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Abstract

Applying Reinforcement Learning (RL) to sequence genera-
tion models enables the direct optimization of long-term re-
wards (e.g., BLEU and human feedback), but typically re-
quires large-scale sampling over a space of action sequences.
This is a computational challenge as presented by the prac-
tice of sequence generation problems, such as machine trans-
lation, where we often deal with a large action space (e.g.,
a vocabulary) and a long action sequence (e.g., a transla-
tion). In this work, we introduce two-stage sampling and dy-
namic sampling approaches to improve the sampling effi-
ciency during training sequence generation models via RL.
We experiment with our approaches on the traditional se-
quence generation tasks, including machine translation and
abstractive summarization. Furthermore, we evaluate our ap-
proaches in RL from human feedback (RLHF) through train-
ing a large language model using the reward model. Experi-
mental results show that the efficient sampling-based RL, re-
ferred to as ESRL, can outperform all baselines in terms of
both training efficiency and memory consumption. Notably,
ESRL yields consistent performance gains over the strong
REINFORCE, minimum risk training, and proximal policy
optimization methods. The code is available at https://github.
com/wangclnlp/DeepSpeed-Chat-Extension/examples/esrl.

Introduction
The use of Reinforcement Learning (RL) in training se-
quence generation models has gained significant attention in
recent years. This is primarily due to the fact that sequence
generation is inherently a long-term decision-making prob-
lem and RL is particularly well-suited for optimizing long-
term rewards, such as sequence-level scores (Wieting et al.
2019; Donato et al. 2022) and human feedbacks (Nguyen,
Daumé III, and Boyd-Graber 2017; Stiennon et al. 2020;
Ouyang et al. 2022; OpenAI 2022). Additionally, by training
with sampled sequences, using RL to train sequence gen-
eration models can significantly mitigate the exposure bias
problem (Ranzato et al. 2016; Wang and Sennrich 2020).

The RL training process typically involves two steps:
(1) sampling a number of candidate sequences with a pre-
trained model given an input (call it exploration), and (2)
using an RL method, such as REINFORCE (Williams 1992)
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and Proximal Policy Optimization (PPO) (Schulman et al.
2017), to optimize the model with the long-term rewards
given the sampled sequences (call it optimization). This
paradigm has achieved promising results on several se-
quence generation tasks, such as machine translation (Wi-
eting et al. 2019; Yehudai et al. 2022; Donato et al. 2022),
abstractive summarization (Celikyilmaz et al. 2018; Stien-
non et al. 2020), and dialogue generation (Hsueh and Ma
2020). Moreover, it has been proved to have a promising po-
tential for guiding a large language model (LLM) to learn
from human feedbacks (Ouyang et al. 2022; OpenAI 2022).

Despite such successes, applying RL to NLP is not low-
hanging fruit. In practical applications of sequence genera-
tion, we often deal with a large action space (e.g., a vocab-
ulary) and a long action sequence (e.g., a translation). This
poses a serious computational challenge to the exploration
procedure (Keneshloo et al. 2019), and is an important factor
motivating the design of sophisticated sampling approaches.

To mitigate this problem, we investigate strategies for re-
ducing the computational burden of exploration when ap-
plying RL to sequence generation models. In this work, we
propose an Efficient Sampling-based RL (ESRL) method,
which enables more efficient exploration by using the fol-
lowing two approaches. For one, we use a two-stage sam-
pling framework to implement the exploration. It can take
full advantage of the Transformer’s parallelism computation,
so the excessive computational graph storage requirements
disappear. Furthermore, we propose a dynamic sampling ap-
proach that can reduce redundant sampling by considering
the capability of a model. The motivation is that heavy sam-
pling is simply not necessary because pre-trained generation
models have already acquired some ability of generation.

