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Abstract

Large language models (LLMs) have shown great success in
various Natural Language Processing (NLP) tasks, whist they
still need updates after deployment to fix errors or keep pace
with the changing knowledge in the world. Researchers for-
mulate such problem as Model Editing and have developed
various editors focusing on different axes of editing proper-
ties. However, current editors can hardly support all proper-
ties and rely on heavy computational resources. In this pa-
per, we propose a plug-in Model Editing method based on
neuron-indexed dynamic LoRA (MELO), which alters the
behavior of language models by dynamically activating cer-
tain LoRA blocks according to the index built in an inner vec-
tor database. Our method satisfies various editing properties
with high efficiency and can be easily integrated into multi-
ple LLM backbones. Experimental results show that our pro-
posed MELO achieves state-of-the-art editing performance
on three sequential editing tasks (document classification,
question answering and hallucination correction), while re-
quires the least trainable parameters and computational cost.

Introduction
With well-designed architectures and ever-growing size,
large language models (LLMs) (Brown et al. 2020; Touvron
et al. 2023) have become the paradigm for solving many
Natural Language Processing (NLP) tasks. However, they
still need updates after deployment to calibrate hallucina-
tion and keep pace with the changing knowledge over time.
Meanwhile, it’s infeasible to frequently re-train or fine-tune
LLMs on upstream datasets due to high computational cost.
This indicates a need to develop editors enabling effective
but cheap updates for large pre-trained models.

Researchers formulate such problem as Model Editing
(Yao et al. 2023) and have proposed various editors focusing
on different axes of editing properties. Prior studies MEND
and SERAC (Mitchell et al. 2022a,b) primarily define the
fundamental properties Edit Success and Locality, which
require effective updates to LLMs within a domain of inter-
est, while ensure no performance degradation on other in-
puts. Whereas, their work relies on extra training data for
editing. ROME and MEMIT (Meng et al. 2022a,b) support
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Figure 1: MELO integrates dynamic LoRA modules into
LLMs, which are indexed in an inner vector database. Dur-
ing training, the edits are learned with non-overlapping
LoRA blocks. In the inference phase, the inputs X1 and X2

are searched in the vector database, and certain LoRA blocks
(or none) are activated for post-edit response.

large-scale direct edits by locating knowledge in specific
layers of GPT, and further achieves Generality for associ-
ated inputs, yet the inputs are restricted to the directional
(s, r, o) relations. Recent studies GRACE (Hartvigsen et al.
2022) and T-Patcher (Huang et al. 2023) investigate Sequen-
tial Editing for streaming edits, which utilize external mem-
ory of hidden states or neurons to solve catastrophic forget-
ting, but large amount of training time and computational re-
sources are required for extensive edits. Despite the promis-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19449



ing progress, previous methods can hardly achieve all edit-
ing properties with high resource efficiency.

In this paper, we propose MELO1, which performs Model
Editing with neuron-indexed dynamic Low-rank adapter. As
shown in Figure 1, MELO alters the behavior of language
models by dynamically activating certain blocks of low-rank
adapter (LoRA) according to the index built in an inner vec-
tor database. Furthermore, it could support all editing prop-
erties as follows:

(1) Edit Success: Each batch of edits is trained with a unique
set of LoRA blocks, which will be accurately invoked
during inference for in-scope inputs.

(2) Locality: An inner vector database is built to identify the
editing scope, hence the inputs out of the scope will re-
tain original predictions.

(3) Generality: Semantic clusters with different radii are
built for covering the associated edits. Corresponding
LoRA blocks will be activated once the input falls in the
scope of one cluster.

(4) Sequential Editing: Sequential batches are trained with
non-overlapping LoRA blocks, which addresses the issue
of catastrophic forgetting on previous edits.

(5) Efficiency: MELO merely employs dynamic LoRA
blocks with small partial rank for editing, which can learn
large batches of edits with very few parameters.

We perform experiments on three well-known editing
tasks, namely document classification, question answering
and hallucination correction, and the results demonstrate the
great advantages of our proposed method. The main contri-
butions of our work can be summarized as follows:

• We propose a plug-in model editing method with neuron-
indexed dynamic LoRA, which alters models’ behavior
by activating corresponding LoRA blocks, and can be
seamlessly integrated into various LLM backbones.

