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Abstract

As an indispensable ingredient of intelligence, common-
sense reasoning is crucial for large language models (LLMs)
in real-world scenarios. In this paper, we propose CORE-
CODE, a dataset that contains abundant commonsense
knowledge manually annotated on dyadic dialogues, to eval-
uate the commonsense reasoning and commonsense conflict
detection capabilities of Chinese LLMs. We categorize com-
monsense knowledge in everyday conversations into three
dimensions: entity, event, and social interaction. For easy
and consistent annotation, we standardize the form of com-
monsense knowledge annotation in open-domain dialogues
as “domain: slot = value”. A total of 9 domains and 37
slots are defined to capture diverse commonsense knowl-
edge. With these pre-defined domains and slots, we collect
76,787 commonsense knowledge annotations from 19,700
dialogues through crowdsourcing. To evaluate and enhance
the commonsense reasoning capability for LLMs on the cu-
rated dataset, we establish a series of dialogue-level reason-
ing and detection tasks, including commonsense knowledge
filling, commonsense knowledge generation, commonsense
conflict phrase detection, domain identification, slot identi-
fication, and event causal inference. A wide variety of ex-
isting open-source Chinese LLMs are evaluated with these
tasks on our dataset. Experimental results demonstrate that
these models are not competent to predict CORECODE’s
plentiful reasoning content, and even ChatGPT could only
achieve 0.275 and 0.084 accuracy on the domain identifi-
cation and slot identification tasks under the zero-shot set-
ting. We release the data and codes of CORECODE at
https://github.com/danshi777/CORECODE to promote com-
monsense reasoning evaluation and study of LLMs in the
context of daily conversations.

Introduction
Commonsense reasoning is a crucial component of intelli-
gence(Liu and Singh 2004; Cambria et al. 2011), which in-
volves the ability to make logical deductions, infer implicit
information and apply background knowledge to solve prob-
lems as well as understand the world. In recent years, explor-
ing and improving the ability of NLP models for the acqui-
sition and application of commonsense knowledge has been
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attracting growing interest, leading to extensive research in
this field (Lv et al. 2020; Wang et al. 2020; Liu et al. 2022).

It is widely acknowledged that LLMs, trained on a huge
amount of data, are able to obtain broad knowledge covering
a wide range of domains (Rae et al. 2021; Hoffmann et al.
2022; Touvron et al. 2023; Du et al. 2022a; Guo et al. 2023),
including commonsense knowledge (West et al. 2022; Bian
et al. 2023; Bang et al. 2023). However, commonsense rea-
soning is still regarded as a major challenge for LLMs (Zhou
et al. 2020; Bhargava and Ng 2022). Studies disclose that
LLMs fall short in performing adequate commonsense rea-
soning (Wei et al. 2022). For example, ChatGPT1 does not
precisely know what the needed commonsense knowledge
for answering a specific question is (e.g., questions in social
and temporal domains) (Bian et al. 2023).

To mitigate this issue, we propose CORECODE
(Commonsense Reasoning and Conflict Detection in di-
alogues), a dataset that contains abundant commonsense
knowledge manually annotated on Chinese dyadic dia-
logues, to assess how much commonsense knowledge the
LLMs have gained and how well they can be improved in
commonsense reasoning and conflict detection with the an-
notated knowledge in CORECODE.

Specifically, we focus on annotating fine-grained com-
monsense knowledge in multi-turn dyadic dialogues. The
knowledge annotated in a dialogue is context-sensitive and
grounded exclusively in that particular dialogue. Inspired by
the annotation convention used in task-oriented dialogue,
in which dialogue states are denoted in the form of “do-
main: slot = value”, e.g. “hotel: price range = moderate”
(Budzianowski et al. 2018; Zhu et al. 2020; Quan et al.
2020), we standardize the representation of commonsense
knowledge in open-domain dialogues also in the form of
“domain: slot = value”. We categorize commonsense knowl-
edge into three dimensions, namely entity, event, and so-
cial interaction, and then construct an ontology over these
dimensions, which defines all possible domains for each
dimension and all possible slots for each domain. Thanks
to the guidance of this ontology, crowdsourcing annotators
are able to conveniently annotate fine-grained commonsense
knowledge in a consistent way.

