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Abstract
The goal of document-level relation extraction (RE) is to
identify relations between entities that span multiple sen-
tences. Recently, incomplete labeling in document-level RE
has received increasing attention, and some studies have used
methods such as positive-unlabeled learning to tackle this is-
sue, but there is still a lot of room for improvement. Motivated
by this, we propose a positive-augmentation and positive-
mixup positive-unlabeled metric learning framework (P3M).
Specifically, we formulate document-level RE as a metric
learning problem. We aim to pull the distance closer be-
tween entity pair embedding and their corresponding rela-
tion embedding, while pushing it farther away from the none-
class relation embedding. Additionally, we adapt the positive-
unlabeled learning to this loss objective. In order to improve
the generalizability of the model, we use dropout to augment
positive samples and propose a positive-none-class mixup
method. Extensive experiments show that P3M improves the
F1 score by approximately 4-10 points in document-level RE
with incomplete labeling, and achieves state-of-the-art results
in fully labeled scenarios. Furthermore, P3M has also demon-
strated robustness to prior estimation bias in incomplete la-
beled scenarios.

Introduction
Relation extraction (RE) involves identifying the relations
between two entities in a given text, which is a fundamen-
tal task in information extraction. In the past, most RE re-
search focused on extracting relations within a single sen-
tence (Miwa and Bansal 2016; Zhang, Qi, and Manning
2018). However, more recent work has begun to examine
document-level RE, which involves identifying relations be-
tween entities across multiple sentences in a document (Yao
et al. 2019; Zhou et al. 2021; Xu et al. 2022; Yu, Yang, and
Tian 2022; Zhou and Lee 2022).

Previously, document-level RE focused on fully super-
vised scenarios. However, due to the fact that the number of
entity pairs is related to the number of entities in a quadratic
way, it is very difficult to fully annotate all the relations in
a document. This has made the problem of incomplete la-
beling a common problem in document-level RE and has at-
tracted increasing attention from researchers. (Huang et al.
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2022) noticed that the popular document-level RE dataset
DocRED (Yao et al. 2019) annotated using the recommend-
revise scheme contains a large number of unlabeled positive
relations, i.e. false negatives. (Tan et al. 2022b) obtained
a high-quality Re-DocRED dataset by supplementing the
large number of missing relations in DocRED. (Wang et al.
2022) was the first to use positive-unlabeled (PU) learning,
a method of learning risk estimators from positive and un-
labeled data, to solve the document-level RE task with in-
complete labeling and provided a powerful baseline. Despite
this, they still suffer greatly from distribution bias caused by
incomplete annotation of positive samples, and lack of gen-
eralization in the model.

Inspired by these studies, we propose a positive-
augmentation and positive-mixup positive-unlabeled metric
learning framework (P3M). Firstly, for metric learning in
document-level RE, we initialize an embedding for each re-
lation and an embedding for the none-class relation. During
training, we pull the entity pair embedding closer to the cor-
responding relation embedding and push it away from the
none-class relation embedding. We adapt this goal to the
positive-unlabeled learning paradigm. Then, due to the fact
that the labeled positive samples are a subset of the over-
all positive samples, the distribution of the labeled positive
samples cannot approximate the true positive sample distri-
bution, especially in extreme cases of incomplete labeling.
To alleviate this problem, inspired by (Gao, Yao, and Chen
2021), we use the dropout noise (Srivastava et al. 2014)
inherent in the model to augment the positive samples and
experimentally verify the effectiveness of this augmentation.

Finally, to further enhance the model’s generalization, we
use mixup to interpolate between the embeddings of positive
and negative samples. Under the positive-unlabeled setting,
it is not possible to obtain true negative samples, i.e. unla-
beled entity pairs may still have some relations. Directly in-
terpolating between the two would introduce noise. Thanks
to the metric learning framework, which puts the embed-
dings of none-class relation and none-class entity pairs in
the same feature space, we can use the embedding of none-
class relation as pseudo-negative entity pair embedding.