• We explore the potential of vector database to memorize
edits, which well builds the editing scope in the training
stage and provides neuron index to find the exact LoRA
blocks for post-edit inputs during inference.

• Extensive experiments on three sequential editing tasks
indicate that our proposed method achieves the state-
of-the-art editing performance compared with the recent
baselines. In particular, our method well supports all edit-
ing properties without using extra training data.

Related Work
Model Editing
Model editing has attracted great attention in recent years
(Yao et al. 2023). Existing methods mainly focus on four
editing properties (edit success, locality, generality and se-
quential editing), and can be categorized into three groups:
meta-learning editors, locate-then-edit editors and memory-
based editors. Meta-learning editors employ external net-
work to predict necessary gradient for editing. MEND
(Mitchell et al. 2022a) learns a hyper-network to transform

1Code is available at https://github.com/BruthYU/MELO

the gradient obtained by standard fine-tuning, which enables
efficient updates to LLMs but needs additional data for train-
ing. As to the locate-then-edit editors, they initially iden-
tify parameters corresponding to the intended edits and then
modify target parameters with direct updates. ROME and
MEMIT (Meng et al. 2022a,b) propose to locate knowledge
in GPT-based models and then modify a sequence of layers
to facilitate extensive edits, whereas they are restricted to di-
rectional (s, r, o) relations. For memory-based editors, the
specific hidden states or neurons that store the edit knowl-
edge are used for post-edit response. SERAC (Mitchell et al.
2022b) employs a scope classifier and routes inputs to the
frozen model or the counterfactual model. CaliNet (Dong
et al. 2022) and T-Patcher (Huang et al. 2023) attach neu-
rons for each edit, while GRACE (Hartvigsen et al. 2022)
replaces hidden states of in-scope inputs with parameters
searched from a codebook for edit memorization. Whereas,
all these methods can hardly achieve all editing properties
with high efficiency, which is difficult to adapt to real edit-
ing scenarios, especially for models with large-scale param-
eters. Thus, we aim to explore a more effective and efficient
model editing method that satisfies all editing properties.

Parameter-Efficient Tuning
The key idea of parameter-efficient tuning is to insert a
tiny trainable module to a large pre-trained model and op-
timize task-specific losses by only adjusting module param-
eters. The most representative methods are Adapter, Prompt
Tuning and LoRA. Adapter (Houlsby et al. 2019; Ben Za-
ken, Goldberg, and Ravfogel 2022) is a trainable bottle-neck
shaped neural network prepended to a transformer block’s
output. Prompt Tuning (Li and Liang 2021; Jia et al. 2022)
aims to adapt pre-trained models to downstream tasks by
optimizing appended prompts in the form of discrete tokens
or continuous vectors. LoRA (Hu et al. 2021; Zhang et al.
2023; Valipour et al. 2023) keeps the model frozen, and only
updates rank decomposition matrices truncated to the target
modules. Inspired by DyLoRA (Valipour et al. 2023) that
randomly updates partial parameters of the LoRA module
each time, we propose to index isolated LoRA blocks to ef-
ficiently alter models’ behavior.

Domain Specialization
Domain specialization (Ling et al. 2023) is a critical
yet challenging problem to enhance the domain-specific
expertise of LLMs. Approaches that specialize models
with domain knowledge can be categorized into three
classes: (1) External Augmentation uses external resources
or tools (Nakano et al. 2021; Schick et al. 2023) to incorpo-
rate the domain-knowledge into the input prompt or gen-
erated output. (2) Prompt Crafting involves discrete (Wei
et al. 2022) or learnable prompts (Vu et al. 2021) to ac-
tivate domain knowledge in pre-trained models. (3) Model
Fine-tuning updates the LLM’s parameters (Hu et al. 2021;
Valipour et al. 2023) to directly incorporate domain-specific
knowledge into the model. In contrast, our proposed MELO
could also be used for domain specialization, which could
handle scaling number of edits with high efficiency.
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Figure 2: The overall framework of MELO. Each batch of edits is learned in a set of LoRA blocks located in different layers
but with the same index. The partial rank of LoRA blocks could be set as a hyper-parameter. Meanwhile, the vector database
updates its clusters during training for future LoRA block searching in the inference stage.

