
Get an A in Math: Progressive Rectification Prompting

Zhenyu Wu1, Meng Jiang2, Chao Shen1

1School of Cyber Science and Engineering, Xi’an Jiaotong University
2Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556

zhenyuwu@stu.xjtu.edu.cn, mjiang2@nd.edu, chaoshen@xjtu.edu.cn

Abstract

Chain-of-Thought (CoT) prompting methods have enabled
large language models (LLMs) to generate reasoning paths
and solve math word problems (MWPs). However, they are
sensitive to mistakes in the paths, as any mistake can result in
an incorrect answer. We propose a novel method named Pro-
gressive Rectification Prompting (PRP) to improve average
accuracy on eight MWP datasets from 77.3 to 90.5. Given
an initial answer from CoT, PRP iterates a verify-then-rectify
process to progressively identify incorrect answers and rec-
tify the reasoning paths. With the most likely correct answer,
the LLM predicts a masked numerical value in the question;
if the prediction does not match the masked value, the an-
swer is likely incorrect. Then the LLM is prompted to re-
generate the reasoning path hinted with a set of incorrect
answers to prevent itself from repeating previous mistakes.
PRP achieves the best performance compared against the CoT
methods. Our implementation is made publicly available at
https://wzy6642.github.io/prp.github.io/.

Introduction
Math word problems (MWPs) require language comprehen-
sion, mathematical reasoning, and problem-solving skills.
Studying these problems helps AI researchers develop al-
gorithms and models that can mimic human-like reasoning
and problem-solving abilities (Chen et al. 2022). Chain-of-
thought (CoT) prompting methods help large language mod-
els (LLMs) break down complex problems into manageable
parts, allowing them to focus on each part individually (Ko-
jima et al. 2022). The LLMs become decent zero-shot rea-
soners by simply adding “Let’s think step by step” to gener-
ate reasoning paths and predict answers to the MWPs (Shi
et al. 2023; Wang et al. 2023a,b; Zheng et al. 2023).

When analyzing the performance of existing methods, we
found that the average accuracy on eight standard datasets
(e.g., MultiArith, GSM8K) was 77.3, far below A-level
grades. Because they have three drawbacks: (1) lack of ver-
ification that checks if the answer is correct, (2) lack of rec-
tification that finds the correct answer being aware of mis-
takes, and (3) lack of an effective method that progressively
refines reasoning path, which are essential “exam skills.”

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

First, to distinguish correct and incorrect answers, exist-
ing methods repeatedly solve a problem and use a major-
ity vote strategy to determine the most consistent answer as
the correct answer. This is known as self-consistency (Wang
et al. 2023b). However, since it solves the same problem
multiple times, this repeated independent process leads to
same mistakes, making the frequent answer still incorrect.
Second, existing methods such as progressive-hint prompt-
ing (Zheng et al. 2023) modify reasoning paths by adding
“(Hint: The answer is near [H])” after the given problem,
where [H] is the slot of previous answers. It is evident that
when previous answers are incorrect, LLMs may still gener-
ate an incorrect answer in response to the hint. Third, exist-
ing CoT prompting methods exhibit high sensitivity to mis-
takes in intermediate reasoning steps (Kojima et al. 2022;
Chen et al. 2022; Wang et al. 2023a; Shi et al. 2023). Even
a tiny mistake in the reasoning process could alter the entire
problem-solving process, resulting in an incorrect answer. It
is nontrivial to achieve multi-step precise reasoning.

To address the three drawbacks of existing methods, our
research is inspired by a guide on math study skills and exam
success written by Gall et al. in 1990. First, substitute verifi-
cation has been commonly used in math exams to verify the
correctness of an answer. Let us look at a specific example.
Given an equation 2+3 = y, after solving it, we find that the
answer y equals 5. Next, we introduce a masked condition
to formulate the masked equation X + 3 = y and substitute
the answer 5 into this equation. Solving the masked equa-
tion, if X equals 2, it indicates that the answer 5 align with
the original equation. So the answer was more likely to be
correct. Otherwise, the answer could probably be incorrect.
Compared to repeatedly checking, such as solving the same
question multiple times, the substitute verification can ef-
fectively prevent the repetition of mistakes and improve the
accuracy of answer verification. Second, relying on exist-
ing progressive hints such as “the answer is near [H]” would
limit the exploration of other potential answers when the hint
answer was incorrect. Suppose that [H] has been found less
likely correct by substitute verification. A negation hint on
it, like “the answer is likely not [H]”, will help LLMs elim-
inate or less consider such answers, so the LLMs will ac-
tively rectify their reasoning paths to avoid mistakes. Third,
the dual process theory in psychology (Evans 2003) tells us
that humans have two cognitive systems to progressively re-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19288

Initialization:
Reasoning path 𝑟0

(gen)

Kyle bought last year's best-selling book for $19.5. This is with
a 25% discount from the original price. What was the original
price of the book?

First, we need to find how much the book was
discounted by 25% of the original price = 19.5
Therefore, the original price = 19.5/0.25 = 78.
Therefore, the answer is 78.

78

Question 𝑞
Initial
answer
𝑎0
(gen)

Iterative process (from 𝑎𝑖−1
(gen) to 𝑎𝑖

(gen))

Question 𝑞
Previous answer 𝑎𝑖−1

(gen)

Masked condition 𝑣𝑖−1
19.5

Kyle bought last year's best-selling
book for $ X. This is with a 25%
discount from the original price. What
was the original price of the book?
Suppose the answer is 78. What is X?
(If X is irrelevant to the calculation
process please answer Unknown).

Verification question 𝑞𝑖−1
(veri)

We know the original price of the book was 78.
Kyle bought the book with a 25% discount.
25% of 78 = 19.5
Kyle paid X = 78 - 19.5 = 58.5 for the book.