We conduct experiments on the DocRED (Yao et al.
2019) dataset under incomplete labeling and extreme incom-
plete labeling settings, as well as the ChemDisGene (Zhang
et al. 2022) dataset in the biomedical domain. We improve
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Figure 1: In the dense representation space for a specific positive relation, the P3M framework brings the positive sample
(orange circle) and its augmented embedding (light orange circle) closer to the positive relation embedding (yellow pentagram),
while distancing them from the none-class relation embedding (grey triangle). The unlabeled sample (light grey circle) is
distanced from the positive relation and brought closer to the none-class relation. To address scarcity of positive samples, extra
positive sample embeddings (light green circles) are obtained using mixup, partially aligning them with the positive relation
and distancing them from the none-class relation.

the F1 score by about 4-10 points compared to the base-
line, demonstrating the effectiveness of our proposed P3M
method. We also conduct experiments in the fully labeled
scenario and achieved the best results. Finally, experiments
under different estimated priors demonstrate the robustness
of our method to prior estimation bias, which is greatly bene-
ficial for the application of P3M in real-world scenarios. The
contributions of this paper can be summarized as follows:1

• We propose a positive-unlabeled metric learning frame-
work that adapts the metric learning objective to the
positive-unlabeled learning paradigm in document-level
RE.

• We use the dropout noise inherent in the model to aug-
ment the positive samples, expanding the distribution of
the positive samples.

• We use mixup to interpolate between the embeddings of
positive entity pairs and none-class relation, further en-
hancing the model’s generalization.

• Experiments show that our method achieves the state-of-
the-art results in various incomplete labeling settings and
in fully labeled scenario, as well as robustness to prior
estimation bias.

Methodology
In this section, we introduce the details of P3M. Firstly, we
propose positive-unlabeled metric learning for document-
level RE. Then, we introduce an augmentation method for
positive samples based on dropout. Finally, we propose
positive-none-class mixup to further enhance the model’s
generalization. The overall architecture of P3M is shown in
Figure 1.

1Code is available at https://github.com/www-Ye/P3M

Positive-Unlabeled Metric Learning for
Document-Level RE
Document-level RE can be viewed as a multi-label classifi-
cation task, and there are a large number of entity pairs with
no relation. Previous work (Zhou and Lee 2022; Wang et al.
2022) has shown that setting an additional none-class rela-
tion can be very helpful for performance. Therefore, in our
method, we transform document-level RE with none-class
relation into a proxy-based metric learning task, setting an
anchor for each positive relation and none-class relation, re-
spectively.

Let X be an instance space and Y = {−1,+1}K be a
label space, where K is the number of pre-defined classes.
An instance x ∈ X is associated with a subset of labels,
identified by a binary vector y ∈ Y = (y1, . . . , yK), where
yi = +1 if the i-th label is positive for x, and yi = −1
otherwise. We define each relation embedding as c ∈ C =
(c0, c1, . . . , cK), where c0 is the none-class relation em-
bedding, and the rest are predefined relation embeddings.
The goal is to learn an embedding f : X → Rd that brings it
closer to its corresponding relation embedding ci and push
it further away from the none-class relation embedding c0.

For simplicity, we use the SoftMaxnorm proposed by
(Qian et al. 2019) as the metric learning loss function, which
can be seen as a smoothed version of triplet loss. For a given
entity pair and a given relation, the loss function can be ex-
pressed as:

ℓSoftMaxnorm
(f(x), ci, c0) =

− log
exp(λci

⊤f(x))

exp(λci⊤f(x)) + exp(λc0⊤f(x))
,

(1)

where f(x), ci, c0 need to be normalized, and λ is a scaling
factor.
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In the inference stage, for any entity pair, the relation i ex-
ists if ci⊤f(x) > c0

⊤f(x) and vice versa. In the following
part we use ℓ instead of ℓSoftMaxnorm as an abbreviation.

For i-th class, assume that the data follow an unknown
probability distribution with density p(x, yi), pPi

= p(x |
yi = +1) as the positive marginal, pNi

= p(x | yi = −1) as
the negative marginal, and pi(x) as the marginal. In positive-
negative metric learning (PNM), the ideal loss to optimize
would be:

LPNM =
K∑
i=1

(πiEPi
[ℓ(f(x), ci, c0)]

+ (1− πi)ENi
[ℓ(f(x), c0, ci)]),

(2)

where πi = p(yi = +1) and (1 − πi) = (1 − p(yi =
+1)) = p(yi = −1) is the positive and negative prior
of the i-th class. EPi [·] = Ex∼p(x|yi=+1)[·], ENi [·] =
Ex∼p(x|yi=−1)[·].