Method
Figure 2 draws the framework of our proposed MELO. The
general workflow of the post-edit model is demonstrated in
Figure 2(a): Given a batch of inputs, MELO first searches
over the neuron-index built in vector database and then
dynamically activate LoRA blocks summed to the origi-
nal weights, which are trained on associated edits. During
the training phase shown in Figure 2(b) and 2(c), differ-
ent batches of edits are trained with non-overlapping LoRA
blocks, and the edit samples (key-value pairs) are clustered
based on their semantic keys in the vector database, with val-
ues indicating the index of LoRA blocks. Details about the
editing task and our method are presented as follows.

Problem Formulation
Following the prior works (Mitchell et al. 2022b) and
(Huang et al. 2023), we consider the task of editing a
base model fbase using an dataset Dedit = {d1, d2, ..., dn}
with n sequential batches. Each batch di contains several
edit input-output pairs [xe, ye]. R(·) denotes a function that
rephrases xe to associated inputs. Meanwhile, [x, y] ∈ Dout

indicates the samples out of the editing scope. After edit-
ing with t ∈ [1, n] batches of edits, a post-edit model ft is
obtained. During the editing process, a good model editor
should meet requirements of the following properties:

Property 1 Edit Success: The model ft should output de-
sired predictions on intended edits:

ft(xe) = ye, ∀xe ∈ d1:t (1)

Property 2 Locality: The model ft should retain original
predictions on inputs out of the editing scope:

ft(x) = fbase(x), ∀x ∈ Dout (2)

Property 3 Generality: The model ft should be able to gen-
eralize edits over other equivalent inputs:

ft[R(xe)] = ft(xe), ∀xe ∈ d1:t (3)

Property 4 Sequential Editing: The model ft should align
with ft−1 on the different set d1:t−1−dt. For recurring edits
with new labels yte, the latest one shall prevail:

ft(xe) = {
ft−1(xe) , ∀xe ∈ d1:t−1 − dt

yte , ∀xe ∈ d1:t−1 ∩ dt
(4)

Additionally, the Property 5 Efficiency is another require-
ment for model editors to make pre-trained LLMs quickly
adaptable on edits with light computational cost.

LoRA: Low-rank Adapter
We first make a review of the vanilla LoRA techniques (Hu
et al. 2021), which hypothesize the updates to any weights
have a low “intrinsic rank”. With LoRA, some chosen layers
in a frozen LLM are summed with parallel low-rank adapter
modules. During fine-tuning, only the LoRA modules can be
updated. Assume that W0 ∈ Rm×d is a pre-trained weight
matrix in model which is accompanied by a LoRA decom-
position ∆W = BA, where B ∈ Rm×r, A ∈ Rr×d and
r ≪ min(m, d). For original h = W0x, the modified for-
ward pass yields:

h = W0x+∆Wx = W0x+
α

r
BAx (5)

where α is a constant hyper-parameter for scaling, B is ini-
tialized as a zero matrix and A is initialized using a zero-
mean Gaussian distribution.

To demonstrate the usage of vanilla LoRA in model edit-
ing, we can simply assume that there is only one LoRA mod-
ule in the pre-trained network. Let’s consider a general loss
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function L of model f to be edited, the target matrices B⋆

and A⋆ trained on batch dt = (Xt
e, Y

t
e ) are formulated as:

B⋆, A⋆ = argmin
B,A

L[f(Xt
e;BA), Y t

e ] (6)

where the sets of inputs and labels in dt are denoted as Xt
e

and Y t
e . However, vanilla LoRA tends to degrade the perfor-

mance on previous edits due to catastrophic forgetting. It’s
hence hard for the post-edit model to satisfy Property 1∼5.
In the following subsections, we present our MELO which
overcomes this limitation with the cooperation of the vector
database and dynamic LoRA modules.

Sequential Editing with Dynamic LoRA
Inspired by the prior work of DyLoRA (Valipour et al.
2023), we explore to adapt dynamic LoRA to the sequen-
tial editing task, which can be well trained on partial ranks
instead of the entire module. Unlike the original method that
randomly select the range of LoRA ranks, we train non-
overlapping LoRA blocks for different batches of edits to
address the catastrophic forgetting problem.