𝑟𝑖−1
(veri)

58.5

Verified
answer
𝑎𝑖−1
(veri)

Verification:

Rectification:
Kyle bought last year's best-selling
book for $19.5. This is with a 25%
discount from the original price. What
was the original price of the book?
(The answer is likely not 78).

LLM
Reasoning
Prompt

(+“Let’s think
step by step”)

LLM
Answering
Prompt

(+“Therefore,
the answer is:”)

; Incorrect answers
𝒞0 ← ∅

25% of original price is 0.25 x original price.
19.5 - 0.25 x original price = original price.
let's solve for original price. 19.5/0.75 = 26.
Therefore, the answer is 26.

𝑟𝑖
(gen)

26

Rectified
answer
𝑎𝑖
(gen)Question 𝑞

Incorrect answers 𝒞𝑖

Discount price of book = 25% of original price
The price of the book = 75% of original price
Therefore, X = (75% * 26)
Therefore, X = 19.5

𝑟𝑖
(veri)

19.5

Verified
answer
𝑎𝑖
(veri)

Kyle bought last year's best-selling
book for $ X. This is with a 25%
discount from the original price. What
was the original price of the book?
Suppose the answer is 26. What is X?
(If X is irrelevant to the calculation
process please answer Unknown).

Question 𝑞
Previous answer 𝑎𝑖

(gen)

Masked condition 𝑣𝑖
19.5

Verification question 𝑞𝑖
(veri)Next iteration:

Incorrect answers
𝒞𝑖 ← 𝒞𝑖−1 ∪ {𝑎𝑖−1

(gen)
}

Final answer = 𝑎𝑖−1
(gen)

Final answer = 𝑎𝑖
(gen)

because 𝑎𝑖
(veri)

= 𝑣𝑖

𝑎𝑖−1
(veri)

= 𝑣𝑖−1?

Yes

No

Figure 1: Overview of Progressive Rectification Prompting (PRP) method. PRP first generates an initial answer. PRP then
iterates a verify-then-rectify process to progressively rectify the LLM-generated answer to find the correct one.

fine their answers, plans, and solutions. One provides initial
responses based on intuition; the other provides a deliberate
and reflective approach to progressive refine those initial re-
sponses. Existing CoT prompting methods possess only the
capability of the first system, while lacking the capacity for
progressive refinement of answers through the second type.

In this paper, we propose a novel zero-shot prompting
method to implement and integrate the above ideas to im-
prove the performance of LLMs on MWPs. We name it
Progressive Rectification Prompting (PRP). Figure 1 illus-
trates PRP with an example from the GSK8K dataset. In
PRP, an initial answer is generated by a standard zero-shot
prompt (Kojima et al. 2022). Then PRP feeds the question
and initial answer into an iterative verify-then-rectify pro-
cess. It progressively rectifies the LLM-generated answer to
find the correct one. The verify-then-rectify process consists
of a verification module and a rectification module. The ver-
ification module uses the substitute verification method to
verify the correctness of the answer. It masks a numerical
value in the question, takes the previous generated answer as
a conclusion, and uses it as a new condition. If the masked
value is predicted incorrectly, the answer is added to the set
of potentially incorrect answers. The rectification module
designs a hint that uses the set of potentially incorrect an-
swers as feedback to rectify previous answers. In Figure 1,
the initial numerical answer was 78. Next, PRP used a regu-
lar expression to match all numerical values within the ques-
tion. Then it randomly selected one of these values (i.e., 19.5
in this example) and replaced its occurrence in the question
with a special token X. This converted the known condition
in the original question into an unknown condition, result-

ing in the masked question. Subsequently, we rewrote the
masked question using a simple template to form the verifi-
cation question: “[Q] Suppose the answer is [A]. What is X?
(If X is irrelevant to the calculation process please answer
Unknown)”, where [Q] was the slot for the masked question,
and [A] was the slot for previous generated answer. If the an-
swer did not match the masked condition, the previous gen-
erated answer would be considered less likely correct and
added to a set of potentially incorrect answers. In rectifica-
tion, we added the phrase “(The answer is likely not [H])”
after the given question, where [H] was the slot for the set
of potentially incorrect answers. The LLM avoided repeat-
ing previous mistakes when re-answering the question using
the set of potentially incorrect answers as feedback. In most
cases, the LLM got the correct answer with a single rectifi-
cation. But to deal with complex arithmetic questions, PRP
had to iterate the verify-then-rectify process to progressively
rectify the answer.

Experiments on text-davinci-003 demonstrate that the
proposed PRP method improves over existing prompting
methods by a striking margin across eight MWP datasets.
Our method attains an average score of 90.5, significantly
higher than 77.3 from the best of zero-shot CoT, and even
higher than 81.0 from the best of few-shot CoT. Our PRP
equips LLMs with high-level math exam skills.

The main contributions are summarized as follows:
• We propose a novel zero-shot prompting method that en-

ables LLMs to progressively rectify the generated answer
and accurately solve math word problems. It has an iter-
ative verify-then-rectify process to avoid repeating previ-
ous mistakes and achieve continuous improvement.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19289

• We conduct extensive experiments on eight math word
problem datasets under zero-shot and few-shot CoT set-
tings. Notably, our method achieves the state-of-the-art
performance and attains an A-level grade on average.