In positive-unlabeled metric learning (PUM), due to the
absence of negative samples, we cannot estimate ENi

[·] from
the data. Following (du Plessis, Niu, and Sugiyama 2014),
PU learning assumes that unlabeled data can reflect the true
overall distribution, that is, pUi(x) = pi(x). The expected
loss formulation can be defined as:

LPUM =
K∑
i=1

(πiEPi
[ℓ(f(x), ci, c0)]

+ EUi
[ℓ(f(x), c0, ci)]− πiEPi

[ℓ(f(x), c0, ci)]),

(3)

here EUi [·] = Ex∼pi(x)[·] and EUi [ℓ(f(x), c0, ci)]
−πiEPi

[ℓ(f(x), c0, ci)] can alternatively represent (1 −
πi)ENi

[ℓ(f(x), c0, ci)] because pi(x) = πipPi
(x) + (1 −

πi)pNi
(x).

Since there are already some labeled relations in the
document-level RE dataset, this leads to prior shift in the
unlabeled data. We also use the method of prior shift in
the training data to obtain the final positive-unlabeled metric
learning (PM) expected loss:

LPM =
K∑
i=1

(πiEPi
[ℓ(f(x), ci, c0)]

+
1− πi

1− πu,i
EUi

[ℓ(f(x), c0, ci)]

− πu,i − πu,iπi

1− πu,i
EPi

[ℓ(f(x), c0, ci)]),

(4)

where πu,i = p(yi = 1 | si = −1) =
πi−πlabeled,i

1−πlabeled,i
,

πlabeled,i = p(si = +1) and (1− πlabeled,i) = (1− p(si =
+1)) = p(si = −1). si = +1 or si = −1 mean that the
i-th class is labeled or unlabeled, respectively. For details on
prior shift in document-level RE, please refer to (Wang et al.
2022).

As a result, by rewriting Eq.4 in the form of data approx-
imation and applying non-negative risk estimation (Kiryo
et al. 2017) to the PM framework to address the overfitting
problem caused by the complexity of the model, we can ob-

tain:

L̂PM =
K∑
i=1

(
1

nPi

πi

nPi∑
j=1

ℓ(f(xPi
j ), ci, c0)

+ max(0, [
1

nUi

1− πi

1− πu,i

nUi∑
j=1

ℓ(f(xUi
j ), c0, ci)

− 1

nPi

πu,i − πu,iπi

1− πu,i

nPi∑
j=1

ℓ(f(xPi
j ), c0, ci)])),

(5)

where xPi
j and xUi

j denote cases that the j-th sample of class
i is positive or unlabeled. nPi and nUi are the number of
positive and unlabeled samples of class i, respectively. In
addition, in order to address the severe class imbalance prob-
lem, we multiply the first term in Eq.5 by γi = ( 1−πi

πi
)0.5 as

the class weight.

Positive Augmentation Based on Dropout Noise
It is important to note that since the labeled sample is only
a portion of the true positive sample, meaning the distribu-
tion is biased, p(x | yi = 1) is not equal to p(x | si = 1).
This means that the first term in Eq.5 is a biased approxi-
mation of the first term in Eq.4. To alleviate this issue, we
can use data augmentation to expand the distribution of pos-
itive samples. Here, inspired by (Gao, Yao, and Chen 2021),
we use the model’s own dropout perturbation to augment the
positive samples to get x′, and the perturbed entity pair em-
bedding is f(x′). However, since we have only augmented
the positive samples, the prior πu,i in the unlabeled data does
not change, and we can obtain the positive-augmentation
positive-unlabeled metric learning (P2M) objective loss:

LP2M =
K∑
i=1

(πiEPnew,i
[ℓ(f(x), ci, c0)]

+
1− πi

1− πu,i
EUi

[ℓ(f(x), c0, ci)]

− πu,i − πu,iπi

1− πu,i
EPnew,i

[ℓ(f(x), c0, ci)]),

(6)

here EPnew,i [·] = Ex,x′∼pi(x,x
′|yi=+1)[·]. It can be written

in the non-negative form of data approximation as:

L̂P2M =
K∑
i=1

(
1

2nPi

πi(

nPi∑
j=1

ℓ(f(xPi
j ), ci, c0)

+

nPi∑
j=1

ℓ(f(x′Pi

j ), ci, c0))

+ max(0, [
1

nUi

1− πi

1− πu,i

nUi∑
j=1

ℓ(f(xUi
j ), c0, ci)

− 1

2nPi

πu,i − πu,iπi

1− πu,i
(

nPi∑
j=1

ℓ(f(xPi
j ), c0, ci)

+

nPi∑
j=1

ℓ(f(x′Pi

j ), c0, ci))])).