As shown in Figure 2, we have low-rank matrices B ∈
Rm×r and A ∈ Rr×d for the LoRA module. Let’s assume
that we would like to train a part of weights in matrices B
and A for each batch of edits, which can be termed as a
trainable LoRA block. The range of a block is determined
by the order number of a batch t ∈ [1, n] and the predefined
hyper-parameter partial rank p. In this way, the LoRA blocks
for different batches of edits are non-overlapping:

W t
B = B[ :, (t− 1)p : tp]

W t
A = A[ (t− 1)p : tp, : ]

(7)

where W t
B and W t

A indicate the trainable block in the ma-
trices B and A for the tth batch. The total rank equals to
the number of needed LoRA blocks multiplied by the par-
tial rank, thus MELO supports large editing batch size to
keep less LoRA blocks. Table 1 gives the default setting for
MELO’s training. With the learning rate η, a batch of edits
dt can be quickly learned in a small LoRA block:

W t
B ←W t

B − η∇W t
B
L[f(Xt

e;W
t
BW

t
A), Y

t
e ]

W t
A ←W t

A − η∇W t
A
L[f(Xt

e;W
t
BW

t
A), Y

t
e ]

(8)

Since different batches of edits are trained with non-
overlapping LoRA blocks, MELO could keep the informa-
tion of previous edits without retraining.

Neuron Indexing with Vector Database
In order to activate corresponding LoRA blocks for post-
edit inputs during inference, we maintain an inner vector
database (see Figure 2), which builds the neuron-index for
editing samples as (key, value) pairs, where similar keys are
clustered to represent the scope of associated editing sam-
ples, and values indicate the indexes of the LoRA blocks. For
ease of understanding, we first introduce the components of
our vector database. Then, we describe how to construct the
cluster for the editing samples during training. After that, we
explain how to locate the appropriate LoRA block by block
searching in the inference stage.

Components: During the training process, the vector
database maintains the edit memories by building the neu-
ron indexes, which contains following components:
• Keys (K): For each edit, the last hidden state hl obtained

at layer l is used as its key vector.
• Values (V ): Each key maps to a value that represents the

LoRA block index number.
• Clusters (C): Clusters contain the trained edits as key-

value pairs. The keys in one cluster are close to each other
by the Euclidean distance, and their average serves as the
cluster center.

• Radii (R): Each cluster has a radius, which is changing
during training to determine the editing scope.

Cluster Construction (Training Phase) For each edit,
(K,V ) represents the key-value pair, ye is the target label
and Ci⋆ indicates its nearest cluster with the radius Ri⋆ .
Rinit is a hyper-parameter for cluster initialization and up-
date decision. d(·) measures the Euclidean distance of two
input vectors. All situations during cluster construction are
shown in Figure 2(c):
• Add: If d(K,Ci⋆) ∈ (Ri⋆ + Rinit,+∞], a new cluster
{Ce, [K : V ], Rinit, ye} can be initialized with the key
itself as the center Ce.

• Expand: If d(K,Ci⋆) ∈ (Ri⋆ , Ri⋆ +Rinit] and the clus-
ter label is same as the edit label, the cluster simply ex-
pands its radius to d(K,Ci⋆) to encompass this key, then
add the (K,V ) pair into the cluster.

• Conflict: If d(K,Ci⋆) ∈ (Ri⋆ , Ri⋆ +Rinit] but the clus-
ter label and the edit label are different, the radius of Ci⋆

will decrease and then a new cluster centered at K with
radius d(K,Ci⋆)/2 will be added. Previous edits falling
outside of Ci⋆ will be removed from the database.

Overall, the vector database maintains the clustered neuron
indexes, where the keys can be efficiently searched during
inference, and the corresponding values can be used to find
certain LoRA blocks for editing.