Related Work
Math Word Problem Solving
Our work is related to existing efforts in solving math
word problems (MWPs). Traditional methods used statis-
tical learning-based approaches to extract entities, quanti-
ties, and operators from a question and generated an arith-
metic equation to find the answer (Hosseini et al. 2014; Roy,
Vieira, and Roth 2015; Zhou, Dai, and Chen 2015; Mitra
and Baral 2016). Recent methods based on sequence-to-
sequence (Seq2Seq) model and recurrent neural networks
directly transformed the question into an arithmetic equa-
tion (Wang, Liu, and Shi 2017; Wang et al. 2019) . However,
their generated equations could be invalid or unsolvable. Be-
sides, recent efforts fine-tuned pre-trained language models
on a variety of downstream tasks (Shen et al. 2021; Liang
et al. 2022, 2023), which significantly improved the validity
of generated equations and brought substantial performance
improvements over Seq2Seq models. These methods require
a significant amount of human annotations, lacking the abil-
ity to generalize to new MWP datasets. In this work, we
aim to directly prompt the LLMs to answer arbitrary MWPs
without human annotation and task-specific fine-tuning. Our
method can generate reasoning paths that enable researchers
to investigate model behavior.

Chain-of-Thought Prompting Methods
Our work is related to Chain-of-Thought (CoT) prompting
methods, which enable LLMs to generate reasoning paths
and solve MWPs. Two types of CoT prompting methods
have been proposed: zero-shot prompting (Kojima et al.
2022) and few-shot prompting. By adding “Let’s think step
by step” after the question and feeding the modified ques-
tion to the LLMs, the LLMs can generate complex reason-
ing paths. However, zero-shot CoT prompting suffers from
missing-step errors. To mitigate these errors, Plan-and-Solve
(PS) prompting method instructed the LLMs to devise a plan
for breaking down the entire task into smaller subtasks, and
then carry out the subtasks according to the plan (Wang et al.
2023a). All these methods are based on manually writing in-
structions, to eliminate human labor, Zhang et al. proposed
Auto-Instruct to automatically improve the quality of in-
structions provided to LLMs. Manual-CoT (Wei et al. 2022),
as a type of few-shot promopting, designed effective man-
ual demonstrations to elicit multi-step reasoning ability of
LLMs. Program of Thought (PoT) (Chen et al. 2022) used
LLMs to generate programming language statements, and
used a program interpreter to execute the generated program
to get the final answer. To leverage the benefit of demonstra-
tion examples and minimize manual effort, Zhang et al. de-
signed Auto-CoT. By sampling questions with diversity and
generating reasoning path to automatically construct demon-
strations. Yu et al. introduced IfQA, a dataset for counterfac-
tual reasoning, which requires models to identify the right

Notation Definition
q Math word problem
q
(veri)
i Verification question
r
(gen)
i LLM-generated reasoning path for question q

a
(gen)
i LLM-generated answer for question q

r
(veri)
i LLM-generated reasoning path for question q

(veri)
i

a
(veri)
i LLM-generated answer for question q

(veri)
i

vi Masked condition
Ci The set of potentially incorrect answers
[Q] Slot for question
[R] Slot for reasoning path
[A] Slot for answer
[H] Slot for set of potentially incorrect answers

Table 1: Notations and their definitions.

information for retrieval and inference. These methods are
sensitive to mistakes in reasoning paths, and any mistake can
result in an incorrect answer. Our method iterates a verify-
then-rectify process to progressively identify incorrect an-
swers and rectify reasoning paths.

Answer Selection
Several studies have trained models to evaluate candidate
answers and select the best answer as the final response.
For example, Kushman et al. trained a classifier to select the
best answer from candidate answers. Roy and Roth trained
a relevance classifier and a lowest common ancestor opera-
tion classifier. The distributional output of these classifiers
was used in a joint inference procedure to determine the fi-
nal answer. Shen et al. jointly trained a candidate expression
generator and a candidate expression ranker to get better an-
swers. Cobbe et al. fine-tuned GPT-3 as a scorer to calcu-
late solution-level verification score and choose the highest
score answer as the final answer. All these methods require
massive human annotations. In contrast, our method auto-
matically verifies the correctness of LLM-generate answers
and selects the answer that has been verified.

Proposed Method
Overview
We propose a novel zero-shot prompting method named
Progressive Rectification Prompting (PRP) for solving math
word problems. Figure 1 illustrates the PRP method. Given
a question q, PRP prompts the LLM to generate the final an-
swer. Specifically, it first prompts the LLM to generate an
initial answer a(gen)

0 and initializes the set of potentially in-
correct answers as an empty set C0 = ∅. Then, it iterates
the verify-then-rectify process up to K iterations to progres-
sively rectify the LLM-generated answer. This process con-
sists of a verification module and a rectification module. In
the i-th iteration, the verification module uses the substitute
verification method to verify the correctness of the previous
generated answer a(gen)

i−1 . If the answer a(gen)
i−1 is verified likely

to be incorrect, add a
(gen)
i−1 to the set of potentially incorrect

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19290

answers Ci−1 to obtain the updated set Ci. Otherwise, take
a
(gen)
i−1 as the final answer. The rectification module uses the

set of potentially incorrect answers Ci as feedback to rectify
previous answers and generate the rectified answer a

(gen)
i .

If the number of iterations exceeds the maximum iteration
K, take the last LLM-generated answer a

(gen)
K as the final

answer. In the following sections, we will elaborate on the
details of each component. Table 1 presents a list of the no-
tations used throughout this paper.

Initialization
During initialization, PRP initializes the set of potentially
incorrect answers as an empty set C0 = ∅ and prompts the
LLM to generate an initial answer a(gen)

0 for the given ques-
tion q. Specifically, we first construct a reasoning generation
prompt: “Q: [Q]. A: Let’s think step by step”, where [Q] is
the slot for question q. We then feed the above prompt to the
LLM, which subsequently generates a reasoning path r

(gen)
0 .

To extract the answer from the reasoning path, we add
the answer extraction instruction after the reasoning path to
devise the answer generation prompt: “[R] Therefore, the an-
swer (expressed in Arabic numerals and without units) is:”,
where [R] is the slot for reasoning path r

(gen)
0 . Finally, we

feed the answer extraction prompt to the LLM to generate
the initial answer a(gen)

0 for the question q.