(7)
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We will compare the difference between augmenting pos-
itive samples and augmenting all samples in the main results
subsection of the experiments.

Positive-None-Class Mixup
In order to further enhance the generalization of the model,
our goal is to obtain more diverse entity pair embeddings. To
achieve this, we can interpolate between positive and nega-
tive samples of each class to obtain mixed entity pair repre-
sentations:

fmix(ori)(x) = µf(x) + (1− µ)f(x−), (8)

here x ∼ p(x | yi = 1) and x− ∼ p(x | yi = −1) are
the positive and negative samples of class i, respectively. µ
is sampled from a Beta(α, α) distribution (µ ∈ [0, 1] and
α > 0). However, in PU learning, we cannot obtain true
negative samples, which means that there are some positive
entity pairs in the unlabeled samples, resulting in bias when
interpolating with unlabeled entity pairs. Thanks to the met-
ric learning framework, which places the relation embedding
and the entity pair embedding in the same feature space, we
can use the none-class relation embedding c0 to stand in for
pseudo-negative entity pairs. Therefore, Eq.8 can be rewrit-
ten as:

fmix(x) = µf(x) + (1− µ)c0. (9)
We will compare the difference between using mixup with

none-class relation embedding and the original method in
the main results subsection of the experiments. According
to this formulation, the mixup loss function can be reformu-
lated as:

Lp−mix =
K∑
i=1

(µEPnew,i
[ℓ(fmix(x), ci, c0)]

+ (1− µ)EPnew,i
[ℓ(fmix(x), c0, ci)]),

(10)

here we perform mixup on both the original positive samples
and the augmented positive samples. Finally, we rewrite this
equation in the form of data approximation:

L̂p−mix =

K∑
i=1

(
µ

2nPi

(

nPi∑
j=1

ℓ(fmix(x
Pi
j ), ci, c0)

+

nPi∑
j=1

ℓ(fmix(x
′Pi

j ), ci, c0))

+
(1− µ)

2nPi

(

nPi∑
j=1

ℓ(fmix(x
Pi
j ), c0, ci)

+

nPi∑
j=1

ℓ(fmix(x
′Pi

j ), c0, ci))).

(11)

Therefore, the final loss of our positive-augmentation and
positive-mixup positive-unlabeled metric learning (P3M)
framework is:

L̂P 3M = L̂P 2M + νL̂p−mix, (12)

where ν is a hyperparameter that controls the strength of
positive-mixup.

Experiments
In this section, we evaluate the performance of P3M in var-
ious incompletely labeled document-level RE datasets and
settings as well as in the fully labeled scenario. We also
analyze the effectiveness of different components of the
method.

Experimental Setups
Datasets. DocRED (Yao et al. 2019) is a large-scale
document-level RE dataset constructed from Wikipedia,
containing 96 predefined relations. However, the original
dataset contains a large amount of incomplete labeling phe-
nomena, (Tan et al. 2022b) proposed a high-quality revised
version Re-DocRED. In our experiments, we use the incom-
pletely labeled DocRED original training set and the fully
labeled Re-DocRED test set. In order to further analyze the
performance of the method in incompletely labeled scenar-
ios, we also use the extreme incompletely labeled training
set DocRED ext constructed by (Wang et al. 2022) for ex-
periments. ChemDisGene (Zhang et al. 2022) is a multi-
label document-level RE dataset in the biomedical field. We
use the incompletely labeled training set constructed by dis-
tantly supervised of CTD database (Davis et al. 2021) and
the fully labeled All relationships test set constructed by ad-
ditional annotation by domain experts for experiments. The
datasets are in English and used for their intended purpose.
The detailed statistics of the datasets are shown in Table 1.
The average number of relations in the incompletely labeled
training sets, especially the extremely incompletely labeled
sets, is far less than that in the test sets, indicating the large
number of false negatives in the training sets.