Block Searching (Inference Phase) Given an input, we
also use the last hidden state hl at layer l as the query Kq .
We first find the nearest cluster in the vector database, and
then identify the closest key in this cluster.

i⋆ = argmin
i

d(Ci,Kq), ∀Ci ∈ C

j⋆ = argmin
j

d(Kj ,Kq), ∀Kj ∈ Ci⋆
(9)

If Kq falls in the radius of the nearest cluster Ci⋆ , we
map i⋆ and j⋆ to the LoRA block index with the value
V = Ci⋆ [Kj⋆ ]. After that, corresponding block matrices can
be obtained based on Equation (7) and the searched block
index, which have been trained with similar editing samples
and thus is appropriate for current editing. If Kq falls out
of the radius of the nearest cluster, zero matrices are loaded
as the LoRA block, thus the post-edit model uses original
weights to infer the response (i.e., ∆W = 0 in Equation (5)).
More concretely, the final block matrices used for editing
can be formulated as:

WBWA = {W
V
B WV

A , if d(Ci⋆ ,Kq) ≤ Ri⋆

0 , otherwise
(10)
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Experimental Setup
Datasets
We perform extensive experiments on three well-known se-
quential editing tasks, including document classification,
question answering and hallucination correction. The details
about the datasets are described as follows:

• SCOTUS is a subset of Fairlex (Chalkidis et al. 2022),
which aims to categorize U.S.Supreme Court documents
into 11 topics. Since the categorization rules change over
time, the editor is required to correct realistic label shifts.

• zsRE is a question answering (QA) dataset built upon
zero-shot relation extraction (Levy et al. 2017). We split
each QA pair and its rephrasings into two parts following
previous studies (Mitchell et al. 2022b; Hartvigsen et al.
2022), namely edits and holdouts. The holdouts are not
directly edited during training, which are used to test the
editing generality. A upstream dataset NQ (Kwiatkowski
et al. 2019) is used to evaluate the locality.

• Hallucination is introduced by (Manakul, Liusie, and
Gales 2023) to correct the factual errors made by GPT
models. 238 wikipedia-style biographies are generated
by GPT-3, then 1392 sequential edits and 592 already-
accurate outputs are created. The upstream dataset Web-
Text (Nakano et al. 2021) is used for testing the locality.

Evaluation Metrics
As described in prior studies (Mitchell et al. 2022a,b), the
most fundamental editing metrics are Edit Success (ES)
and Locality, which are employed for all aforementioned
datasets. In addition, we include two dataset-specific met-
rics. Generality (Meng et al. 2022a,b) is another essential
property, and we quantify editors’ generality on zsRE with
the holdout dataset. For the Hallucination dataset, we addi-
tionally use the Accurate Attention Rate (ARR) for evaluat-
ing the performance on already-accurate outputs following
previous studies (Hartvigsen et al. 2022). We also report the
editing speed and parameters for Efficiency study.

The evaluation functions vary for for different editing
tasks. For document classification on SCOTUS, the average
accuracy (ACC) is used (Chalkidis et al. 2022); Concern-
ing question answering on the zsRE dataset, the mean F1
metric (F1) is applied (Hartvigsen et al. 2022); Regarding
to the hallucination correction task, we evaluate the perfor-
mance of post-edit generative models through standard aver-
age perplexity (PPL) (Brown et al. 1992). If (x, y) ∈ Dedit,
the above measures stand for the ES metric. Similarly, they
represent the Locality metric when (x, y) ∈ Dout.

Implementation Details
The LLM backbones employed for editing vary on different
datasets: BERT is used for the SCOTUS task; T5-Small and
T5-Large are employed on the zsRE dataset; A pre-trained
GPT2-XL is edited for the Hallucination correction.

Our proposed MELO is implemented based on the hug-
gingface library PEFT2, which can be easily integrated into

2PEFT: https://github.com/huggingface/peft

multiple LLM backbones for model editing. Unless other-
wise stated, the default hyper-parameter settings of MELO
for different backbones are provided in Table 1. Detailed
information about the location of layer for keys in vector
database and the layer for integrating the dynamic LoRA
modules are reported in the Appendix.

Hyper-param BERT T5-Small T5-Large GPT2-XL

Partial Rank 4 2 2 2
Initial Radius 1.0 75.0 10.0 1.0
Batch Iteration 40 30 40 50
Learning Rate 1e−3 1e−3 1e−3 1e−4

Table 1: Default hyper-parameter settings of MELO.