We experiment with the proposed ESRL on machine
translation and summarization tasks based on Transformer
(Vaswani et al. 2017). Experimental results show that ESRL
can surpass both the REINFORCE (Williams 1992; Kiege-
land and Kreutzer 2021) and minimum risk training (Shen
et al. 2016) in terms of generation quality, training time, and
memory consumption. Notably, compared to REINFORCE,
it can reduce 47% of the memory consumption and 39% of
the training time on the machine translation task. Addition-
ally, our ESRL significantly outperforms the vanilla Trans-
former over 1.04 BLEU points on the IWSLT’14 De-En and
WMT’14 En-De test sets. It also significantly outperforms
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all baselines on the abstractive summarization task. Further-
more, we evaluate our ESRL in RLHF (Christiano et al.
2017) with LLaMA-7B-LoRA (Hu et al. 2022; Touvron
et al. 2023). The results demonstrate that ESRL remains sig-
nificantly more memory-efficient and faster in RLHF while
achieving an improvement of +30.00 points on the total
score of Vicuna-80 benchmark, as evaluated by GPT-4 (Chi-
ang et al. 2023), compared to the robust PPO.

Related Work
While reinforcement learning (RL) has long been appreci-
ated in robotics and other fields, it has recently emerged as
a promising approach to advance sequence generation mod-
els (Ranzato et al. 2016; Celikyilmaz et al. 2018; Yehudai
et al. 2022; Donato et al. 2022). For example, Edunov et al.
(2018) compared objective functions commonly used in RL
for sequence generation models. Choshen et al. (2020) and
Kiegeland and Kreutzer (2021) examined the limitations of
RL in neural machine translation. Moreover, Kiegeland and
Kreutzer (2021) conducted experiments on in-domain and
cross-domain adaptation setups to highlight the significance
of exploration during RL training. It is also an upward trend
in using RL to train large language models with human feed-
backs (Nguyen, Daumé III, and Boyd-Graber 2017; Stien-
non et al. 2020; Ouyang et al. 2022; OpenAI 2022).

As another line of research, the researchers focused on
exploring better reward functions to enhance the learning of
generation models, such as the use of semantic similarity
(Li et al. 2016; Wieting et al. 2019; Yasui, Tsuruoka, and
Nagata 2019) and the design of learnt reward functions (Shi
et al. 2018; Böhm et al. 2019; Shu, Yoo, and Ha 2021). More
recent work aimed at addressing the challenge of large ac-
tion spaces in sequence generation models (Hashimoto and
Tsuruoka 2019; Yehudai et al. 2022).

Although previous work improves the performance of RL
on sequence generation tasks, they are often hindered by
the inefficient exploration problem. Researchers have been
aware of this (Keneshloo et al. 2019), but it is still rare to
see studies on this issue.

Our Method
In this section, we firstly recall the preliminaries of using RL
in training sequence generation models. Then, we present
our efficient sampling-based RL method. Last, we introduce
our optimization algorithm.

Preliminaries
Sequence Generation Model Given an input x such as a
text, a sequence generation model generates a sequence of
N tokens y = {y1, . . . , yN}, where each token yt is drawn
from a vocabulary. At the training stage, the model learns
the probability:

pθ(y|x) =
N∏
t=1

pθ(yt|y<t, x) (1)

where y<t is the prefix {y1, y2, . . . , yt−1}, and θ is a set
of model parameters. In this process, the standard training

Decoder

⟨s⟩ ŷN−1ŷ1 ŷN−2

ŷ1 ŷNŷ2 ŷN−1

log p(ŷ1) log p(ŷ2) log p(ŷN−1) log p(ŷN )− ( )× r(ŷ)+ + + +· · ·

· · ·

· · ·

Figure 1: An illustration of the traditional RL loss calcula-
tion. In this process, we need to store each of the compu-
tational graphs produced by {p(ŷ1), p(ŷ2), · · · , p(ŷN )} to
calculate the gradients. Thus, the memory footprint grows
drastically as the sampled sequence becomes longer.

objective is to maximize the likelihood over all the tokens
of the target sequence, i.e., maximum likelihood estimation
(MLE) (Myung 2003). At the inference stage, we generate
tokens sequentially according to probability pθ. In this pa-
per, we consider the tasks of neural machine translation,
abstractive summarization, and RLHF and use them as in-
stances of the above model.

