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Abstract
Large language models (LLMs) have demonstrated impres-
sive proficiency in information retrieval, while they are prone
to generating incorrect responses that conflict with reality,
a phenomenon known as intrinsic hallucination. The critical
challenge lies in the unclear and unreliable fact distribution
within LLMs trained on vast amounts of data. The preva-
lent approach frames the factual detection task as a question-
answering paradigm, where the LLMs are asked about fac-
tual knowledge and examined for correctness. However, ex-
isting studies primarily focused on deriving test cases only
from several specific domains, such as movies and sports,
limiting the comprehensive observation of missing knowl-
edge and the analysis of unexpected hallucinations. To ad-
dress this issue, we propose OntoFact, an adaptive framework
for detecting unknown facts of LLMs, devoted to mining the
ontology-level skeleton of the missing knowledge. Specifi-
cally, we argue that LLMs could expose the ontology-based
similarity among missing facts and introduce five represen-
tative knowledge graphs (KGs) as benchmarks. We further
devise a sophisticated ontology-driven reinforcement learn-
ing (ORL) mechanism to produce error-prone test cases with
specific entities and relations automatically. The ORL mecha-
nism rewards the KGs for navigating toward a feasible direc-
tion for unveiling factual errors. Moreover, empirical efforts
demonstrate that dominant LLMs are biased towards answer-
ing Yes rather than No, regardless of whether this knowl-
edge is included. To mitigate the overconfidence of LLMs,
we leverage a hallucination-free detection (HFD) strategy to
tackle unfair comparisons between baselines, thereby boost-
ing the result robustness. Experimental results on 5 datasets,
using 32 representative LLMs, reveal a general lack of fact in
current LLMs. Notably, ChatGPT exhibits fact error rates of
51.6% on DBpedia and 64.7% on YAGO, respectively. Addi-
tionally, the ORL mechanism demonstrates promising error
prediction scores, with F1 scores ranging from 70% to 90%
across most LLMs. Compared to the exhaustive testing, ORL
achieves an average recall of 80% while reducing evaluation
time by 35.29% to 63.12%.

*These authors contributed equally.
†Corresponding authors.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Introduction
Large language models (LLMs) have proven remarkable
effectiveness across various NLP tasks (Bubeck et al.
2023; Li, Wang, and Ke 2023). These models, trained on
massive corpora, encode world knowledge within enor-
mous parameters, making them adaptable to knowledge-
intensive tasks (Liévin, Hother, and Winther 2022; Sing-
hal et al. 2023). However, LLMs often lack factual accu-
racy, which is crucial for applications where credibility is
paramount (Maynez et al. 2020; Kang and Hashimoto 2020).
Understanding the factual distribution of LLMs is therefore
practical for analyzing and enhancing their veracity.

Existing studies typically approach the factuality detec-
tion task in the question-answering paradigm, which can
be grouped into two families: text-driven methods and KG-
driven methods, depending on the derivation of test cases.
Text-driven methods utilize natural language text including
news, summaries, or claims, to explore the absent knowl-
edge of LLMs (Honovich et al. 2022; Durmus, He, and Diab
2020; Honovich et al. 2021). However, the high redundancy
of text corpora could lead to wasted fact coverage during
testing. Consider Figure 1, where Text #1 explains a lot but
elaborates on the sole fact that LeBron James is a basketball
player. In contrast, KG-driven methods leverage knowledge
graphs (KGs) to collect test cases by combining instance-
level entities and relations (Pezeshkpour 2023; Kim et al.
2023; Agarwal et al. 2021; Wang, Wang, and Mao 2020;
Pan et al. 2018). By utilizing concise triples, test cases of
KG-driven methods shift to being more orthogonal and con-
centrated. For example in Figure 1, the simple triple (Le-
Bron James, Occupation, Basketball Player) can replace the
lengthy text representation.

In reality, the above two groups of studies only conduct
experiments using small-scale datasets in several typical
domains. Statistically, the coverage of the most extensive
dataset is limited to around 30 commonsense topics, e.g.,
movies and sports (Li et al. 2023). However, neglected
fields, such as biology and plants, which are crucial for
the artificial general intelligence (AGI) ability of LLMs,
have not been adequately addressed (Xiong et al. 2023).
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Figure 1: Comparison of text-driven and KG-driven methods
w.r.t. the test case of Input: Is LeBron James a basketball
player? Output: Yes. The fact skeleton polygon depicts the
level of LLMs’ factuality towards different domains.