Over the curated dataset, we develop six benchmark tasks:

1https://openai.com/blog/chatgpt
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commonsense knowledge filling, commonsense knowledge
generation, commonsense conflict phrase detection, domain
identification, slot identification and event causal inference.
These tasks, organized in different forms (e.g., multiple-
choice, span extraction, and text generation), facilitate the
evaluation and enhancement of commonsense reasoning in
LLMs.

We conduct numerous experiments on CORECODE, at-
tempting to explore two main research questions: (1) Can
LLMs master and apply commonsense knowledge well
enough to achieve good performance on these tasks? (2)
How much further improvements can be obtained by LLMs
if they are fine-tuned on CORECODE? Extensive experi-
ments demonstrate that our benchmark tasks are challenging
for existing Chinese LLMs, as all evaluated LLMs perform
poorly on most tasks. We also show that although the perfor-
mance of LLMs improves after being fine-tuned on CORE-
CODE, they fail to obtain robust commonsense reasoning
ability. When perturbations are introduced, the fine-tuning
performance has significantly dropped.

Related Work
A variety of datasets and benchmarks focusing on different
aspects of commonsense knowledge over textual inputs have
been proposed, including science common sense datasets
ARC (Clark et al. 2018) and QASC (Khot et al. 2020),
temporal common sense dataset MC-TACO (Zhou et al.
2019), numerical common sense dataset NumerSense (Lin
et al. 2020), physical common sense dataset PIQA (Bisk
et al. 2020), social common sense dataset Social IQA (Sap
et al. 2019b) and general common sense datasets Common-
senseQA (Talmor et al. 2019), OpenBookQA (Mihaylov
et al. 2018), and WSC (Levesque, Davis, and Morgenstern
2012). These datasets only examine the model’s knowledge
and ability in a certain commonsense aspect in the form of
multiple-choice questions.

Meanwhile, there have also been many studies devoted
to annotating commonsense knowledge within dialogues.
ATOMIC (Sap et al. 2019a; Hwang et al. 2021) is one such
dataset that consists of a large set of inference types. How-
ever, ATOMIC is context-insensitive, as its commonsense
reasoning operates on phrases taken out of context, disre-
garding whether an event is performed by the same indi-
vidual. TIMEDIAL (Qin et al. 2021) focuses on the time
reasoning ability of language models in dialogues, while
CICERO (Ghosal et al. 2022) provides cause, subsequent
events, prerequisites, motivations, and emotional reactions
for utterances in dialogues, focusing on these five event-
related reasoning types. Both datasets cover only a spe-
cific aspect of commonsense knowledge. CIDER (Ghosal
et al. 2021) extracts knowledge in dialogues into knowledge
triplets, which covers fewer commonsense knowledge types
than us. For example, subsequent event, subsequent emo-
tional reaction, frequency are beyond the scope of CIDER.

To the best of our knowledge, CORECODE is the first
large-scale Chinese dialogue-oriented commonsense knowl-
edge annotation dataset involving comprehensive common-
sense knowledge in three dimensions: entity, event, and so-
cial interaction, covering a large number of perspectives

such as attributes, time, space, and causality. Yet another fea-
ture that must be emphasized is that within CORECODE,
we manually provide phrases corresponding to the phrases
in an original dialogue, which are against common sense in
that context. This aims to probe the model’s capacity to de-
tect and locate such phrases that are inconsistent with the
context in terms of commonsense reasoning.

Dataset Creation
The raw data of CORECODE is derived from NaturalConv
(Wang et al. 2021) and DuLeMon (Xu et al. 2022) datasets,
both of which contain multi-turn dialogues between two
people. Dialogues in NaturalConv involve a variety of top-
ics (including but not limited to sports, entertainment, and
technology). We first take an automatic screening method to
identify dialogues that are rich in commonsense knowledge,
following Zhou et al. (2021).

Specifically, we first identify candidate concepts (nouns,
verbs, adjectives) in each dialogue turn using part-of-speech
tagging. We then query the ConceptNet using the identified
concepts in each utterance to obtain a list of one-hop com-
monsense triples in the form of (e1, r, e2). Next, we examine
if the entity e2 from the triple appears in the concept set of
the succeeding utterance. If there is a match, it indicates a
potential commonsense link between the two utterances.

Unlike Zhou et al. (2021) who retain dialogues with only
one commonsense triple match, we employ a stricter crite-
rion by retaining dialogues where more than three common-
sense triple matches are detected. This ensures that the kept
dialogues possess a substantial amount of commonsense rea-
soning. The statistics of the screening results on Natural-
Conv and DuLeMon are shown in our arXiv version2.