Long-term Reward Optimization Given a pre-trained
sequence generation model, we can use RL to train this
model. RL seeks to maximize the long-term reward, writ-
ten as argmaxθ Epθ(ŷ|x)[r(ŷ)], where ŷ is a generated se-
quence and r(·) is a reward function computing the long-
term reward for ŷ. r(·) is typically defined to be a stan-
dard metric function, such as BLEU (Papineni et al. 2002)
and ROUGE (Lin 2004). The corresponding RL loss for this
training instance is then given by:

LRL =
∑

ŷ∈Ω(x)

pθ(ŷ|x)r(ŷ) (2)

where Ω(x) is the output space which comprises all possible
candidate target sequences for input x.

Exploration However, computation of Eq. 2 is intractable
because the size of Ω(x) grows exponentially with the size
of the vocabulary and the lengths of the target sequences.
To address this challenge, RL usually performs exploration
to approximate Ω(x). A commonly-used method to solve
Eq. 2 is the Monte Carlo method (Williams 1992). For each
training instance, a number of sequences are sampled from
a multinomial distribution defined by a Softmax layer with
a temperature factor (Choshen et al. 2020). Here, both the
sampling size and the sampling temperature can be used to
control to what extent we explore the space. For example,
a larger sampling size means more candidates involved in
sampling, and a higher temperature means a larger diversity
of sampled sequences (Kiegeland and Kreutzer 2021).

Policy Gradient To optimize the model with the long-
term rewards of sampled sequences, policy gradient meth-
ods, such as REINFORCE (Williams 1992) and minimum
risk training (MRT) (Shen et al. 2016), are often used.
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Figure 2: Architecture of ESRL. We introduce two-stage sampling and dynamic sampling approaches to design ESRL, which
enables it to be much more memory-efficient and much faster in training a sequence generation model. For two-stage sampling,
we take full advantage of the Transformer’s parallelism computation to avoid the excessive computational graph storage. During
the dynamic sampling, based on the estimated capability, we dynamically adjust the size and temperature of sampling to
eliminate unnecessary exploration. Here encoder portion is used only by the encoder-decoder sequence generation model.

Specifically, REINFORCE uses log derivatives to define the
loss function:

LREINFORCE = −
∑

ŷ∈S(x)

log pθ(ŷ|x)r(ŷ) (3)

where S(x) is an approximated space, which consists of
these sampled sequences. The calculation process is also
illustrated in Figure 1. Since each sequence is sampled by
an autoregressive mode (Vaswani et al. 2017; Xiao and Zhu
2023), RL requires the storage of computational graphs on
the order of N times that of MLE training.

Unlike REINFORCE, MRT method uses these sam-
pled sequences to approximate a posterior distribution with
renormalization:

Qθ(ŷ|x) =
pθ(ŷ|x)α∑

ŷ∈S(x) pθ(ŷ|x)α
(4)

where α is a smoothness parameter and Qθ(ŷ|x) is a distri-
bution defined on the approximated space. Based on the Qθ

distribution, MRT gives a new loss function:

LMRT =
∑

ŷ∈S(x)

Qθ(ŷ|x)[−r(ŷ)] (5)

In some cases, MRT can achieve better performance com-
pared with REINFORCE (Kiegeland and Kreutzer 2021).
But the exploration process of MRT requires an enormous
amount of memory to store the computational graphs used
in renormalization.

Efficient Sampling-based RL (ESRL)
In this work, our aim is to reduce the computational cost
of applying RL to sequence generation models. We propose
the ESRL to achieve this. The overview of ESRL is depicted
in Figure 2. As shown in the figure, we present two-stage
sampling and dynamic sampling in ESRL achieve our goal.
In the following subsections, we will describe them in detail.

Two-stage Sampling In response to excessive computa-
tional graph storage requirements produced by the sampling

process, we use a two-stage framework that effectively mit-
igates this issue. Stage one is to sample the candidate se-
quences via an autoregressive mode. Note that this stage is
not involved in backpropagation. It thus does not require the
storage of computational graphs. Stage two is to calculate
the probabilities of the sampled candidate sequences, i.e.,
pθ(ŷ|x) in Eqs. 3 and 4. At this stage, due to the presence
of the complete output sequence, we can use Transformer’s
parallelism computation instead of an autoregressive mode.
It allows this calculation to be done with just one forward
pass. Compared to the conventional RL sampling, the two-
stage sampling incurs additional time costs due to an extra
forward pass. However, with the help of two-stage sampling,
it can effectively reduce the memory footprint. Generally,
the conventional RL sampling needs to store the computa-
tional graphs of N forward passes, while the two-stage sam-
pling only stores the computational graph of one forward
pass. It is noteworthy that the two-stage sampling approach
has been adopted in several open-source projects, such as
TRL* and TRLX†, attributable to its training efficiency.