Baselines
We compare our proposed MELO with recent advanced
baselines: 1) Vanilla LoRA (Hu et al. 2021) is a typical
parameter-efficient tuning method, which integrates low-
rank adapters to target modules and only updates these
adapters during sequential editing; 2) MEND (Mitchell et al.
2022a) learns a hyper-network with additional training data
to transform the gradient obtained by standard fine-tuning;
3) SERAC (Mitchell et al. 2022b) decomposes editing into
three sub-models and additionally trains the scope classifier
and counterfactual model, which routes the inputs to alter
the model’s behavior; 4) ROME (Meng et al. 2022a) locates
knowledge in specific layers of GPT and directly modify
these layers for extensive edits. Since ROME is especially
designed for GPT models, it is only involved in the Hallu-
cination task; 5) CMR (Lin et al. 2022) is a method based
on continually learning, which fine-tunes the input model
sequentially to output a refined model for processing future
examples; 6) GRACE (Hartvigsen et al. 2022) replaces the
hidden states of in-scope inputs with pre-trained parameters
according to an edit codebook.

Results and Analyses
Main Results
Table 2 shows the results of the recent baselines and our pro-
posed method. We observe that our MELO is significantly
superior to the exiting editing methods without using any ad-
ditional training data. Specifically, we outperform the recent
advanced baseline GRACE by up to 15% improvements re-
garding to the Local and ES metrics in most cases, indicating
the effectiveness of our method in accurately altering mod-
els’ behavior for the editing samples without interference
on others. In addition, we also achieve significant improve-
ments in terms of Generality on zsRE, which demonstrates
that our method is effective in editing for more associated
samples that are similar to the training stage. For the Hallu-
cination task with the 1.5B GPT2-XL backbone, our MELO
achieves the overwhelming advantages on ES and ARR, and
performs slightly worse for the Local metric compared with
Grace, which further certifies that our method could effi-
ciently edit the large-scale model and well retains the per-
formance on the originally accurate inputs.
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SCOTUS (BERT; Acc ↑) zsRE (T5-Small; F1 ↑) Hal (GPT2-XL; PPL↓)

Method Locality ES Locality ES Generality Locality ES ARR

LoRA 0.21 0.16 0.33 0.26 0.15 2578.5 2187.6 1817.3
MEND 0.19 0.27 0.25 0.27 0.22 1369.8 1754.9 2902.5
SERAC 0.33 0.41 0.72 0.31 0.30 8183.7 133.3 10.04
CMR 0.52 0.52 0.56 0.82 0.74 1449.3 28.14 107.76
ROME — — — — — 30.28 103.82 14.02
GRACE 0.81 0.82 0.69 0.96 0.94 15.84 7.14 10.00

MELO 0.96 0.92 0.72 0.98 0.97 17.45 1.04 2.66

Table 2: Comparison results of MELO and the recent model editing methods on various sequential editing tasks.

Efficiency of Editing
We compare the efficiency of editing with the recent ad-
vanced baselines including SERAC and GRACE. The for-
mer is a representative memory-based editor, while the lat-
ter is the existing best editing method on sequential editing
tasks. With a single Nvidia RTX 3090 GPU, we investigate
the editing speed and the amount of extra parameters used
on zsRE dataset.

T5-Small (60M) T5-Large (770M)

Method Speed Param Speed Param Num

SERAC — 126M — 126M 1k
GRACE 47.55 edits/min 0.51M 7.422 edits/min 1.02M 1k
MELO 2464 edits/min 0.12M 401.6 edits/min 0.41M 1k

Table 3: Efficiency of editing on zsRE.

As shown in Table 3, we observe that MELO needs the
least extra parameters to perform model editing, since a
batch of edits only requires 1 block of dynamic LoRA with
low partial rank. For example, if editing 1k inputs for the T5-
Small model, using the batch size of 100 and partial rank of
2, with 4 linear layers incorporated with dynamic LoRA, the
total extra parameters would then be:

0.12M ≈ 4 ∗ (1k/100) ∗ [(1024 ∗ 2 + 2 ∗ 512)] (11)

where 1024 and 512 are the input and output dimension
in the linear layer. While GRACE needs to train a 512-
dimension vector for each edit, and SERAC routes edits
among three sub-models, which results in large amount of
extra parameters. In addition, GRACE edits model in a se-
quential manner with the batch size of 1, which requires
much more editing time. In particular, our editing speed is
more than 50 times of GRACE. The editing speed of SERAC
is not presented, since it needs additional training on two ex-
tra models (scope classifier and counterfactual model).