Implementation Details. In our experiments, we use AT-
LOP (Zhou et al. 2021) as the encoding model for relation
representation learning. Further, we apply cased BERTBase

(Devlin et al. 2019) and RoBERTaLarge (Liu et al. 2019)
for DocRED and PubmedBert (Gu et al. 2022) for
ChemDisGene. We use Huggingface’s Transformers (Wolf
et al. 2020) to implement all the models and AdamW
(Loshchilov and Hutter 2019) as the optimizer, and apply
a linear warmup (Goyal et al. 2017) at the first 6% steps
followed by a linear decay to 0. For DocRED, we set the
learning rates to 3e-5. For ChemDisGene, the learning rate is
set to 2e-5. The batch size (number of documents per batch)
is set to 4 and 8 for two datasets, respectively. In our ex-
periments, we fixed λ = 10, α = 1.0, ν = 0.05, and the
dropout rate to 0.2. In order to make a fair comparison, we
use the same prior estimation as in (Wang et al. 2022), set-
ting πi = 3πlabeled,i and for extreme incomplete labeling,
setting πi = 12πlabeled,i. The training stopping criteria are
set as follows: 10 epochs for both two dataset. We do not use
any fully labeled validation or test sets in any stage of the
training process and report the results of the final model by
running five times with different random seeds (62, 63, 64,
65, 66). All experiments are conducted with 1 Tesla A100 or
1 Tesla V100 GPU.

Baseline. For DocRED, we use fully supervised models
BiLSTM (Yao et al. 2019), GAIN (Zeng et al. 2020),
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Dataset DocRED DocRED ext Re-DocRED ChemDisGene
train train train test train test

# docs 3,053 3,053 3,053 500 76,942 523
# rels 96 96 96 14
Avg # ents 19.5 19.5 19.4 19.6 7.5 10.0
Avg # rels 12.5 5.4 28.1 34.9 2.1 7.2

Table 1: Statistics of document-level RE datasets.

Model DocRED DocRED ext
Ign F1 F1 P R Ign F1 F1 P R

BiLSTM† 32.57 32.86 77.04 20.89 − − − −
GAIN+BERT†

Base 45.57 45.82 88.11 30.98 − − − −
DocuNET+RoBERTa†Large 45.88 45.99 94.16 30.42 − − − −

ATLOP+BERT†
Base 43.12 43.25 92.49 28.23 16.99 17.01 93.17 9.36

SSR-PU+ATLOP+BERT†
Base 55.21 56.14 70.42 46.67 46.47 47.24 59.52 39.18

PM+ATLOP+BERTBase 57.97 59.34 60.76 58.01 53.84 54.85 54.91 54.81
P2M(all)+ATLOP+BERTBase 58.27 59.54 63.31 56.19 53.77 54.71 56.81 52.78
P2M+ATLOP+BERTBase 58.85 60.08 64.30 56.40 54.64 55.57 58.10 53.26
P3M(ori)+ATLOP+BERTBase 59.48 60.79 62.53 59.14 55.91 56.82 59.13 54.70
P3M+ATLOP+BERTBase 59.81 61.03 64.57 57.87 56.17 57.02 61.12 53.44

ATLOP+RoBERTa†Large 45.09 45.19 94.75 29.67 17.29 17.31 94.85 9.52

SSR-PU+ATLOP+RoBERTa†Large 58.68 59.50 74.21 49.67 48.98 49.74 61.57 41.75
PM+ATLOP+RoBERTaLarge 60.72 62.13 61.15 63.16 56.67 57.72 54.60 61.27
P2M(all)+ATLOP+RoBERTaLarge 61.17 62.46 64.19 60.83 56.49 57.46 57.42 57.51
P2M+ATLOP+RoBERTaLarge 61.55 62.82 65.19 60.62 57.27 58.21 58.91 57.55
P3M(ori)+ATLOP+RoBERTaLarge 62.64 63.96 64.15 63.80 58.48 59.42 59.53 59.33
P3M+ATLOP+RoBERTaLarge 63.16 64.34 67.43 61.52 59.02 59.86 63.04 57.01

Table 2: Results on Re-DocRED revised test set. Results with † are reported from (Wang et al. 2022).