Iterative Verify-then-Rectify Process
We propose a novel iterative verify-then-rectify method that
progressively rectifies the LLM-generated answer over K
iterations by cyclic execution of the verification and rectifi-
cation modules. The iteration process would terminate early
if the LLM-generated answer is verified likely to be correct.
Here we take the i-th iteration as an example to illustrate the
verify-then-rectify process.

Verification Module The verification module uses substi-
tute verification method to verify the correctness of the pre-
vious generated answer a(gen)

i−1 . It comprises several substeps.
Firstly, we utilize the condition mask method (Weng et al.

2022) to create a masked question. Specifically, we first use
a regular expression to match all numerical values within the
question q. We then randomly select one of these values vi−1

and replace its occurrence in the question q with a special
token X, resulting in the masked question.

Secondly, we rewrite the masked question using a simple
template to form the verification question q

(veri)
i−1 : “[Q] Sup-

pose the answer is [A], what is X? (If X is irrelevant to the
calculation process please answer Unknown)”, where [Q] is
the slot for masked question, and [A] is the slot for previous
generated answer a(gen)

i−1 .
Thirdly, we feed the reasoning generation prompt “Q: [Q].

A: Let’s think step by step” into the LLM to generate a rea-
soning path r

(veri)
i−1 for the verification question q

(veri)
i−1 , where

[Q] is the slot for question q
(veri)
i−1 . Furthermore, we feed the

answer generation prompt “[R] Therefore, the answer (ex-
pressed in Arabic numerals and without units) is:” into the

LLM to generate the answer a(veri)
i−1 for the verification ques-

tion q
(veri)
i−1 . Where [R] is the slot for reasoning path r

(veri)
i−1 .

Finally, we check if a
(veri)
i−1 is equal to vi−1. If they are

equal, it indicates that the previous generated answer a(gen)
i−1

is most likely correct. We select a(gen)
i−1 as the final answer

and exit the loop. Otherwise, the previous generated answer
a
(gen)
i−1 is likely incorrect, and we add a

(gen)
i−1 to the set of po-

tentially incorrect answers Ci−1 to obtain the updated set Ci.

Rectification Module The rectification module uses a set
of potentially incorrect answers Ci = {a(gen)

0 , · · · , a(gen)
i−1 } as

feedback to generate a rectified answer a(gen)
i . Specifically,

we first devise an answer rectification prompt: “Q: [Q] (The
answer is likely not [H]) A: Let’s think step by step”, where
[Q] is the slot for the question q, and [H] is the slot for the set
of potentially incorrect answers Ci. We then feed the above
prompt into the LLM to generate a rectified reasoning path
r
(gen)
i . Finally, we feed the prompt “[R] Therefore, the an-

swer (expressed in Arabic numerals and without units) is:”
into the LLM to generate the rectified answer a(gen)

i for the
question q. Where [R] is the slot for reasoning path r

(gen)
i .

Answer Selection The process of verify-then-rectify can
be iterated until specific stopping conditions are met. The
process terminates under two situations. The first is when
the answer a(gen)

i−1 is verified likely to be correct. In this case,

we select answer a(gen)
i−1 as the final answer. The second situ-

ation is when the number of iterations exceeds the maximum
iteration K. In this case, we choose the last LLM-generated
answer a(gen)

K as the final answer.

Experiments
Experimental Setup
Datasets. We conduct comprehensive experiments on
eight math word problem datasets, including AddSub
(Hosseini et al. 2014), SingleOp (Roy, Vieira, and Roth
2015), MultiArith (Roy and Roth 2015), SingleEq (Koncel-
Kedziorski et al. 2015), SVAMP (Patel, Bhattamishra, and
Goyal 2021), GSM8K (Cobbe et al. 2021), GSM-IC2-1K
(Shi et al. 2023), and GSM-ICM-1K (Shi et al. 2023). Table
3 provides the detailed descriptions of each dataset.

Baselines. We compare our method with six baseline
methods: Direct (Kojima et al. 2022), Zero-Shot-CoT (Ko-
jima et al. 2022), Plan-and-Solve (PS) (Wang et al. 2023a),
Manual-CoT (Wei et al. 2022), Auto-CoT (Zhang et al.
2023b), and Progressive-Hint Prompting (PHP-CoT) (Zheng
et al. 2023). The Direct baseline concatenates a question
with the prompt “The answer is” as the LLM input.

Implementation. We use text-davinci-003 as the backend
large language model, which is one of the most widely-used
LLMs with public APIs1. The few-shot baselines, includ-
ing Manual-CoT (Wei et al. 2022), Auto-CoT (Zhang et al.

1Public API available at https://openai.com/api/.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19291

Setting Method
(text-davinci-003)

Dataset
Average

AddSub MultiArith SVAMP GSM8K SingleEq SingleOp GSM-IC2-1K GSM-ICM-1K

Zero-Shot

Direct 89.3 25.8 65.2 15.0 84.6 92.1 22.8 9.0 50.5

Zero-Shot-CoT 84.8 87.0 74.3 60.8 89.5 89.1 70.7 62.5 77.3

PS 88.1 87.2 72.0 58.2 89.2 89.5 70.9 63.5 77.3

PRP (Ours) 94.7 96.3 86.2 73.6 96.5 96.1 93.1 87.1 90.5

Few-Shot
Manual-CoT 87.8 91.5 76.7 56.9 91.3 93.7 73.9 60.6 79.1

Auto-CoT 90.6 95.1 77.8 58.9 90.9 94.4 74.3 65.2 80.9

PHP-CoT 91.1 94.0 81.3 57.5 93.5 94.5 75.3 60.9 81.0

Table 2: Accuracy comparison on eight math word problem datasets. The best and second best results are boldfaced and
underlined, respectively. All indicators are presented in percentages.