Moreover, to differentiate between the two sides of the
conversation, we employ the notation “A: ” or “B: ” preced-
ing each utterance to denote the respective speaker.

Data Annotation
Over the selected dialogues, we perform commonsense
knowledge annotation. To guarantee the consistency of an-
notations across multiple crowd-sourced workers, we adopt
a standardized annotation procedure.

We categorize commonsense knowledge in everyday con-
versations into three dimensions: entity, event, and social
interaction. Crowd-sourced workers first need to identify
specific instances under these three dimensions from dia-
logues. Then, with the assistance of linguists, we divide each
of these three dimensions into multiple domains to which
their commonsense knowledge belongs, and define differ-
ent slots for each domain, forming a two-level hierarchi-
cal taxonomy. Such design is guided by three fundamen-
tal principles: coverage, exclusivity, and easiness. The cov-
erage rule ensures that the commonsense knowledge sys-
tem encompasses nearly all conceivable types of common-
sense knowledge in dialogues. Exclusivity mandates that
each commonsense knowledge type remains distinct, devoid
of any overlap with other types. Lastly, the easiness prin-
ciple indicates that the commonsense knowledge system is

2https://arxiv.org/abs/2312.12853

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18953



straightforward for annotators to employ. With this conven-
tion, crowd-sourced workers are instructed to annotate the
identified instances with commonsense knowledge in the
form of “domain: slot = value”. In addition to such annota-
tions, they are also required to provide phrases that, in terms
of common sense, conflict with the original textual context.
Below, we describe each step in detail.

Entity, Event, Social Interaction Recognition. The first
step of the annotation process is to identify specific instances
of entity, event, and social interaction that exist in dialogues,
according to the following definitions.

• Entities refer to objectively existing and distinguishable
physical objects in the real world, either representing
a general category of people or things, such as “cats”,
“movies”, or referring to specific individuals or objects,
such as “Yao Ming”, “Wolf Warrior”, etc.

• Events are typically text spans in the form of “subject
+ predicate” or “subject + predicate + object”. They are
fine-grained semantic units that describe the state of en-
tities and their actions (Zhou et al. 2022). For example,
“He looks very excited” describes the state of the sub-
ject, and “He broke his toy” illustrates an action where
the subject interacts with the object.

• Social interactions refer to the set of rules and guide-
lines that constrain people’s behavior when interacting
with others. They encompass a collection of social norms
and customs that people are expected to adhere to (Bian
et al. 2023). For instance, “It is customary to knock on
the door before entering someone else’s room”.

Annotation of Involved Commonsense Knowledge. Un-
der each of the three dimensions, we define domains and
slots. For entities, we divide the relevant commonsense
knowledge into three corresponding domains: attribute,
comparison, and space. These domains capture specific
properties of the object itself, relationships between the ob-
ject and other objects, and relationships between the ob-
ject and the spatial environment in which it is located, re-
spectively. Under each domain, there are further divisions
into different slots. For example, under the attribute domain,
there are slots “Is”, “Is A”, “Has”, “Is Made Of”, and so
on. For events, relevant commonsense knowledge includes
the prerequisite, cause, and consequence of an event, as well
as the temporal and spatial factors associated with the event.
For social interactions, we focus on the social norms that hu-
mans follow. Instead of subdividing into multiple domains,
we divide seven slots under the social norms domain. There
are 9 domains and 37 slots included in the three dimensions
in total. The full inventory of all domains and slots can be
found in our arXiv version.

The second step of the annotation process is to label each
entity, event or social interaction instance with its common-
sense knowledge in the form of “domain: slot = value”. The
annotated “value” need not necessarily be an exact span ex-
tracted from the original dialogue, but can be a grammat-
ically correct and semantically fluent clause summarized
from the dialogue, ensuring that the event and its “domain:
slot = value” in isolation is informationally complete and

logically consistent. It has been emphasized to annotators
that for the “event cause” slot in the “cause” domain and the
“subsequent event” slot in the “consequence” domain, an-
notations should take the form of an event, i.e., either in the
structure of “subject + predicate” or “subject + predicate +
object”. In addition, the annotators need to indicate which
phrases or clauses in the original dialogue led to the identi-
fication of this commonsense knowledge, so as to provide a
basis for the next step.