Further Analyses of MELO
Effect of Cluster Radius. We perform a set of exper-
iments to study how the initial cluster radius affects the
neuron-index construction during editing. For limited space,
we only present the results on zsRE dataset in Figure 3,

(a) Cluster Number (b) Conflict Number

(c) Key Visualization (d) Forgotten Number

Figure 3: Effect of initial cluster radius Rinit on zsRE.

where Rinit varies in {50, 75, 100}. Similar results can be
observed on other datasets. As PCA shown in Figure 3(c),
the keys of rephrasings belonging to the same question are
close to each other in the semantic space, which serves as a
warranty to accurately identify the editing scope in the infer-
ence stage. The influence of different cluster radii are shown
in Figure 3(a), 3(b) and 3(d). Ideally, the cluster number
should be equivalent to the number of answers with multiple
question rephrasings. We observe that using larger cluster ra-
dius is helpful to decrease the total number of clusters, and
therefore alleviate the computation cost of LoRA block in-
dexing in the vector database. Whereas, increasing the radius
will also provoke more cluster conflicts, which consequently
lead to more forgotten edits. In our experiments, we recom-
mend a reliable setting as described in Table 1 for Rinit.

Effect of Partial Rank of Dynamic LoRA. The partial
rank of a LoRA block determines how many neurons are
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(a) Backbone: T5-Large

(b) Backbone: T5-Small

Figure 4: Effect of the partial rank of dynamic LoRA on zsRE.

used to learn a batch of edits. To investigate its effect on the
editing performance, we evaluate MELO with different par-
tial ranks on zsRE based on two language models (T5-Small
and T5-Large), with each block trained on 100 edits. The
results are shown in Figure 4. We observe that larger partial
ranks usually result in better performance in edit success and
generality, which is more evident with the smaller language
model T5-Small. This corresponds to our intuition that when
using larger partial ranks, more neurons are incorporated to
learn and store the editing knowledge, which consequently
improves the editing performance. It is also interesting to
find that the performance on locality remains the same with
various partial ranks, since our vector database is effective to
identify the editing scope, and no LoRA blocks are invoked
for the out-of-scope samples. For the time cost, there are no
significant differences with various partial ranks, since only
a few neurons are used for learning, which is highly efficient.

Effect of Key Layer for Vector Database. To study the
impact of using the hidden state in different neural layers as
keys for the vector database, we experiment with T5-Small
on zsRE varying the layers in {0, 2, 4}. As illustrated in Fig-
ure 5, keys based on the fourth layer achieve the best per-
formance in terms of edit success and locality. In addition,
there are slight differences in edit success when using differ-
ent layers as keys. While regarding to the locality, the per-
formance decreases dramatically when using the first layer
for keys, indicating the poor ability in editing scope identi-
fication and thus intervenes the out-of-scope samples during
editing. This observation is in line with the findings in prior
work (Geva et al. 2021) that shallow layers can only detect
the shallow sentence patterns, while the upper layers encode

Figure 5: Effect of using different layers for key representa-
tion in the vector database.

more semantic features. Therefore, except the first layer, any
upper layer (prior to LoRA modules) can be used for keys,
which yields better editing performance in our experiments.

Conclusions
In this paper, we propose a novel method for sequential
model editing, which dynamically activates the correspond-
ing LoRA blocks indexed in an inner vector database to al-
ter the behaviour of models. Extensive experiments on three
editing tasks confirm that our method outperforms the recent
advanced baselines on various editing metrics. It is also no-
table that our method shows great advantages in editing ef-
ficiency, with 50 times faster editing speed of the best base-
line. In the future, we will explore more effective neuron-
indexed vector database, and extend MELO to more scenar-
ios such as multi-modal model editing.
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