Dataset # Problems Avg.# Words # IC
SingleEq 508 27.4 0.0%
MultiArith 600 31.8 0.0%
SingleOp 562 20.9 0.0%
AddSub 395 31.5 30.9%
SVAMP 1, 000 31.8 36.7%
GSM8K 1, 319 46.9 6.2%
GSM-IC2-1K 1, 000 41.8 100.0%
GSM-ICM-1K 1, 000 61.4 100.0%

Table 3: Statistics of datasets. # IC Indicates the percentage
of problems with irrelevant context in the statement.

0 1 2 3 4 5
Iteration Number

70
75
80
85
90

Ac
cu

ra
cy

 (%
)

70.7

76.6

81.5
83.5 84.8

93.1

73.9
71.7

74.9 74.5 75.0 75.3

(a) GSM-IC2-1K
PRP
PHP-CoT

0 1 2 3 4 5
Iteration Number

60
66
72
78
84

Ac
cu

ra
cy

 (%
)

62.5 62.1
66.6

71.6 70.6

87.1

60.6 56.9
60.6 59.7 60.1 60.9

(b) GSM-ICM-1K
PRP
PHP-CoT

Figure 2: Accuracy (%) at different number of iterations.

2023b), and PHP-CoT (Zheng et al. 2023) employ demon-
stration examples as suggested in the original papers. Re-
garding the evaluation metric, we use accuracy to evaluate
the performance of MWP solving.

Experimental Results
PRP attains an A-level grade on average. Table 2 re-
ports the accuracy comparison of PRP with existing zero-
shot and few-shot methods on MWP datasets. Notably, PRP
achieves state-of-the-art performance with an average ac-
curacy of 90.5 on eight MWP datasets. Compared to other
zero-shot prompting methods, PRP demonstrates a remark-
able improvement in accuracy, surpassing them by at least
13.2% on all datasets. Specifically, PRP achieves a sub-
stantial accuracy gain of 24.6% over Zero-Shot-CoT on the
GSM-ICM-1K dataset. Even when compared to the compet-
itive zero-shot baseline PS, the PRP maintains an impres-
sive performance. PRP outperforms PS on all eight MWP

datasets, with an average accuracy improvement of 13.2%.
These results demonstrate that, in contrast to existing zero-
shot prompting methods, which solve the problem only once
and are sensitive to mistakes in the reasoning path, the PRP
method progressively rectifies the answer generated by the
LLM to find the correct one. As a result, PRP equips the
LLM with high-level math exam skills.

While comparing with few-shot prompting methods, PRP
achieves an accuracy improvement of at least 9.5% across all
datasets. Notably, PRP enhances problem-solving accuracy
for the GSM8K, GSM-IC2-1K, and GSM-ICM-1K datasets
by 16.1%, 17.8%, and 26.2% respectively when compared
to PHP-CoT. These results demonstrate that PRP signifi-
cantly enhances the LLM’s ability to solve MWPs without
the need for manually designed demonstrations.

Iterative verify-then-rectify process progressively im-
proves accuracy. Figure 2 demonstrates the accuracy im-
provements of both PRP and PHP-CoT as the number of iter-
ations increases. Notably, PRP exhibits a significantly higher
rate of improvement compared to PHP-CoT. Specifically, for
the GSM-IC2-1K dataset, PRP achieves a remarkable accu-
racy improvement of 22.4% after five iterations, resulting
in an accuracy of 93.1%, compared to using the initial an-
swer as the final answer, which only yields an accuracy of
70.7%. In contrast, PHP-CoT, which relies on progressive
hints, shows a much smaller improvement in accuracy. Af-
ter five iterations, PHP-CoT achieves an accuracy improve-
ment of 1.4%, resulting in an accuracy of 75.3%, compared
to using the initial answer as the final answer, which yields
an accuracy of 73.9%. PHP-CoT relies on progressive hints
such as “the answer is near to [H]” which can limit the ex-
ploration of other potential answers when the hint answer
[H] is incorrect. In contrast, PRP uses an iterative verify-
then-rectify process to progressively identify incorrect an-
swers and rectify the reasoning paths. This iterative process
ensures a constant improvement in accuracy and allows PRP
to outperform PHP-CoT in terms of accuracy enhancement.

The more complex problems in the dataset, the more it-
erations are needed. Figure 4(b) illustrates the average it-
eration number of PRP across all eight MWP datasets. For
datasets such as SingleOp, MultiArith, and SingleEq, the
average number of iterations is less than 2.5. This is be-
cause, as shown in Table 3, the problem statements in these

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19292

2 3 4 5
Steps

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

63.3 59.3

74.3
80.4

93.1 92.2
84.5 83.7

Direct
Zero-Shot-CoT

PS
Manual-CoT

Auto-CoT
PHP-CoT

PRP

Figure 3: Accuracy on GSM-IC-2K with respect to the num-
ber of required reasoning steps. The GSM-IC-2K dataset is
formed by merging the GSM-IC2-1K dataset and the GSM-
ICM-1K dataset. # Steps indicating the number of reasoning
steps in the standard answer.

Method GSM8K SVAMP
Zero-Shot-CoT + SC 70.7 81.7
PRP (Ours) 73.6 86.2

Table 4: Accuracy comparison of PRP to Zero-Shot-CoT
with self-consistency (SC) on GSM8K and SVAMP.

datasets are shorter and contain no irrelevant context. As
a result, the PRP method can quickly obtain the final an-
swer within a few iterations. In contrast, the PRP method
requires more iterations on the SVAMP, GSM8K, GSM-
IC2-1K and GSM-ICM-1K datasets. This can be attributed
to longer problem statements and more irrelevant context in
the problems. Specifically, PRP requires an average of 3.59
and 4.1 iterations on the GSM-IC2-1K and GSM-ICM-1K
datasets, respectively. This is because each question in these
two datasets contains irrelevant context, and PRP requires
more iterations to gradually eliminate incorrect answers to
obtain more correct one. These findings suggest that PRP
demonstrates a high efficiency in obtaining the final answer
for simpler problems. However, when faced with more com-
plex problems, PRP needs to iterate the verify-then-rectify
process multiple times to progressively rectify the answer
and achieve accurate results.