Dynamic Sampling We propose a dynamic sampling ap-
proach to further improving the efficiency of RL training. In
our dynamic sampling approach, we first estimate the model
capability, then adjust the sampling size and temperature ac-
cording to this estimated capability so that we can perform
sampling in an adequate and efficient way.

For the model capability estimation, we reuse old se-
quences sampled at the previous epoch. Specifically, given
an input x, following the sampling of candidate sequences,
we employ these sampled sequences to estimate the model’s
generation capability of the input. Then, the estimated model
capability is then recorded and used in the subsequent epoch
to adjust the sampling size for the same input. Taking the
machine translation task as an instance, we use the entropy
(Settles 2009) and BLEU (Papineni et al. 2002) to estimate
the model capability. When using BLEU to estimate the

*https://github.com/huggingface/trl
†https://github.com/CarperAI/trlx
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model capability, the capability score is given by:

Capx =
1

m

∑
ŷ∈S(x)

BLEU(ŷ, y) (6)

where m is the sampling size of the input x and BLEU(·)
is the sacreBLEU (Post 2018). When considering entropy as
another estimation of the model capability, written as:

Capx = 1 +
1

N ×m

∑
ŷ∈S(x)

N∑
t=1

pθ(ŷt|ŷ<t, x) log pθ(ŷt|ŷ<t, x)

(7)

There are other choices to define Capx for specific tasks.
For instance, we can replace BLEU with ROUGE (Lin 2004)
in the abstractive summarization task. Note that when the
model’s capability for a given input x is not recorded, i.e.,
no sampling operation has been performed on the input, we
employ a greedy search algorithm to generate an optimal
sequence quickly. Then we use this generated sequence to
estimate the model capability.

For the sampling size adjustment, our main aim is to elim-
inate unnecessary exploration. Specifically, when Capx is
high, we consider that the model has ability to get a great
long-term reward and thus decrease the sampling size. By
contrast, when Capx is low, we increase the sampling size to
have a larger-scale exploration. It allows the model to learn
from a sufficient number of possible generated sequences
per input and to improve its own capability. Here we use the
following function to achieve this goal:

kx = ⌈kmax − β · n · kmax · Capx∑
x∈I Capx

⌉ (8)

where kx and kmax denote the adjusted sampling size and
the maximum sampling size, respectively. β is a ratio of
eliminated samples within the range of [0, 1), relative to the
total number of samples. Here we use batch-level elimina-
tion strategy that reduces the sampling size of the input with
higher capability score within the current batch’s distribu-
tion. Thus I denotes an input set consisting of all inputs in
the current batch and n denotes the number of inputs.

Considering that the sampling temperature also impacts
the exploration, we adopt a simple strategy to control the
exploration by adjusting the temperature: when the capac-
ity score is low, we use a higher temperature to encourage
exploration. We dynamically adjust the temperature in the
interval [τmin, τmax] based on the adjusted sampling size to
further control the exploration. The rule of temperature ad-
justment is given by:

τx = τmin + kx × τmax − τmin

kmax
(9)

where τx is the adjusted temperature for x.
After adjusting the size and temperature of sampling, we

sample kx candidate sequences for each input. Following
Kiegeland and Kreutzer (2021)’s work, we use a restructur-
ing batch trick which restructures a new batch by repeating
the encoder representations to act as the input of the decoder
(see Figure 2), to take advantage of the parallel computation.

Optimization
We replace the standard policy method with the fusion of
MRT and REINFORCE in computing the loss. Specifically,
we use LMRT to serve as the loss when kx > 1. When kx =
1, since the renormalization is not feasible, we instead use
LREINFORCE to serve as the loss. This design combines the
strengths of MRT and REINFORCE and makes full use of
the sampled sequences to optimize the model.