DocuNET (Zhang et al. 2021), and ATLOP (Zhou et al.
2021), as well as the positive-unlabeled learning method
SSR-PU (Wang et al. 2022) as the baseline models. For
ChemDisGene, we use BRAN (Verga, Strubell, and Mc-
Callum 2018), PubmedBert (Gu et al. 2022), Pubmed-
Bert+BRAN (Zhang et al. 2022), ATLOP, and SSR-PU as
the baselines.

Evaluation Metric. We use micro F1 (F1), micro ignore
F1 (Ign F1), precision (P), and recall (R) to evaluate the over-
all performance of models on DocRED. Ign F1 denotes the
F1 score excluding the relations shared by the training and
test set. We use micro F1 (F1), precision (P), and recall (R)
to evaluate the models on ChemDisGene.

Main Results
In this subsection, we compare the results between PM,
P2M(all), P2M, P3M(ori), and P3M. P2M(all) refers to aug-
menting all samples, while P3M(ori) refers to the original
mixup method that uses unlabeled samples for mixing.

Results on DocRED. As shown in Table 2, traditional su-
pervised learning methods such as BiLSTM, GAIN, Do-
cuNET, and ATLOP have a dramatic decline in performance,

Model F1 P R

BRAN‡ 32.5 41.8 26.6
PubmedBert‡ 42.1 64.3 31.3
BRAN+PubmedBert‡ 43.8 70.9 31.6

ATLOP+PubmedBert† 42.73 76.17 29.70
SSR-PU+PubmedBert† 48.56 54.27 43.93
PM+PubmedBert 52.02 58.26 47.00
P2M(all)+PubmedBert 51.29 57.54 46.27
P2M+PubmedBert 52.19 59.02 46.78
P3M(ori)+PubmedBert 53.58 59.44 48.78
P3M+PubmedBert 53.62 60.20 48.34

Table 3: Results on ChemDisGene All relationships test set.
Results with † are reported from (Wang et al. 2022). Results
with ‡ are reported from (Zhang et al. 2022).

especially in recall, in the incompletely labeled scenario.
The SSR-PU method, which uses PU learning, effectively
alleviates this problem and achieves a huge improvement
on the basis of the ATLOP encoder model. Our framework
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Model Ign F1 F1

ATLOP+BERT†
Base 72.70 73.47

SSR-PU+BERT†
Base 72.91 74.33

P3M+BERTBase 74.10 75.60

ATLOP+RoBERTa†Large 76.92 77.58

DocuNET+RoBERTa‡Large 77.26 77.87

KD-DocRE+RoBERTa‡Large 77.60 78.28

SSR-PU+RoBERTa†Large 77.67 78.86
P3M+RoBERTaLarge 78.82 80.02

Table 4: Results on Re-DocRED revised test set under the
fully supervised setting. Results with † are reported from
(Wang et al. 2022). Results with ‡ are reported from (Tan
et al. 2022b).

P3M, on the other hand, improves the F1 score by 4.89 and
4.84, respectively, for the BERTBase and RoBERTaLarge

settings, compared to SSR-PU in the incompletely labeled
scenario. And when using extremely incompletely labeled
training sets, the two settings respectively improve the F1
score by 9.78 and 10.12. The outstanding improvement
shows the effectiveness of our proposed framework.

In the DocRED experiment, P3M shows a slight precision
drop compared to SSR-PU, possibly due to expanded pos-
itive sample distribution causing errors in ambiguous case
classification. However, recall increases of 11.20 and 11.85
under the BERTBase and RoBERTaLarge settings justify
this trade-off. This classification error, likely stemming from
the base model’s limitations, can be mitigated by enhancing
the base model. In DocRED ext, our method not only im-
proves recall by 14.26 and 15.26 over SSR-PU under the
same settings but also raises precision by 1.60 and 1.47, re-
spectively, highlighting its value in label-scarce scenarios.