Moreover, previous research indicates that approximately
24% of fake information can be found on Facebook, while
YouTube hosts around 27% (Beauvais 2022). Additionally,
the instance-level triples within the knowledge graph
also contain a certain portion of un-facts. For instance,
a manual evaluation of the YAGO knowledge graph reveals
that nearly 5% of the total triples are classified as inac-
curate (Hoffart et al. 2013). Regarding these problematic
datasets as golden benchmarks might further degrade the
evaluation effect.

To address the above concerns, we argue that the absent
facts of LLMs can expose the nature of ontology consis-
tency. By examining the ontology-level structure (Studer,
Benjamins, and Fensel 1998), we can identify triples that
LLMs consider un-factual within KGs, revealing potential
errors in LLMs’ intrinsic hallucination. Typically, in Fig-
ure 1, the two un-factual triples (LeBron James, award, NBA
All-Star Game) and (Dwyane Wade, award, NBA Champi-
ons) hold the same ontology structure (NBA Stars, award,
Champions). Furthermore, utilizing ontology-level triples
as probes can enhance the reliability of test cases. This is
because instance-level triples encapsulated within the same
ontology tend to preserve a substantial proportion of true
facts, despite the presence of occasional falsehoods. In this
paper, we propose OntoFact, a robust ontology-driven fac-
tual detection framework, which shapes the factual detection
task by employing discriminative questions (i.e., with the
answers Yes or No) to LLMs. Specifically, five representa-
tive KGs varying in English and Chinese are first adopted
as benchmarks, involving 364-31,353 ontology-level and
36,250-707,758 instance-level triples. To adaptively produce
error-prone test cases, a sophisticated ontology-driven rein-
forcement learning (ORL) mechanism is devised to inter-
act between the ontology and corresponding instances. Such
ORL mechanism guides the navigation of KGs and incre-
mentally unveils factual errors, assembling un-factual on-
tologies into a fantastic skeleton for analyzing the unex-
pected hallucinations of LLMs. Furthermore, empirical ef-

forts demonstrate LLMs are prone to reply Yes rather than
No. Thus, we introduce a hallucination-free detection (HFD)
strategy to tackle the overconfidence of LLMs and ensure
fair comparisons between baselines.

We evaluate our OntoFact framework with 32 dominant
LLMs, ranging from 1B to 175B parameters. Experimental
results demonstrate the superior effectiveness of our method
in detecting facts, predicting error rates, etc. Overall, ex-
isting LLMs lack factuality, with even the best-performing
ChatGPT exhibiting a high factual error rate of 50.1% and
22.7% in the general and biomedical domains, respectively.
Moreover, the ORL mechanism achieves F1 scores rang-
ing from 70% to 90% in un-fact prediction with 35.29% to
63.12% time-reduction. To sum up, the contributions of this
paper are four-fold:

• We argue that the ontology of KGs can reflect the fact
skeleton of LLMs profoundly, and propose a robust
ontology-driven factual detection framework OntoFact.

• We devise a novel reinforcement learning mechanism
ORL, which can probe the error-prone ontologies and in-
stances in KGs, and produce large-scale test cases.

• We conduct extensive experiments varying in LLMs and
datasets, demonstrating our method’s effectiveness in er-
ror prediction, fact detection, and learning efficacy.

• We open source 5 large-scale and wide-ranging fact-
detection benchmarks to facilitate future research1, and
offer feasible insights to tackle LLMs’ hallucination.

Method
Suppose a specific KG G = {Gf ,Go} is given as the bench-
mark, where Gf = {(hf , rf , tf )} and Go = {(ho, ro, to)}
stand for the instance and ontology sub-graph, while h∼, r∼,
t∼ (∼∈ {f, o}) denote the head, relation, tail of a triple, re-
spectively. The goal of factuality detection is to gather miss-
ing factual triples Tmft ⊆ Gf . Besides, the corresponding
un-fact ontology skeleton Tuos ⊆ Go is also expected.

Figure 2 illustrates OntoFact’s overall architecture. In
the first stage, OntoFact initializes test cases by combin-
ing single instance-level triples. In the second stage, Onto-
Fact leverages the ORL mechanism to wander along KG
towards widely-range ontologies and instances, producing
error-prone test cases adaptively. In the last stage, OntoFact
feeds test cases into the hallucination-free detection module
to obtain unbiased results.