FIFO-based Baseline Reward The baseline reward tech-
nique (Sutton and Barto 2018) has been shown to be effec-
tive to improve the generalization of sequence generation
models (Kreutzer, Sokolov, and Riezler 2017). The ideal
baseline value is an average of the long-term rewards of all
possible candidate sequences. Again, this is intractable be-
cause there is an exponentially large number of candidate se-
quences in sequence generation tasks. Although some works
attempt to estimate this ideal baseline value (Hashimoto and
Tsuruoka 2019), they involve complex training. Inspired by
the idea of using a queue to proxy the global in Wang et al.
(2021)’s work, we propose a FIFO-based baseline reward
approach, which employs a First-In-First-Out (FIFO) reward
queue Q to compute the baseline value. We use Qsize to de-
note the reward queue size. At each training step, we push
rewards of all sampled sequences into Q and pop out the
‘Oldest’ rewards. Then we compute the average of the re-
wards in Q to serve as the baseline value b. By using this
baseline reward, we replace the reward function in Eqs. 3
and 4 with r(ŷ, y)− b.

Experiments
We evaluated our ESRL method on the traditional sequence
generation tasks, including machine translation and abstrac-
tive summarization. We also evaluated ESRL in RLHF with
LLaMA-7B-LoRA.

Experimental Setups
Datasets The datasets used for each task are as follows:

• Machine Translation: We conducted experiments on two
machine translation datasets, including a small-scale
IWSLT’14 German-English (De-En) dataset and a large-
scale WMT’14 English-German (En-De) dataset. We
preprocessed the datasets following the same setup in Hu
et al. (2021)’s work.

• Abstractive Summarization: We also tested the ESRL’s
capability to train the abstractive summarization model
on the CNN/DM dataset (Hermann et al. 2015). Our data
preprocess method was the same as in Li et al. (2022).

• RLHF: We integrated data from Alpaca data (52k train-
ing instances) and GPT-4 Alpaca data (Peng et al. 2023;
Taori et al. 2023) to perform the supervised fine-tuning
(SFT) and RLHF. We used the GPT-4 Comparison En-
glish dataset‡ to train our reward model.

‡https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-
LLM
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Method SS IWSLT’14 De-En WMT’14 En-De

BLEU COMET-22 Time
(hours)

Memory
(G) BLEU COMET-22 Time

(hours)
Memory

(G)

MLE - 33.77 79.32 - - 26.73 83.36 - -

REINFORCE 1 33.91 79.52 4.52 3.31 26.97 83.45 7.70 5.32
ESRL-Random 1 33.71 79.47 2.69 2.63 26.85 83.38 6.45 4.84
ESRL-BLEU 1 34.02 79.62 3.15 2.54 27.02 83.55 6.19 4.55
ESRL-Entropy 1 33.96 79.56 2.73 2.66 26.95 83.43 6.26 4.13

REINFORCE 5 34.05 79.58 7.04 8.66 27.10 83.52 12.68 13.83
MRT 5 34.17 79.66 8.96 16.60 27.12 83.60 13.76 14.93
ESRL-Random 5 33.68 79.23 3.73 5.26 26.87 83.41 10.34 12.39
ESRL-BLEU 5 34.37 79.81 4.34 5.49 27.25 83.68 11.14 11.79
ESRL-Entropy 5 34.40 79.85 3.99 5.19 27.18 83.59 10.29 11.75

REINFORCE 10 34.22 79.63 8.19 15.61 27.21 83.72 15.20 20.85
MRT 10 34.31 79.71 10.26 23.03 27.26 83.80 16.90 22.14
ESRL-Random 10 33.75 79.31 4.63 10.15 27.05 83.52 13.26 15.87
ESRL-BLEU 10 34.53 80.02 4.85 9.86 27.43 83.87 13.03 16.12
ESRL-Entropy 10 34.63 80.13 5.11 10.02 27.39 83.90 13.82 15.58

REINFORCE 15 34.41 79.88 9.91 22.25 - - - >24.00
MRT 15 - - - >24.00 - - - >24.00
ESRL-Random 15 33.61 79.12 6.91 11.86 27.22 83.71 15.53 17.15
ESRL-BLEU 15 34.79 80.24 6.10 12.53 27.54 83.98 15.46 16.97
ESRL-Entropy 15 34.68 80.33 6.03 11.78 27.45 83.93 16.08 17.72