We compare different variations of our method. P2M(all)
and P2M use dropout to augment samples. P2M(all) aug-
ments all samples, and there is a slight improvement when
using the DocRED training set compared to the basic PM
framework. However, in extreme scenarios of incomplete la-
beling, performance deteriorates. We believe this is caused
by the fact that since the data itself is positive and unlabeled,
augmenting all samples instead introduces some additional
noise. P2M, which only augments positive samples, does not
have this problem. The increase in the distribution of posi-
tive samples further improves the performance of the model
and to some extent relieves the distribution bias caused by
incompletely labeled positive samples. The regular P3M(ori)
method has a considerable improvement over P2M because
in document-level RE, the number of negative samples is
far greater than that of positive samples. Therefore, direct
sampling of unlabeled samples will only introduce a small
number of false negatives, but there will still be bias. P3M
has more performance improvement compared to P3M(ori),
which shows that using none-class relation embedding as
pseudo-negative samples effectively mitigates the bias of di-
rectly using unlabeled samples for mixup.
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Figure 2: Effect of hyperparameters on DocRED

Results on ChemDisGene. As shown in Table 3, simi-
lar to the results on DocRED, the performance of super-
vised learning methods has a large decline, while SSR-PU
has a large improvement compared to them. Our proposed
P3M improved by 5.06 F1 score compared to SSR-PU and
achieved a new best result. Notably, the All relationships test
set of ChemDisGene is sourced from another corpus Drug-
Prot (Miranda et al. 2021) and is additionally annotated by
human experts, making the test set have a larger deviation
from the training set. However, our proposed framework has
better robustness under this deviation.

For different variations of the method, P2M(all) has an
obvious performance decrease compared to PM, which may
be caused by the larger deviation between the training set
and the test set, and this deviation is further amplified by
the augmentation of all samples. P2M shows further im-
provement compared to PM, indicating the help of dropout
augmentation in improving the diversity of positive sam-
ple distribution. P3M(ori) and P3M, which added positive-
mixup method, both have larger improvements, verifying the
help of mixup in improving the generalization of positive-
unlabeled metric learning framework. Due to the scarcity of
positive samples, sampling nPi

as negative samples from
the unlabeled samples only causes a small bias, making
P3M(ori) still able to achieve a good result and the perfor-
mance gap between P3M and P3M(ori) is smaller.

Additional Analysis
Fully Supervised Setting. We conduct experiments on
Re-DocRED (Tan et al. 2022b) under a fully supervised set-
ting. In the experiments, we set πi = πlabeled,i, ν = 0.01,
with a dropout rate of 0.1, and other hyperparameters re-
mained unchanged. As shown in Table 4, we compared our
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Model Ign F1 F1 P R

P3Mπi=πlabeled,i
59.84 60.77 70.99 53.12

P3Mπi=2πlabeled,i
60.00 61.06 68.06 55.38

P3Mπi=3πlabeled,i
59.92 61.13 65.01 57.69

P3Mπi=4πlabeled,i
59.06 60.43 61.08 59.78

P3Mπi=5πlabeled,i
57.98 59.48 57.75 61.31

Table 5: Results on Re-DocRED revised test set under the
BERTBase setting with different πi estimation.

framework with the existing state-of-the-art methods AT-
LOP (Zhou et al. 2021), DocuNET (Zhang et al. 2021),
KD-DocRE (Tan et al. 2022a), and SSR-PU (Wang et al.
2022). Our framework achieves the best results as well.

Effect of Hyperparameters. Figure 2 shows the effect of
hyperparameters on the model under the DocRED and Do-
cRED ext incomplete labeling settings. (a) shows the effect
of the scaling factor λ, with similar trends under both set-
tings, and λ = 10 being the best choice. (b) shows the ef-
fect of the dropout rate, indicating that the greater the de-
gree of incompleteness in labeling, the greater the dropout
rate needed to enhance diversity, but too large a dropout rate
will also introduce more noise. (c) shows the effect of α, in-
dicating that the model is not sensitive to the choice of α,
and α = 1.0 can be seen as a uniform mixup interpolation
between distributions. (d) shows the effect of ν, with simi-
lar trends under both settings, and more severe incomplete
labeling requires slightly larger mixup strength.

Effect of Prior Estimation. Table 5 shows the effect of
different prior estimates on the model. It can be seen that our
framework is not sensitive to errors in prior estimates, espe-
cially in cases where the prior estimate is too small. Even
when πi = πlabeled,i, the model still performs well, demon-
strating the robustness of our method under errors in prior
estimates, which is very helpful for real-world applications.

