiers until convergence is
reached. The training process is shown as follows:

1. Initialization. We adopt the weighted sum of CE losses
as the objective function (Eq. 2) to obtain a good initial-
ization on the internal classifiers and a good estimation
on memorized layer.

2. Memorized Layer. We calculate memorized layer accord-
ing to Eq. 7.

Dataset Classes Train/Dev/Test

RTE 2 2.5k/0.3k/3.0k
MRPC 2 3.7k/0.4k/1.7k
SST-2 2 67k/0.9k/1.8k
QNLI 2 105k/5.5k/5.5k
QQP 2 364k/40k/391k
MNLI 3 393k/9.8k/9.8k

Alpaca - 52k/ - / -
Dolly - - /7.5k/7.5k
CNN/DM - 287k/13.7k/11.5k

Table 2: Statistics of datasets.

3. Policy Network. We optimize the policy network by max-
imizing Eq. 5. The internal classifiers and the backbone
are frozen.

4. Internal Classifiers and Backbone. We optimize the in-
ternal classifiers and backbone by minimizing Eq. 6. The
policy network is frozen.

5. Iterative Training. Repeat steps 2, 3, and 4 util the con-
vergence is reached.

During inference, if the probability of taking the action to
exit at a particular layer is greater than 0.5, then the instance
will exit at that layer, and we consider the prediction of the
internal classifier at that layer as the final prediction.

Experiment
Experimental Settings
To evaluate acceleration capacities on the classification task
with PLMs as backbones, we conduct experiments on six
classification datasets of the GLUE benchmark (Wang et al.
2019).

Statistics of these datasets are listed in Table 2. We com-
pared our method with various baselines including Dee-
BERT(Xin et al. 2020), PABEE (Zhou et al. 2020), BERxiT
(Xin et al. 2021), Right-Tool (Schwartz et al. 2020), PCEE-
BERT (Zhang et al. 2022), HashEE (Sun et al. 2022), and
TR-BERT (Ye et al. 2021). For layer-wise exiting methods,
we use saved layers to evaluate model acceleration. Accord-
ing to (Xin et al. 2020), saved layers are linearly proportional
to actual runtime. While for token-wise exiting methods, we
use saved runtime. Most results are reported on the develop-
ment set, since the large number of evaluations are restricted
by the GLUE evaluation server. Only BERT-Base (Devlin
et al. 2019), three competitive baselines, and ConsistentEE
are evaluated on the test set.

To evaluate acceleration capacities on the generation task
with LLMs as backbones, we perform the supervised fine-
tuning step using Alpaca (Taori et al. 2023) as training data
and test on the Dolly dataset (Conover et al. 2023). We also
evaluate our method on text summarization task on CN-
N/DM dataset (Nallapati et al. 2016). The backbone LLMs
are LLaMA-7b and LLaMA-13b (Touvron et al. 2023). Due
to our limited computational resources, we train the LLM
backbone with LoRA (Hu et al. 2022) in the initialization
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Method Averaged RTE MRPC SST-2 QNLI QQP MNLI
Score Layer Acc Layer F1 Layer Acc Layer Acc Layer F1 Layer Acc Layer

Dev Set
BERT-Base 85.3 12 66.4 12 89.6 12 91.8 12 90.0 12 89.6 12 84.3 12

Layer-wise
DeeBERT 83.9 -33% 65.7 -31% 88.2 -35% 89.6 -35% 89.1 -22% 87.5 -45% 83.3 -27%
PABEE 83.9 -28% 65.0 -18% 88.5 -31% 89.8 -33% 89.8 -18% 88.0 -35% 82.4 -23%
BERxiT 84.4 -35% 66.1 -31% 88.4 -40% 89.4 -38% 90.0 -23% 89.1 -43% 83.4 -35%
Right-Tool 84.0 -30% 65.3 -17% 88.2 -36% 90.1 -31% 89.4 -37% 87.9 -32% 82.9 -30%
PCEE-BERT 84.3 -30% 65.5 -26% 88.4 -17% 90.5 -33% 89.4 -38% 88.3 -33% 83.7 -32%

Token-wise
HashEE 82.6 -10% 63.2 -9% 85.6 -10% 90.3 -4% 88.4 -10% 85.5 -6% 82.6 -19%
TR-BERT 83.6 -9% 65.5 -6% 87.7 -5% 90.6 -6% 88.6 -11% 86.3 -9% 83.1 -15%

ConsistentEE 84.5 -36% 65.7 -39% 88.6 -32% 90.7 -36% 89.3 -34% 89.2 -43% 83.6 -30%
ConsistentEE 84.5 -53% 65.7 -55% 88.6 -53% 90.7 -58% 89.3 -57% 89.2 -55% 83.6 -39%
ConsistentEE ⋆ 86.6 -34% 66.4 -44% 89.9 -30% 92.0 -35% 90.4 -42% 90.2 -43% 90.9 -11%

Test Set
BERT-Base 85.6 12 69.1 12 88.9 12 93.1 12 89.8 12 89.2 12 83.2 12
PABEE 84.2 -19% 67.6 -23% 88.0 -17% 90.5 -24% 89.1 -18% 88.4 -22% 81.4 -12%
BERxiT 84.4 -19% 67.9 -21% 87.8 -14% 90.3 -27% 89.4 -20% 88.7 -16% 82.4 -14%
DeeBERT 83.9 -17% 67.2 -22% 87.3 -11% 89.9 -26% 88.6 -20% 88.2 -13% 82.0 -9%
ConsistentEE 85.5 -41% 69.0 -46% 89.0 -37% 92.9 -46% 89.9 -42% 89.0 -45% 83.4 -31%

Table 3: Comparison among ConsistentEE and baselines on six datasets. The evaluation metrics for model quality are accuracy
or F1 scores. The evaluation metrics for model acceleration are saved layers/runtime (w.r.t BERT-Base). Methods using saved
runtimes as metrics are marked with . Methods with no accuracy loss are marked with ⋆. Results which exhibit better accuracy
and saved layers than other methods are highlighted in bold.