REINFORCE 20 - - - >24.00 - - - >24.00
MRT 20 - - - >24.00 - - - >24.00
ESRL-Random 20 33.78 79.34 7.25 17.16 27.18 83.68 20.13 21.09
ESRL-BLEU 20 34.95 80.56 7.04 16.35 27.67 84.12 21.36 19.45
ESRL-Entropy 20 34.83 80.42 7.32 16.98 27.58 84.05 21.65 20.76

Table 1: Results on the machine translation task using different sampling sizes. The best results for each group are in bold. The
suffix “-Random”, “-BLEU”, and “-Entropy” denote that we use random-based, BLEU-based, and entropy-based strategies to
adjust the sampling size, respectively. SS: sampling size; Time: training time; Memory: maximum memory consumption.

Setups For machine translation and abstractive summa-
rization tasks, we pre-trained a standard Transformer base
model (Vaswani et al. 2017) using the MLE until conver-
gence. Here we employed BLEU and ROUGE-L as the
reward functions during RL training. For RLHF, we fine-
tuned a LLaMA-7B model using LoRA approach. Following
Ouyang et al. (2022)’s work, we trained a reward model us-
ing a LLaMA-7B model to predict rewards during RL train-
ing. More training setups are shown in our arXiv version§.

Evaluation Metrics We measured the translation quality
in terms of BLEU. Here, we employed sacreBLEU to calcu-
late the BLEU scores. We measured the summary quality by
calculating ROUGE-L scores for the CNN/DM dataset. To
further evaluate the performance of the model, two model-
based metrics, COMET-22 (Rei et al. 2022) and BARTScore
(Yuan, Neubig, and Liu 2021), were employed for measur-
ing machine translation and summarization tasks, respec-
tively. Additionally, we used Vicuna-80 benchmark¶ to eval-
uate the performance of RLHF, where the scores were as-
sessed by GPT-4 following Zheng et al. (2023)’s work.
For training efficiency and memory consumption, we tested

§https://arxiv.org/abs/2308.02223
¶https://lmsys.org/blog/2023-03-30-vicuna/

ESRL on four TITAN RTX GPUs. Specifically, we used a
global batch size (per GPU) of 1,024 tokens, 2048 tokens,
and 4 samples for the machine translation, abstractive sum-
marization, and RLHF, respectively. We also used the re-
structuring batch in MRT to make a fair comparison.

Baselines Our baseline is the standard MLE. Addition-
ally, we compare ESRL with commonly used sampling-
based (on-policy) RL methods, including REINFORCE
(Ranzato et al. 2016) and MRT (Shen et al. 2016), across
various sampling sizes. For REINFORCE, following Kiege-
land and Kreutzer (2021), we implemented it using the mov-
ing average baseline with the temperature τ = 0.95. In
RLHF, we compare ESRL with the standard SFT and PPO.
We also chose ESRL-Random method as an additional
baseline to evaluate the effectiveness of ESRL. In ESRL-
Random, we randomly adjusted the size and temperature of
sampling during dynamic sampling. Furthermore, we com-
pare with off-policy RL methods, including GOLD-s and
GOLD-p (Pang and He 2021), as shown in Table 5.

Experimental Results
Results of Machine Translation Figure 1 summarizes the
results of machine translation. In terms of training time and
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Method SS RG-L BS Time
(hours)

Memory
(G)

MLE - 37.06 -1.65 - -

REINFORCE 1 37.58 -1.54 4.38 9.75
ESRL-Random 1 37.23 -1.63 2.52 4.14
ESRL-ROUGE 1 37.72 -1.48 2.46 4.26
ESRL-Entropy 1 37.64 -1.50 2.58 4.01

REINFORCE 5 - - - >24.00
MRT 5 - - - >24.00
ESRL-Random 5 37.38 -1.61 4.05 6.72
ESRL-ROUGE 5 38.13 -1.42 3.87 6.59
ESRL-Entropy 5 37.98 -1.46 4.28 7.02

Table 2: Results on the abstractive summarization task. RG-
L: ROUGE-L; BS: BARTScore.