Rewriting of Commonsense Conflict Phrases. Finally,
for each set of phrases from the original dialogue indicated
in the previous step, annotators are required to choose one
phrase and provide it with the following two commonsense
conflict phrases:

(1) Commonsense Conflict Phrase 1: This phrase should
be obtained by conforming to the minimal modification prin-
ciple, i.e., modifying only one or two words in the original
phrase. There should be a commonsense conflict or error af-
ter using this phrase to replace the original phrase in the di-
alogue.

(2) Commonsense Conflict Phrase 2: This phrase should
be created by modifying as many words as possible in the
original phrase in compliance with the maximum modifica-
tion principle. When constructing this phrase, annotators can
include words that appear in the dialogue to maintain con-
sistency with the dialogue’s context. However, it is crucial to
ensure as much as possible that the meaning of this phrase
differs from the Commonsense Conflict Phrase 1.

The purpose of this annotation step is to explore whether
LLMs are able to detect the location of phrases that con-
flict with the dialogue context in terms of common sense.
Therefore, annotators must ensure that after replacing the
original phrase in the dialogue with the annotated conflict
phrase, there should be only a commonsense error while the
dialogue maintains grammatically correct and fluent.

To comprehensively evaluate the commonsense reasoning
ability of LLMs, we propose two distinct annotated subsets
with varying difficulty levels. During the annotation proce-
dure on 9.7K dialogues, we represent the subject and object
of events using the speaker indicators “A” or “B” from the
dialogue and group these annotated instances as an EASY
set. A HARD set is annotated on another 10K dialogues,
where “x” is uniformly employed to denote the subject of
all events, while “y” is used to represent the predicate of all
events, regardless of the dialogue participant to whom the
event pertains. Significant challenges in reasoning through
events are provided in the HARD set, as LLMs are required
to first deduce and locate the event initiator before reason-
ing.

Annotation Quality Control
In order to standardize the annotation form and control
the quality of common sense annotations, we design and
develop a knowledge acquisition platform where crowd-
sourced workers need to properly click on the appropriate
buttons and fill in the corresponding values given the dia-
logue history.

We adopt a very strict quality control protocol to ensure
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the quality of annotations. First, we train two reviewers with
200 dialogues. The annotation consistency of the two re-
viewers is high, with an average Cohen’s Kappa (McHugh
2012) of 80.7% across the annotation tasks. We only hire
annotators who have relevant experience in text annotation,
e.g., those who have participated in annotation tasks such as
Chinese multi-turn dialogue writing and correction, entity
extraction or syntactic structure annotation in Chinese texts.

Second, 200 candidate workers participate in a pre-
annotation stage. They adhere to the prescribed rules to an-
notate dialogues. The two reviewers will review annotations
of these participants to distinguish whether the annotations
meet the requirements. The process has an elimination rate
of roughly 80%, with 43 labelers passing this stage.

Third, we proceed to the training phase. We divided the
participants into groups of 5 people each. We train 1-2 qual-
ity inspectors within each group, who in turn are responsible
for the instruction of the annotators. During this progression,
quality inspectors evaluate the rule comprehension and error
correction capabilities of the annotators. Those who do not
meet the criteria are subjected to further training or elimi-
nated from the process.

At last, 6 quality inspectors with an average Cohen’s
Kappa of 59.4%, as well as 15 annotators, proceed to the
formal annotation stage. We take iterative verification and
revision during this stage. Any data deemed unsatisfactory
will be returned for revision until they are qualified.

Overall Statistics
The overall statistics of the annotated dataset are shown in
Table 1. After annotating on 19.7K dialogues, we obtained
76,787 annotations, each comprising the original dialogue,
an entity/event/social interaction instance, a commonsense
knowledge represented by a domain-slot-value triplet, the
involved phrase from the original dialogue, and two com-
monsense knowledge conflict phrases. The average number
of turns and tokens per dialogue is 19.40 and 501.58, in-
dicating that the annotated dialogues are lengthy and infor-
mative. The social interaction dimension’s knowledge pri-
marily serves to constrain behavior but is seldom mentioned
in dialogues, resulting in limited annotated commonsense
knowledge for this dimension. The annotations for entity,
event, and social interaction dimensions constitute 58.42%,
41.54%, and 0.03% of the overall annotations, respectively.