Figure 3: Accuracy-Speed curves on the BERT-Base model. The evaluation metric for speedup is saved layers.

step. Subsequently, we freeze the LLM backbone and only
train the internal classifiers and policy networks. To save
pre-processing time, we adopt the vanilla reward function
rather than the hardness-guided reward function because the
time complexity of computing the memorized layer is lin-
ear to the number of tokens in generated responses. We set
the beam to 1, top-sampling to 0.75, top-k selection to 40

and temperature to 1. The baseline is CALM (Schuster et al.
2022). We use Rouge-L (Lin 2004) and BERT-F (Zhang
et al. 2019) scores to measure the model quality and use save
layers to measure the model acceleration. When we com-
pute Rouge-L and BERT-F, we use the response without ac-
celeration as the reference on Alpaca/Dolly dataset and use
the gold summary as the reference on CNN/DM. Following
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(Elbayad et al. 2020; Schuster et al. 2022), we use a state
copying strategy to handle the computation of hidden states.
Specifically, the computation of the input hidden state of to-
ken t at layer i relies on the output hidden states of the pre-
vious layer i − 1 for all preceding tokens {1, · · · , t − 1}.
In cases where some preceding tokens exit before the i − 1
layer, we copy the output hidden state at the layer at which
the token exits, and use it as the output hidden state in i− 1
layer.

We use a two-layer Multi-Layer Perceptron (MLP) to im-
plement the policy network.

Main Results on Classification
We evaluate the inference capabilities of ConsistentEE and
baselines on the six datasets. The result of comparisons are
shown in Table 3. On the development set, with no accu-
racy loss, the averaged saved layers of ConsistentEE is 34%,
which shows that our method can achieve 1.52x accelera-
tion without sacrificing accuracy. If a little loss (1% w.r.t the
performance of BERT-Base) of accuracy is tolerated, the av-
eraged saved layers of ConsistentEE is 53%, which outper-
forms the best baseline BERxiT (Xin et al. 2021) by 18%.
ConsistentEE surpasses token-wise baselines averagely by
26% in terms of runtime performance. On the test set, Con-
sistentEE also outperforms BERxiT.

Figure 3 shows the accuracy-speed curves of Consis-
tentEE, PABEE, and BERxiT on two datasets. Notably,
ConsistentEE mostly has higher accuracy than PABEE and
BERxiT under different speed-up ratio, showing its supe-
riority over the baselines. Furthermore, we have observed
that when the speedup ratio is not overly demanding, the ac-
curacy of ConsistentEE surpasses that of BERT-base. This
finding suggests that ConsistentEE is a cautious method that
prioritizes accuracy over acceleration. It ensures high ac-
curacy while also offering the potential for speed improve-
ments.

Ablation Study
As depicted in Figure 4, the performance of the vanilla re-
ward and the hardness-guided reward are comparable when
the speedup ratio is small. However, as the speedup ratio
increases, the performance of the vanilla reward deterio-
rates significantly, while the hardness-guided reward main-
tains a satisfactory level of accuracy. The possible reason
is that the vanilla reward treats each instance equally, caus-
ing hard instances struggle to maintain accuracy as they pri-
oritize acceleration as easy instances do. In contrast, the
hardness-guided reward encourages instances to assign dif-
ferent weights to accuracy and acceleration based on their
individual hardness.

Main Results on Generation
As shown in Figure 5, on the Alpaca/Dolly dataset, Consis-
tentEE and CALM demonstrate similar performance when
the speedup ratio is below 2x. However, as the speedup
ratio increases, ConsistentEE outperforms CALM. On the
CNN/DM dataset, ConsistentEE outperforms CALM con-
sistently under different speedup ratios. Due to space limita-

Figure 4: Accuracies and speedup ratios of different reward
functions under varied α.

Figure 5: BERT-F and Rouge-L and speedup ratios of
CALM and ConsistentEE.

tion, we show responses generated from ConsistentEE under
different speedup ratios in the Arxiv version1.

Conclusion
We propose a reinforcement learning based approach to
early exiting, so that at the training phase, only one internal
classifier is required to predict the instance correctly. This
makes the training phase consistent with the inference phase
and can allow each layer to obtain better classification accu-
racy. For the reward function of the reinforcement learning
framework, we propose the concept “memorized layer” to
measure the hardness of each instance, and use it to dynam-
ically balance accuracy and acceleration instead of using a
fixed coefficient. Experimental results conducted on various
datasets show that our approach is able to outperform the
competitive baselines, demonstrating its effectiveness.

1https://arxiv.org/abs/2312.11882
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