memory consumption, our ESRL consistently outperforms
REINFORCE and MRT on different sampling sizes. For in-
stance, ESRL can reduce about 47% of memory consump-
tion and 39% of training time on training IWSLT model
with a sampling size of 15. It demonstrates that ESRL can
efficiently achieve RL training on the machine translation
task, while also showing its ability to conduct larger-scale
sampling with identical settings on resource-constrained de-
vices. In terms of translation quality, ESRL achieves the
best result in training translation models compared to all the
baselines. Notably, ESRL yields a +0.98 BLEU improve-
ment on the WMT En-De dataset compared to MLE, when
using the sampling size of 20. Compared to REINFORCE
and MRT, our ESRL can also gain a better translation qual-
ity. We attribute this to the fact that ESRL benefits from the
appropriate exploration obtained by the dynamic sampling
at each training step (see an analysis from Section Balanc-
ing Exploration and Exploitation).

Results of Abstractive Summarization We also evalu-
ated the proposed ESRL on the abstractive summarization
task. The results are presented in Table 2. We can see
that ESRL outperforms MLE by a large margin (e.g., 1.07
ROUGE-L and 0.23 BARTScore benefits). Due to the exces-
sively long input (i.e., an article), REINFORCE and MRT
necessitate a huge training footprint to train a summariza-
tion model while sampling multiple sequences. However, in
this case, ESRL still achieves an efficient RL training as the
sampling process receives benefits from both two-stage sam-
pling and dynamic sampling approaches.

Results of RLHF As shown in Table 3, we evaluated
our ESRL in RLHF with a sampling size of 1. The ex-
perimental results indicate that compared to the conven-
tional PPO, our ESRL can still be more memory-efficient
and faster in RLHF. Notably, ESRL-Entropy can outperform
SFT by a substantial margin of 56.00 points on Vicuna-80’s
total score. Additionally, compared to the PPO with two-
stage sampling, our ESRL method yields an improvement
of +30.00 points. This result demonstrates that our dynamic
sampling approach not only improves the training efficiency
but also contributes to the generation quality in RLHF.

Method Score Time (hour) Memory (G)

SFT 560.00 - -

PPO - - >24.00
PPO w/ TS 596.00 13.87 23.14
ESRL-Random 571.00 10.81 19.57
ESRL-Reward 619.00 10.53 19.36
ESRL-Entropy 626.00 10.19 20.03

Table 3: Vicuna benchmark’s total scores evaluated by GPT-
4. “-Reward” denotes that we use the predicted reward score
to estimate model capability. TS: two-stage sampling.

Furthermore, compared to ESRL-Random, we observe
that ESRL-BLEU, ESRL-Reward, and ESRL-Entropy can
achieve better generation quality on all tasks. This finding il-
lustrates that adjustments based on model capacity are supe-
rior to those made randomly. Additionally, we investigate the
performance gain of different capacity estimation strategies.
From the results, we find that both the entropy-based estima-
tion and the BLEU/ROUGE/Reward-based estimation can
contribute to the generation quality improvement over the
baselines on all tasks.

Ablation Study
We present detailed ablation studies to explore effects of
two-stage sampling, dynamic sampling, and FIFO-based
baseline reward with a sampling size of 20. The experiments
were conducted on the IWSLT dataset, and the impacts of
removing each approach are thoroughly examined. The re-
sults are summarized in Table 4. Through the results, we see
that the two-stage sampling approach can significantly re-
duce the training time cost and memory consumption, which
makes it feasible to RL training on resource-constrained de-
vices. We also see that without dynamic sampling, ESRL
fails to gain a well-performing translation model. Further-
more, to investigate the impact of temperature adjustment,
we attempt to employ ESRL to train a translation model
with removing this factor, specifically by solely adjusting the
sampling size during the dynamic sampling process. The re-
sults show that temperature adjustment can improve genera-
tion quality without bringing additional computational costs.
Additionally, we see that using the FIFO-based baseline re-
ward can train a better model. It shows the effectiveness of
using FIFO to compute baseline value.