Test Case Initialization
Following the previous study (Qin et al. 2023), the factual-
ity assessment can be performed as discriminative question-
answering (QA), in which the answer falls within {Yes,
No}. Formally, a set of samples can be denoted as S =
{(Q1, R1), (Q2, R2), · · · , (Q|S|, R|S|)}, where Qi and Ri

refer to the ith natural language question and corresponding
golden reference. The fact rate Υ can be calculated by first
feeding Q = {Q1, Q2, · · · , Q|S|} into the LLM to generate

1https://github.com/seukgcode/OntoFact
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Figure 2: Overview of OntoFact, where arrow between stages indicates the data flow from the previous stage to the next one.

answers A = {A1, A2, · · · , A|S|}, and then examining the
consistency between A and R.

Υ(A,R) =

∑|S|
i=1 1[Ai ≡ Ri]

|S|
(1)

where 1[·] denotes the indicator operator.
In our work, the KGs are employed as the factual bench-

marks to generate Q. Regarding the upper region of Stage
#1 in Figure 2, we map each ontology-level triple with
multiple corresponding instance-level triples, to construct
the question templates and initialize the test cases. Based
on this consideration, the ontology-level triples To =
{(Ch, r, Ct)|(h, r, t) ∈ Gf and h ∈ Ch and t ∈ Ct} are
supplemented into the initial ontology sub-graph Go, where
Ch ⊆ {ho}

∣∣|Go|
o=1

, Ct ⊆ {to}
∣∣|Go|
o=1

, and (Ch, r, Ct) denotes
the ontology-level triple corresponded with instance-level
triple (h, r, t). For each (Ch, r, Ct) in To, we first generate
judgemental question templates with the help of ChatGPT as
shown in the bottom region of Stage #1 in Figure 2. Consid-
ering an ontology-level triple (Person, birthP lace, City),
the question template could be Was [Person] born in
[City]?. Then, filling up the above template with corre-
sponding instance triples, e.g. Was LeBron James born in
Akron?, yields initial question set QI .

Test Case Updation
The ORL mechanism (Algorithm 1) is fed into the initial QI ,
in order to produce large-scale test cases QE under ontology
and instance views of KGs. The ontology-view agent guides
the KGs’ macroscopic walking direction, while the instance-
view agent elicits error-proneness triples as the test case. Be-
sides, the instance-view agent offers rewards for ontology-
view agents to help identify un-factual ontologies efficiently.

Instance-View Searching in Discrete Space. Firstly, we
sample ontology-level triples Ts = {(Ch1

, r1, Ct1), · · · ,
(Chm

, rm, Ctm)} from To. Then, for each ontology-level
triple (Ch, r, Ct) ∈ Ts, we randomly sample several corre-
sponding instance-level triples T(Ch,r,Ct) = {(h, r, t)|(h ∈

Ch and t ∈ Ct)}, and regard instance-level traversal pro-
cess as a finite Markov decision process (MDP). At the tth

time-step, the state sIt is updated as embeddings concate-
nation w.r.t. current instance triple (h, r, t) (Lines 1-9 in
Algorithm 1). Such embeddings of concepts C, properties
Ro, entities E, and relations RI are learned by an off-the-
shelf model JOIE (Hao et al. 2019). The instance-view agent
delivers an action aIt = {0, 1} to decide whether the triple
(h, r, t) is chosen as a test case. The policy function can be
formulated as follows:

πθI (a
I
t , s

I
t ) = aIt · fθI (sIt ) + (1− aIt ) · (1− fθI (s

I
t )) (2)

where fθI (·) implemented by a multi-layer perceptron
(MLP) denotes the probability of (h, r, t) selected.

Moreover, two types of rewards, i.e., immediate reward rt
and delayed reward r′, are introduced (Lines 10-15 in Algo-
rithm 1). The immediate reward activates when LLMs’ an-
swer is consistent with outputted action, while the delayed
reward gives feedback after an MDP round. The instance-
view agent aims to maximize the total reward of sampled
triples L(πθ) = Eτ∼T [R(τ)] (Lines 16-17 in Algorithm 1).
Therefore, the instance-view agent can be updated by the
policy gradient algorithm that can be formalized as follows:

∇L(πθI ) = E
τ∼Ts

[∑|τ |
t=1∇θI log πθI (a

I
t , s

I
t )R(τ)