Benchmark Tasks
We use our dataset as a testbed and define 6 tasks in different
forms, attempting to evaluate dialogue-level commonsense
reasoning capabilities of Chinese LLMs. For each task, we
provide both its definition and associated prompt that is con-
structed to allow LLMs to complete the task in the continu-
ation to the prompt.

Commonsense Knowledge Filling
Task definition. This task is to fill desirable commonsense
knowledge into a masked dialogue where a commonsense
phrase is replaced with [MASK]. In order to automatically
assess the performance of the task, we formulate the task in
the form of multiple-choice questions.

HARD EASY Total
# dialogues 10,000 9,700 19,700
Max. turns per dialogue 26 26 26
Min. turns per dialogue 14 16 15
Avg. turns per dialogue 18.69 20.10 19.40
Max. # tokens per dialogue 1,002 953 977.5
Min. # tokens per dialogue 194 231 212.5
Avg. # tokens per dialogue 464.18 538.98 501.58
Avg. # tokens per turn 24.83 26.81 25.82

# annotated instances 37,777 39,010 76,787
# annotated entities 21,320 23,541 44,861
# annotated events 16,439 15,461 31,900
# annotated social interactions 18 8 26

# domain-slot-value triplets 37,777 39,010 76,787
# commonsense conflict phrases 75,554 78,020 153,574

Table 1: Overall statistics of the CORECODE dataset.

Prompt. The input prompt to LLMs for this task con-
sists of the question, masked dialogue, answer choices, and
suffix: question \n masked dialogue \n (a) phrase1 (b)
phrase2 (c) phrase3 \n “answer: the correct option is”. The
three phrases are the corresponding masked commonsense
phrase and two manually composed commonsense conflict
phrases. See our arXiv version for examples of all tasks.

Commonsense Knowledge Generation
Task definition. We frame this task as a generative task
that takes the annotated commonsense knowledge values as
ground truth and asks LLMs to generate the values accord-
ing to the dialogue context.

Prompt. The input prompt is formatted as: dialogue \n
question \n “answer:”, where the question is formed by the
entity/event/social interaction and its annotated slot through
a predefined template and some explanatory text.

Commonsense Conflict Phrase Detection
Task definition. We define this task as a span extraction
task. We replace the corresponding phrases in the original
dialogue with the annotated commonsense conflict phrases,
and ask LLMs to extract the commonsense conflict phrases.

Prompt. The prompt format is: dialogue with replaced
commonsense conflict phrase \n question \n “answer:”.

Domain Identification
Task definition. This task is also defined as a multiple-
choice-question task. Take the entity dimension as an exam-
ple, LLMs are required to select the domain to which the
relationship between an entity and its annotated value be-
longs, based on the given dialogue context. Since the social
interaction dimension includes a single domain, this task is
performed on the entity and event dimensions.

Prompt. The prompt is formatted like: question \n entity
or event \n annotated value \n dialogue \n (a) domain1 (b)
domain2 · · · (x) domainn \n “answer: the correct domain
is”.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18955



Slot Identification
Task definition. This task is similar to the Domain Iden-
tification task but involves selecting from more fine-grained
slot options and is performed across all three dimensions.

Prompt. The input prompt is in the form of: question \n
entity/event/social interaction \n annotated value \n dia-
logue \n (a) slot1 (b) slot2 · · · (x) slotn \n “answer: the
correct option is”.

Event Causal Inference
Causal inference is one of the crucial reasoning abilities of
human intelligence, which involves establishing the correct
cause-and-consequence relationships between events. These
relationships are captured in the “cause: event cause” slot
and the “consequence: subsequent event” slot of our taxon-
omy. We specially design three generative event causal in-
ference tasks that utilize the annotated knowledge involved
in these two slots.

• Subtask 1: Event Cause Inference. Given the dialogue
and event, LLMs are required to generate the cause of the
event.

• Subtask 2: Subsequent Event Inference. Given the di-
alogue and event, the consequence of the event is gener-
ated by LLMs.

• Subtask 3: Clipped Subsequent Event Inference.
Given the event and the truncated dialogue where the
context succeeding the event is discarded, we require
LLMs to generate the consequence of the event.