PRP can effectively solve difficult MWPs. To explore
the relationship between the accuracy of model predictions
and problem difficulty, we combined two datasets, GSM-
IC2-1K and GSM-ICM-1K, into a merged dataset named
GSM-IC-2K. The difficulty of problems was classified into
four levels based on the number of reasoning steps2. Fig-
ure 3 illustrates the accuracy of solving problems at differ-
ent difficulty levels. PRP outperforms current state-of-the-
art prompting method by 18.8%, 11.8%, 21.2%, and 24.4%
for problems of increasing difficulty levels, respectively. The
results demonstrate that PRP notably enhances accuracy in
solving MWPs, particularly for challenging problems.

2The number of reasoning steps of a problem is given by the
number of sentences in its standard answer. (Cobbe et al. 2021)

0 1 2 3 4 5
Iteration Number

86
88
90
92
94
96

Ac
cu

ra
cy

 (%
)

0 1 2 3 4 5
Iteration Number

60
66
72
78
84
90

Ac
cu

ra
cy

 (%
)

SingleOp
AddSub

SingleEq
MutiArith

SVAMP
GSM8K

GSM-IC2-1K

GSM-ICM-1K
Dataset

0

1

2

3

4

Av
er

ag
e

Ite
ra

tio
n

N
um

be
r

1.52 1.66 1.69
2.28 2.59

3.37 3.59
4.1

(b) Average Iteration Number Across Different Datasets

(a) Accuracy with Different Number of Iterations

SingleOp
AddSub

SingleEq
MutiArith

SVAMP
GSM8K

GSM-IC2-1K
GSM-ICM-1K

Figure 4: Break-down analysis of PRP. (a) Accuracy (%)
of PRP method on different datasets with different number
of iterations. (b) The average number of iterations for PRP
method across different datasets.

SingleEq SingleOp
Dataset

0.0

0.6

1.2

1.8

2.4

Av
er

ag
e

Ite
ra

tio
n

N
um

be
r

2.53
2.03

1.69 1.52

SingleEq SingleOp
Dataset

72

78

84

90

96

Ac
cu

ra
cy

 (%
)

84.3

91.3
96.5 96.1

text-davinci-002 text-davinci-003

Figure 5: Accuracy and average number of iterations when
solving MWPs using PRP with different LLMs.

Ablation Studies
Progressive rectification outperforms self-consistency.
Self-consistency (SC) (Wang et al. 2023b) is the process of
repeatedly solving a problem M times and using a majority
vote strategy to determine the most consistent answer as the
final answer. We evaluate Zero-Shot-CoT prompting with
SC on the GSM8K and SVAMP datasets. We set the temper-
ature to 0.7 and set M to 10 for the SC experiments. Table 4
demonstrates that PRP outperforms Zero-Shot-CoT prompt-
ing with SC on both the GSM8K and SVAMP datasets,
achieving accuracy improvements of 2.9% and 4.5%, re-
spectively. This superiority of PRP can be attributed to its
progressive rectification method, which prevents the repeti-
tion of previous mistakes and enhances the accuracy of the
final answer. In contrast, SC solves the same problem mul-
tiple times, this repeated independent process can lead to
same mistakes, making the frequent answer still incorrect.

PRP performs better with more powerful LLMs. Fig-
ure 5 illustrates the accuracy and average number of itera-
tions when solving MWPs using the PRP method with dif-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19293

QUESTION Amy is collecting candy for the car pool. She has 5 chocolate bars, 7 times as many M&Ms as chocolate
bars, and 6 times as many marshmallows as M&Ms. Amy then arranges the candies into baskets. Ada ate
25 more cookies than Amy. If Amy fills each basket with 10 candies, how many baskets will Amy fill?

ANSWER (5 + 5× 7 + 5× 7× 6)/10 =25

Direct Amy will fill 10 baskets.%

Zero-Shot-CoT Amy has 5 chocolate bars, 7 times as many M&Ms as chocolate bars, and 6 times as many marshmallows
as M&Ms. 5 chocolate bars = 35 M&Ms and 210 marshmallows Amy has 35 M&Ms, 210 marshmallows,
and 5 chocolate bars. Amy will fill 10 candies in each basket, so she will make: 35/10 = 3 baskets of
M&Ms 210/10 = 21 baskets of marshmallows 5/10 = 0.5 baskets of chocolate bars Therefore, Amy will
fill 24.5 baskets. Ada ate 25 more cookies, so Ada ate 25 baskets of cookies.%

PS Plan: 1. Calculate the total number of candies that Amy has 2. Calculate the number of baskets that Amy
can fill Solution: 1. Amy has 5 chocolate bars, 7 M&Ms for every chocolate bar, and 6 marshmallows for
every M&M. Therefore, Amy has 5 x 7 x 6 = 210 candies in total. 2. Amy can fill each basket with 10
candies. Therefore, Amy can fill 210 candies in 21 baskets (210/10 = 21).%

Manual-CoT Amy has 5 chocolate bars, 7 x 5 = 35 M&Ms and 6 x 35 = 210 marshmallows. So she has 5 + 35 + 210
= 250 candies. Ada ate 25 more than Amy, so Ada ate 25 + 250 = 275. Amy will fill 275 candies into 10
candies per basket. 275 / 10 = 27.5. The answer is 28 baskets.%