Analysis
Performance on Different Elimination Ratios Based on
the two-stage sampling with a sampling size of 20, we inves-
tigate the impact of using different elimination ratios. Figure
3 (top) compares ESRL-BLEU with MLE on the IWSLT
dataset. We see that ESRL can achieve consistent BLEU im-
provements across various elimination ratios. Additionally,
the results show an interesting observation that the elimi-
nation operation may bring certain benefits to our ESRL in
terms of BLEU. We attempt to give a potential cause for
this observation from the perspective of balancing explo-
ration and exploitation. Figure 3 (bottom) shows the results
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Method BLEU COMET-22 Time
(hours)

Memory
(G)

MLE 35.30 80.88 - -

ESRL 36.34 82.29 7.04 16.35

w/o TS - - - >24.00
w/o DS 35.87 81.27 8.89 19.10
w/o TA 36.02 81.55 7.13 16.42
w/o FBR 36.17 82.01 7.02 15.87

Table 4: Ablation studies on the components of ESRL. The
translation quality is tested on the IWSLT development set.
DS: dynamic sampling; TA: temperature adjustment; FBR:
FIFO-based baseline reward.
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Figure 3: The comparison of performance and efficiency
against different elimination ratios: 0, 0.1, 0.2, 0.3, 0.4, 0.5.

for training time and memory consumption using different
elimination ratios. From the results, we can observe that
our elimination operation can progressively diminish train-
ing time and memory consumption usage as increasing the
elimination ratios. Considering the impact on BLEU and ef-
ficiency, we choose the elimination ratio of 0.3 to conduct
our all experiments.

Effect of Temperature Interval on Performance We
study the impact of using different temperature intervals.
As shown in Figure 4 (left), we swept over different inter-
vals: {[0.2, 0.6] , [0.4, 0.8], [0.6, 1.0] , [0.8, 1.2]}. From the
results, we see that the use of different temperature inter-
vals can result in different performance gains. We find that
the optimal temperature interval is [0.6, 1.0] which makes an
appropriate diversity in the sampled sequences.

Comparison with Off-policy RL Methods Table 5 shows
the performance of off-policy RL method on the IWSLT
dataset. We can observe that ESRL is still better than strong
GOLD (Pang and He 2021) under the evaluation of various
metrics. Furthermore, our ESRL is orthogonal to the off-
policy RL method. Here, we take GOLD-s as an instance.
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Figure 4: Performance of ESRL with different temperature
intervals on the IWSLT dataset.

Method RL Type BLEU COMET-22

MLE - 33.77 79.32
ESRL On-policy 34.95 80.56

GOLD-p Off-policy 34.21 79.83
GOLD-s Off-policy 34,33 80.11
ESRL+GOLD-s (On+Off)-policy 35.12 80.82

Table 5: Performance on the IWSLT test set, using standard
models trained with off-policy objectives.

Specifically, we first train a translation model with ESRL,
and then use the trained model to perform GOLD-s pro-
cedure. The experimental results show that the combined
method can achieve superior performance.

Balancing Exploration and Exploitation Balancing ex-
ploration and exploitation has been proven to improve RL in
the planning problem (Tokic 2010; Sutton and Barto 2018;
Jiang and Lu 2020). Here, we aim to illustrate that our ESRL
method can outperform all baseline approaches by effec-
tively achieving a balance between exploration and exploita-
tion, resulting in enhanced performance. When the model
has a strong capacity and obtains high deterministic rewards,
our ESRL exploits and reduces exploration as much as pos-
sible, i.e., reducing the size and temperature of sampling.
This allows the model to make full use of the current learned
knowledge for decision-making and optimization. Instead,
when the model has a weak capacity, ESRL increases the
size and temperature of sampling to enhance exploration,
which gathers more possible generated sequences to opti-
mize the model. Thus, compared to baselines, using dynamic
sampling approach enables ESRL to balance exploration and
exploitation well and achieve better performance.

Conclusion

In this paper, we focus on reducing the computational cost
of RL training in sequence generation models. We have pro-
posed an efficient sampling-based RL method (referred to as
ESRL) via two-stage sampling and dynamic sampling ap-
proaches. Our extensive experiments show that our ESRL
significantly outperforms all baselines in terms of both train-
ing efficiency and generation quality.
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