Experiments
Evaluated LLMs
We evaluated a diverse list of Chinese LLMs that cover
a variety of training processes and scales3: (1) LLMs
only being pre-trained on large-scale training corpora, in-
cluding GLM-10B (Du et al. 2022b) and BLOOM-7.1B
(Scao et al. 2022), (2) LLMs being both pre-trained and
instruction-tuned, including ChatGLM-6B4, ChatGLM2-
6B5, MOSS-SFT-16B6, Baichuan-7B7, BLOOMZ-1.7B,
BLOOMZ-7.1B, BLOOMZ-7.1B-MT (Muennighoff et al.
2022), and BELLE-7B, which is the SFT version based on
BLOOMZ-7.1B-MT. We used two variants of BELLE fined-
tuned on 200K and 2M instructions separately, i.e., BELLE-
7B-0.2M8 and BELLE-7B-2M9. We also evaluated two
variants Chinese-Alpaca-Plus-7B and Chinese-Alpaca-Plus-
13B of Chinese-Alpaca-Plus (Cui, Yang, and Yao 2023). We
experimented on the recommended hyperparameter settings

3All the experiments in the main paper were conducted on the
HARD set. Experimental results on the EASY set are available in
our arXiv version.

4https://github.com/THUDM/ChatGLM-6B
5https://github.com/THUDM/ChatGLM2-6B
6https://huggingface.co/fnlp/moss-moon-003-sft
7https://github.com/baichuan-inc/baichuan-7B
8https://huggingface.co/BelleGroup/BELLE-7B-0.2M
9https://huggingface.co/BelleGroup/BELLE-7B-2M

of all LLMs. We also evaluated ChatGPT (i.e., GPT-3.5-
turbo) from OpenAI as a reference.

Furthermore, to explore the impact of in-context learn-
ing (ICL) on model performance, we also carried out exper-
iments on ChatGLM-6B under the few-shot settings, includ-
ing 1-shot, 3-shot and 5-shot settings.

Evaluation Metrics
For the commonsense knowledge filling, domain identifica-
tion and slot identification tasks (we refer these three tasks
to the selection tasks), we used the accuracy of selecting the
correct answer as the evaluation metric. During inference,
we have found that even if we explicitly state in the prompt
that models should output only the answer option indicator
(i.e. a, b, c, etc.), not all models follow this instruction. There
is no uniformity in the form of answers generated by each
model. Moreover, sometimes models output answers with
rationales attached. In order to avoid the underestimation of
the model performance due to the varying output formats,
we adopted a series of filtering measures to find the correct
answer in the output as much as possible. For example, in
the case where the ground-truth is “(a) premise”, the gener-
ated answers “a”, “A”, “(a)”, “(A)”, “a)”, “A)”, “(a)premise”,
“(a) premise”, “premise” are all counted as correct.

For the span extraction task, i.e., the commonsense con-
flict phrase detection task, we used F1 and EM scores calcu-
lated by comparing model outputs to ground-truth answers.

For the two generation tasks, namely the commonsense
knowledge generation task and the event causal inference
task, we evaluated LLMs with F1 and EM scores together
with reference based metrics: BLEU, METEOR, ROUGE
and CIDEr.

Performance of LLMs without Fine-tuning
We report the performance of the selection tasks in Table 3,
and the performance of the generation and span extraction
tasks in Table 2. We can see that CoRECODE is a very chal-
lenging benchmark for all evaluated LLMs.

From Table 3, we observe that models which are
instruction-tuned with SFT significantly outperform models
being only pre-trained. The best-performing models across
the three tasks are ChatGLM2-6B, BLOOMZ-7.1B, and
Chinese-Alpaca-Plus-13B, respectively. Notably, on the slot
identification task, Chinese-Alpaca-Plus-13B achieves an
outstanding and unparalleled score.

On the commonsense knowledge generation task,
BLOOMZ family achieves very high scores, as shown in
Table 2. After checking the outputs of each model, we have
found that models like ChatGLM and BELLE usually gen-
erate leading sentences or explanatory reasons in their re-
sponses, despite our prompt explicitly instructing them not
to do so. In contrast, BLOOMZ-1.7B and BLOOMz-7.1B
typically generate relatively short phrases as answers, which
is consistent with the form of our annotations. They hence
achieve higher scores than other evaluated LLMs.