Auto-CoT Amy has 5 chocolate bars, 7 times as many M&Ms as chocolate bars, and 6 times as many marshmallows
as M&Ms. That means she has 5 + (7 * 5) + (6 * 7) = 65 candies. Amy then arranges the candies into
baskets. If Amy fills each basket with 10 candies, she can fill 65/10 = 6.5 baskets. Since she can fill half
a basket, she can only fill 6 baskets. The answer is 6.%

PHP-CoT Amy has 5 chocolate bars, 7 * 5 = 35 M&Ms, and 6 * 35 = 210 marshmallows. So she has 5 + 35 + 210
= 250 candies. Ada ate 25 more than Amy, so Amy has 250 - 25 = 225 candies. If she fills each basket
with 10 candies, then she will have 225 / 10 = 22.5 baskets. The answer is 23.%

PRP (Ours) Amy has 5 chocolate bars, 7 x 5 = 35 M&Ms, and 6 x 35 = 210 marshmallows. So in total she has 250
candies. She will fill 10 candies in each basket, so Amy will be able to fill 250/10 = 25 baskets.!

Table 5: Case study of answers generated by different methods. The gold answer is indicated in bold.

ferent LLMs. For instance, on the SingleEq dataset, using
the text-davinci-003 model leads to a 12.2% increase in ac-
curacy and a reduction of 0.84 in the average number of it-
erations, compared to the text-davinci-002 model. Similarly,
on the SingleOp dataset, using the text-davinci-003 model
results in a 4.8% accuracy improvement and a 0.51 reduction
in average number of iterations compared to text-davinci-
002 model. It is worth noting that the text-davinci-002 is
finetuned with supervised instruction tuning, while the text-
davinci-003 is finetuned with reinforcement learning (Zheng
et al. 2023). The improved performance with text-davinci-
003 can be attributed to its enhanced power, making it better
at understanding and employing the given prompt.

Maximum iteration number. Figure 4(a) shows that as
the number of iterations increases, the accuracy improves
across all datasets. We set the maximum iteration number K
to 5. Note that the bigger maximum iteration number K may
lead to better performance, but here we set it to 5 to achieve
a trade-off between efficiency and effectiveness.

Case Study
PRP exhibits robustness in handling irrelevant context.
A real case from GSM-ICM-1K is presented in Table 5. It
is evident that apart from PRP, other methods cannot ac-

curately answer the given question. Manual-CoT and PHP-
CoT generate incorrect answers by incorporating irrelevant
context into the problem-solving process. Auto-CoT and PS
generate incorrect answers due to semantic misunderstand-
ings. Zero-Shot-CoT generates an incorrect answer due to
miscalculations. As Direct does not generate intermediate
reasoning steps, it is not possible to analyze the reasons for
its mistakes. In contrast, PRP exhibits robustness in han-
dling irrelevant context and preventing miscalculations. Ad-
ditionally, PRP has the ability to uncover hidden details in
the problem statement, such as the fact that “Chocolate bars,
M&Ms, and marshmallows are all candies”.

Conclusion

In this paper, we present a novel zero-shot prompting
method for solving math word problems. We name it pro-
gressive rectification prompting (PRP), which first prompts
a large language model to generate an initial answer, then it-
erates a verify-then-rectify process to progressively identify
incorrect answers and rectify the reasoning paths. Notably,
it attains an A-level grade on average (90.5), significantly
higher than 77.3 from the best of zero-shot CoT, and even
higher than 81.0 from the best of few-shot CoT.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19294

Acknowledgments
We thank the anonymous reviewers for their insightful
feedback and constructive comments. This work was par-
tially supported by National Key R&D Program of China
(2020AAA0107702), National Natural Science Foundation
of China (U21B2018, 62161160337, 62132011, 62376210,
62006181, U20B2049), Shaanxi Province Key Industry In-
novation Program (2021ZDLGY01-02), Fundamental Re-
search Funds for the Central Universities under grant
(xtr052023004, xtr022019002). Chao Shen is the corre-
sponding author. Co-author Meng Jiang consulted on this
project on unpaid weekends for personal interests, and ap-
preciated collaborators and family for their understanding.

References
Chen, W.; Ma, X.; Wang, X.; and Cohen, W. W. 2022. Pro-
gram of Thoughts Prompting: Disentangling Computation
from Reasoning for Numerical Reasoning Tasks. arXiv
preprint arXiv:2211.12588.

Cobbe, K.; Kosaraju, V.; Bavarian, M.; Chen, M.; Jun, H.;
Kaiser, L.; Plappert, M.; Tworek, J.; Hilton, J.; Nakano, R.;
Hesse, C.; and Schulman, J. 2021. Training Verifiers to
Solve Math Word Problems. CoRR, abs/2110.14168.

Evans, J. S. 2003. In two minds: dual-process accounts of
reasoning. Trends in Cognitive Sciences, 7(10): 454–459.

Gall, M. D.; et al. 1990. Tools for Learning: A Guide to
Teaching Study Skills. ERIC.

Hosseini, M. J.; Hajishirzi, H.; Etzioni, O.; and Kushman,
N. 2014. Learning to Solve Arithmetic Word Problems with
Verb Categorization. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), 523–533. Doha, Qatar: Association for Compu-
tational Linguistics.

Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2022. Large Language Models are Zero-Shot Reason-
ers. In Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave,
D.; Cho, K.; and Oh, A., eds., Advances in Neural Informa-
tion Processing Systems, volume 35, 22199–22213. Curran
Associates, Inc.

Koncel-Kedziorski, R.; Hajishirzi, H.; Sabharwal, A.; Et-
zioni, O.; and Ang, S. D. 2015. Parsing Algebraic Word
Problems into Equations. Transactions of the Association
for Computational Linguistics, 3: 585–597.

Kushman, N.; Artzi, Y.; Zettlemoyer, L.; and Barzilay, R.
2014. Learning to Automatically Solve Algebra Word Prob-
lems. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), 271–281. Baltimore, Maryland: Association for
Computational Linguistics.