Related Work
Document-Level Relation Extraction. Previously, effec-
tive methods for document-level relation extraction (RE)
have mainly been graph-based models and transformer-
based models. Graph-based models (Nan et al. 2020; Li
et al. 2020; Zeng et al. 2020; Zeng, Wu, and Chang 2021;
Xu, Chen, and Zhao 2021) use graph neural networks to
gather entity information for relational inference, while
transformer-based methods (Zhou et al. 2021; Xu et al.
2021; Zhang et al. 2021; Tan et al. 2022a) capture long-range
dependencies implicitly. Recently, it has been found that
there are a large number of false negatives in document-level
RE datasets, i.e. incomplete labels (Huang et al. 2022; Tan
et al. 2022b). (Wang et al. 2022) proposed using positive-
unlabeled learning to address this problem.

Positive-Unlabeled Learning. Positive-unlabeled (PU)
learning (Elkan and Noto 2008; du Plessis, Niu, and
Sugiyama 2014, 2015; Kiryo et al. 2017; Garg et al. 2021),
as a emerging weakly supervised learning paradigm, aims

to learn classifiers from positive and unlabeled data, and has
gained continuous attention from researchers. PU learning
has been widely applied in various tasks, such as text classi-
fication (Li and Liu 2003), sentence embedding (Cao et al.
2021), named entity recognition (Peng et al. 2019; Zhou,
Li, and Li 2022), knowledge graph completion (Tang et al.
2022), and sentence-level RE (He et al. 2020) in the NLP
field. (Chuang et al. 2020) used PU learning to address the
issue of negative samples potentially carrying the same label
in contrastive learning.

Deep Metric Learning. Our work is inspired by metric
learning and mainly falls into two categories: pair-based
losses and proxy-based losses. Pair-based methods (Had-
sell, Chopra, and LeCun 2006; Schroff, Kalenichenko, and
Philbin 2015; Sohn 2016; Wang et al. 2019) focus on the
relationships between individual samples, and contrastive
learning can be considered a subset of this approach. Proxy-
based methods like Proxy-NCA (Movshovitz-Attias et al.
2017) and NormFace (Wang et al. 2017) consider the re-
lationships between proxies and samples, and (Qian et al.
2019) unified the relationship between SoftMax loss and
triplet loss, and proposed a new SoftTriplet loss. Proxy-
based methods are a type of approach that focuses on im-
proving generalization while keeping training complexity
low, although they may not fully utilize the relationships be-
tween individual samples.

Data Augmentation. Data augmentation is a key factor in
deep learning performance and is widely used in many fields
(Shorten and Khoshgoftaar 2019; Hedderich et al. 2021).
(Wei and Zou 2019; Ma 2019) proposed to augment words
by randomly inserting and replacing them, while (Lee et al.
2021) augmented the word embeddings directly. (Gao, Yao,
and Chen 2021) used simple dropout to augment sentence
embeddings for unsupervised contrastive learning. Mixup
(Zhang et al. 2018; Verma et al. 2019) can be considered
as another common data augmentation method, where inter-
polation is used to improve the generalization performance
of the model between two samples. It is increasingly used
and researched in the NLP (Chen, Yang, and Yang 2020;
Yin et al. 2021; Wu et al. 2022) and the PU learning (Chen
et al. 2020; Wei et al. 2020; Li et al. 2022; Zhao et al. 2022)
fields. (Jeong et al. 2022) proposed a document augmenta-
tion dense retrieval framework that uses both methods.

Conclusion and Future Work
To address document-level RE with incomplete labeling,
we propose a positive-unlabeled metric learning framework
P3M. First, we combine positive-unlabeled learning with
metric learning to learn better representations. Then, we use
dropout augmentation to expand the distribution of labeled
positive samples. Finally, we use none-class relation embed-
ding as pseudo-negative samples and propose a positive-
none-class mixup method to further improve the model’s
generalization performance. Experiments demonstrate that
our method achieve state-of-the-art results in both incom-
plete and complete labeling scenarios, as well as robustness
to prior estimation bias. In the future, we will explore vari-
ous metric learning losses and data augmentation methods.
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