To exclude the effect of answer form and answer length
on the performance, we handed over the outputs of evalu-
ated LLMs to ChatGPT for scoring, the average results of
which are also reported in Table 2. We described the task
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Model
Commonsense Knowledge Generation CCPD

F1 EM BLEU1 BLEU2 METEOR ROUGE-L CIDEr ChatGPT Score F1 EM

GLM-10B 0.023 0.000 0.000 0.000 0.032 0.000 0.001 3.190 0.011 0.000
BLOOM-7.1B 0.071 0.000 0.017 0.000 0.115 0.004 0.017 3.455 0.024 0.000

ChatGLM2-6B 0.160 0.004 0.001 0.000 0.145 0.001 0.002 3.940 0.029 0.001
BELLE-7B-0.2M 0.090 0.019 0.015 0.000 0.105 0.010 0.041 3.265 0.024 0.000
BELLE-7B-2M 0.111 0.008 0.004 0.000 0.140 0.003 0.010 3.555 0.007 0.000
BLOOMZ-1.7B 0.388 0.234 0.234 0.000 0.164 0.234 0.585 4.060 0.004 0.000
BLOOMZ-7.1B 0.438 0.284 0.282 0.000 0.199 0.283 0.707 3.980 0.041 0.003
BLOOMZ-7.1B-MT 0.435 0.300 0.300 0.000 0.184 0.300 0.750 4.030 0.047 0.010
MOSS-SFT-16B 0.199 0.071 0.066 0.000 0.147 0.049 0.174 3.780 0.038 0.001
Baichuan-7B 0.071 0.000 0.000 0.000 0.072 0.000 0.001 3.445 0.002 0.000
Chinese-Alpaca-Plus-7B 0.129 0.015 0.014 0.000 0.099 0.015 0.039 3.375 0.021 0.000
Chinese-Alpaca-Plus-13B 0.133 0.021 0.018 0.000 0.104 0.020 0.051 3.490 0.021 0.000

ChatGLM-6B 0.147 0.000 0.000 0.000 0.166 0.000 0.000 3.745 0.044 0.001
ChatGLM-6B 1-shot 0.202 0.061 0.035 0.000 0.154 0.048 0.120 3.770 0.038 0.002
ChatGLM-6B 3-shot 0.274 0.115 0.091 0.000 0.175 0.111 0.277 3.885 0.060 0.006
ChatGLM-6B 5-shot 0.215 0.097 0.095 0.000 0.147 0.096 0.240 3.685 0.052 0.007

ChatGPT 0.296 0.071 0.044 0.000 0.258 0.045 0.111 - 0.104 0.021

Table 2: Overall performance of evaluated LLMs on the commonsense knowledge generation and commonsense conflict phrase
detection task. CCPD: Commonsense Conflict Phrase Detection.

Model CKF DI SI

GLM-10B 0.157 0.060 0.051
BLOOM-7.1B 0.329 0.108 0.039

ChatGLM-6B 0.788 0.246 0.113
ChatGLM2-6B 0.818 0.286 0.153
BELLE-7B-0.2M 0.392 0.208 0.212
BELLE-7B-2M 0.599 0.169 0.109
BLOOMZ-1.7B 0.709 0.248 0.044
BLOOMZ-7.1B 0.758 0.444 0.165
BLOOMZ-7.1B-MT 0.695 0.341 0.168
MOSS-SFT-16B 0.445 0.353 0.110
Baichuan-7B 0.416 0.071 0.055
Chinese-Alpaca-Plus-7B 0.584 0.385 0.060
Chinese-Alpaca-Plus-13B 0.510 0.126 0.449

ChatGPT 0.896 0.275 0.084

Table 3: Overall performance of evaluated LLMs on the
three selection tasks. CKF: Commonsense Knowledge Fill-
ing. DI: Domain Identification. SI: Slot Identification.

to ChatGPT and asked it to score the answers according to
our pre-defined scoring criteria (see in our arXiv version).
The average scores obtained by these models vary from 3 to
5. According to our criteria, this suggests that the answers
generated by LLMs are more likely to be “answers that fit
the context of the dialogue but are not a specific answer to
the question” or “answers that are semantically inconsistent
with the ground-truth answer but are also correct”.

Table 2 also indicates improved model performance under
the few-shot settings. However, the performance under the
5-shot setting is worse than that under the 3-shot setting.
This might be due to the long length of our dialogues (as
shown in Table 1, the average number of tokens per dialogue
is 501). The excessive length of model inputs under the 5-
shot setting might lead to a decline in performance.