Liang, Z.; Zhang, J.; Wang, L.; Qin, W.; Lan, Y.; Shao, J.;
and Zhang, X. 2022. MWP-BERT: Numeracy-Augmented
Pre-training for Math Word Problem Solving. In Findings
of the Association for Computational Linguistics: NAACL
2022, 997–1009. Seattle, United States: Association for
Computational Linguistics.

Liang, Z.; Zhang, J.; Wang, L.; Wang, Y.; Shao, J.; and
Zhang, X. 2023. Generalizing Math Word Problem Solvers
via Solution Diversification. In AAAI.
Mitra, A.; and Baral, C. 2016. Learning To Use Formu-
las To Solve Simple Arithmetic Problems. In Proceedings
of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), 2144–2153.
Berlin, Germany: Association for Computational Linguis-
tics.
Patel, A.; Bhattamishra, S.; and Goyal, N. 2021. Are NLP
Models really able to Solve Simple Math Word Problems? In
Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2080–2094. Online: Asso-
ciation for Computational Linguistics.
Roy, S.; and Roth, D. 2015. Solving General Arithmetic
Word Problems. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, 1743–
1752. Lisbon, Portugal: Association for Computational Lin-
guistics.
Roy, S.; Vieira, T.; and Roth, D. 2015. Reasoning about
Quantities in Natural Language. Transactions of the Associ-
ation for Computational Linguistics, 3: 1–13.
Shen, J.; Yin, Y.; Li, L.; Shang, L.; Jiang, X.; Zhang, M.; and
Liu, Q. 2021. Generate & Rank: A Multi-task Framework
for Math Word Problems. In Findings of the Association
for Computational Linguistics: EMNLP 2021, 2269–2279.
Punta Cana, Dominican Republic: Association for Compu-
tational Linguistics.
Shi, F.; Chen, X.; Misra, K.; Scales, N.; Dohan, D.; Chi, E.;
Schärli, N.; and Zhou, D. 2023. Large Language Models
Can Be Easily Distracted by Irrelevant Context. In Pro-
ceedings of the 40th International Conference on Machine
Learning.
Wang, L.; Xu, W.; Lan, Y.; Hu, Z.; Lan, Y.; Lee, R. K.-W.;
and Lim, E.-P. 2023a. Plan-and-Solve Prompting: Improv-
ing Zero-Shot Chain-of-Thought Reasoning by Large Lan-
guage Models. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers), 2609–2634. Toronto, Canada: Association for
Computational Linguistics.
Wang, L.; Zhang, D.; Zhang, J.; Xu, X.; Gao, L.; Dai,
B. T.; and Shen, H. T. 2019. Template-Based Math Word
Problem Solvers with Recursive Neural Networks. In Pro-
ceedings of the Thirty-Third AAAI Conference on Artifi-
cial Intelligence and Thirty-First Innovative Applications
of Artificial Intelligence Conference and Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence,
AAAI’19/IAAI’19/EAAI’19. AAAI Press. ISBN 978-1-
57735-809-1.
Wang, X.; Wei, J.; Schuurmans, D.; Le, Q. V.; Chi, E. H.;
Narang, S.; Chowdhery, A.; and Zhou, D. 2023b. Self-
Consistency Improves Chain of Thought Reasoning in Lan-
guage Models. In The Eleventh International Conference on
Learning Representations.
Wang, Y.; Liu, X.; and Shi, S. 2017. Deep Neural Solver for
Math Word Problems. In Proceedings of the 2017 Confer-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19295

ence on Empirical Methods in Natural Language Process-
ing, 845–854. Copenhagen, Denmark: Association for Com-
putational Linguistics.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; ichter, b.;
Xia, F.; Chi, E.; Le, Q. V.; and Zhou, D. 2022. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. In Koyejo, S.; Mohamed, S.; Agarwal, A.; Bel-
grave, D.; Cho, K.; and Oh, A., eds., Advances in Neural
Information Processing Systems, volume 35, 24824–24837.
Curran Associates, Inc.
Weng, Y.; Zhu, M.; He, S.; Liu, K.; and Zhao, J. 2022. Large
Language Models are reasoners with Self-Verification.
arXiv preprint arXiv:2212.09561.
Yu, W.; Jiang, M.; Clark, P.; and Sabharwal, A. 2023.
IfQA: A Dataset for Open-domain Question Answering un-
der Counterfactual Presuppositions. In Bouamor, H.; Pino,
J.; and Bali, K., eds., Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, 8276–
8288. Singapore: Association for Computational Linguis-
tics.
Zhang, Z.; Wang, S.; Yu, W.; Xu, Y.; Iter, D.; Zeng, Q.;
Liu, Y.; Zhu, C.; and Jiang, M. 2023a. Auto-Instruct: Au-
tomatic Instruction Generation and Ranking for Black-Box
Language Models. In Bouamor, H.; Pino, J.; and Bali, K.,
eds., Findings of the Association for Computational Linguis-
tics: EMNLP 2023, 9850–9867. Singapore: Association for
Computational Linguistics.
Zhang, Z.; Zhang, A.; Li, M.; and Smola, A. 2023b. Auto-
matic Chain of Thought Prompting in Large Language Mod-
els. In The Eleventh International Conference on Learning
Representations (ICLR 2023).
Zheng, C.; Liu, Z.; Xie, E.; Li, Z.; and Li, Y. 2023.
Progressive-Hint Prompting Improves Reasoning in Large
Language Models. arXiv:2304.09797.
Zhou, L.; Dai, S.; and Chen, L. 2015. Learn to Solve Alge-
bra Word Problems Using Quadratic Programming. In Pro-
ceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, 817–822. Lisbon, Portugal:
Association for Computational Linguistics.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19296