Figure 1: Performance of fine-tuned LLMs on the com-
monsense knowledge generation and commonsense conflict
phrase detection task. The horizontal lines show the perfor-
mance of LLMs without fine-tuning.

Performance of LLMs Being Fine-tuned
We further evaluated LLMs after they were fine-tuned on
CORECODE. Specifically, we fine-tuned BLOOM-7.1B
and ChatGLM-6B on 2K, 4K, 6K, 8K, and 10K examples
respectively in the LoRA (Hu et al. 2022) manner, and tested
these fine-tuned models on another 2K data.

Results on the commonsense knowledge generation and
commonsense conflict phrase detection tasks are shown in
Figure 1. Fine-tuning on different sizes of data results in
large performance gains for both models. On the common-
sense conflict phrase detection task, the F1 score rises as
the size of training data increases. In contrast, on the com-
monsense knowledge generation task, the performance rises
first and then falls as the number of training instances in-
creases, indicating that approximately 4K training instances
are sufficient for this task. Training with the same amount of
training data for the same epochs on both tasks brings more
performance gains for BLOOM-7.1B than for ChatGLM-
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Figure 2: Results of fine-tuned LLMs on the three selection tasks. The horizontal lines show the performance of LLMs without
fine-tuning.

Figure 3: Results of fine-tuned LLMs on the perturbed test sets of the three selection tasks, by option re-indicating (Opt. Rei.),
option shuffling (Opt. Shu.) and both.

6B. The reason could be that it is easier for BLOOM-7.1B
without SFT to acquire such knowledge than ChatGLM-6B
with SFT. For the three selection tasks, as shown in Figure
2, there is a positive correlation between model performance
and training data size on most tasks. Both models obtain a
substantial improvement after fine-tuning.

Robustness Analysis
Although fine-tuning on CORECODE significantly im-
proves LLMs in commonsense reasoning, is the common-
sense reasoning ability that LLMs obtained through fine-
tuning robust? To investigate this question, we conducted
three robustness tests on the three selection tasks: (1) option
re-indicating, (2) option shuffling, and (3) both. For (1) op-
tion re-indicating, we change the option indicators from a,
b, c to 1, 2, 3 in the process of forming the prompt. For (2)
option shuffling, we shuffle the candidate options and then
re-form the input prompt. For (3) both, we implement both
option re-indicating and option shuffling.

Results in Figure 3 indicate decreased accuracy for both
models. Generally, the two LLMs are especially sensitive to
option re-indicating, demonstrating larger drops. However,
they are more robust to option shuffling, maintaining rela-
tively higher accuracy. The largest performance degradation
occurs when both perturbations are executed.

Perturbation causes a dramatic drop to BLOOM-7.1B. In
fine-tuning LLMs on CORECODE, we use option indica-
tors, e.g., “b”, as labels to be learned/predicted. ChatGLM-

6B with SFT is better capable of understanding and fol-
lowing instructions than BLOOM-7.1B. It can align indica-
tors to the corresponding answer options during training and
combine them with task instructions to master the involved
commonsense reasoning ability. BLOOM-7.1B, however,
prefers to learn to answer by memorizing the corresponding
input-label mappings and struggles to answer correctly after
re-indicating and shuffling options. For instance, on the slot
identification task, our training data has a large number of
examples with the label “b”. BLOOM-7.1B seems to learn
such a shortcut incorrectly (i.e., mapping questions to la-
bel “b”). After shuffling answer options (the correct answer
indicators are now mostly not “b”), the model still outputs
plenty of “b”, resulting in very low accuracies.

Conclusion
In this paper, we have presented CORECODE, a large-scale
commonsense knowledge annotated dialogue dataset with
over 76K annotations, and defined 6 benchmark tasks in the
form of selection, extraction and generation, to assess the
capability of LLMs in learning and applying commonsense
knowledge. A diverse list of Chinese LLMs have been eval-
uated, which achieve poor performance on all tasks, demon-
strating the difficulty and utility of the proposed dataset. We
have further revealed the robustness issue of LLM common-
sense knowledge acquisition via fine-tuning. We hope this
work could be used to track and facilitate future advances in
context-sensitive LLM commonsense reasoning.
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D.; Castagné, R.; Luccioni, A. S.; Yvon, F.; and Gallé, M.
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