]
≈ 1

|Ts|
∑
τ∼Ts

|τ |∑
t=1

R(τ)∇θI log πθI (a
I
t , s

I
t )

(3)

Ontology-View Searching in Continuous Space. In-
spired by the DDPG algorithm (Lillicrap et al. 2015), we de-
sign an actor-critic network to increase the error-proneness
on LLMs’ traversal of ontology-level triples. Specifically, a
replay buffer Mo of transitions (soT , a

o
T , r

′
T , s

o
T+1) is first

collected, where the T th time state sot is also updated by
embeddings concatenation of current ontology-level triples
(Ch, r, Ct). Then, feeding state soT into novel actor network
µθo(s

o
T ) can produce corresponding actions aoT . Different

from the discrete searching of instance view, ontology-view

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18936



Algorithm 1: Ontology-Driven Reinforcement Learning
Input: Initial questions set QI . The embeddings of entities E, re-

lations RI , concepts C, and properties Ro. LLM, policy net-
work fθI , parameters γ, α, β, threshold c, actor-critic network
µθo ,Qw, µθ̄ ,Qw̄, and sampled ontology-level triples Ts.

Output: Policy network πθI , actor-critic network µθo , Qw, µθ̄ ,
Qw̄.

1: V isit = ∅
2: τ ← Random select ontology-level triple (Ch, r, Ct) from Ts.
3: V isit[0]← τ .
4: Initialize the replay bufferMo = ∅.
5: for i← 0 to |Ts| − 1 do
6: aI [0 : |τ |], A[0 : |τ |], r[0 : |τ |]← 0
7: for j ← 0 to |τ | − 1 do
8: hf , rf , tf ← τ [j].
9: sIj ← [Ehf ;R

I
rf ;Etf ]

10: Obtain current action aI [j] using sIj based on Equ 2.

11: A[j]← LLM(Q
(hf ,rf ,tf )

I )

12: r[j]← 2× (aI [j]⊕A[j])− 1
13: end for
14: errL ← cnt(A[A=0])

|τ | , errA ← cnt(aI [aI=1])
|τ |

15: r′ = (errA − c)sgn(errL − c)

16: R(τ) =
∑|τ |−1

t=0 γtr[t] + αr′

17: Update πθI (·) based on Equ. 3.
18: soi ← [Cτ ;R

o
τ ;Cτ ]

19: ao
i ← µθo(s

o
i )

20: τ, soi+1 ← argmink∈(Ts−V isit) ||ao
i − k||2

21: Mo ←Mo ∪ {(soi , ao
i , r

′, soi+1)}
22: ifMo is full then
23: UpdateQw(·) and µθo(·) based on Equ. 4 and Equ. 6.
24: θ̄ ← βθo + (1− β)θ̄, w̄ ← βw + (1− β)w̄
25: end if
26: V isit[i]← τ
27: end for

RL conducts action in a continuous action space. Since the
embedding of generated action aoT might not be absolutely
equal to existing ontology-level triples, we select the clos-
est one as the next state soT+1. The above process is detailed
in Lines 18-21 of Algorithm 1. To evaluate the effectiveness
of action aoT , we leverage the critic network Qw(s

o
T , a

o
T ) to

output a score q ∈ [0, 1], predicting the LLMs’ un-factuality
proportion on the current ontology-level triple. Such actor
and critic networks are also implemented by the MLP.

Moreover, to stabilize the training process, we design the
target actor and critic network with parameters θ̄ and w̄,
which holds the same architecture as the original actor and
critic network. To optimize the critic network Qw(·), we first
randomly sample M transitions from Mo. Then, the mean
squared error (MSE) loss is minimized, which can be for-
mulated as follows:

L(Qw) =
1

|M |
∑
i

(yi −Qw (soi , a
o
i ))

2 (4)

yi = r′i + γQw̄

(
soi+1, µθ̄

(
soi+1

))
(5)

where γ ∈ [0, 1] is a discount. For the actor network, the
output score of Qw(·) can be regarded as a reward, which
can be maximized to optimize parameters θo as follows:

L(µθo) = max
θo

E
soT∼M

[Qw (soT , µθo (s
o
T ))] (6)

For the target actor and critic network, we use soft parameter
optimization strategy (Line 24 in Algorithm 1). Finally, in-
corporating ontology-view and instance-view agents, ORL
can output potentially un-factual test cases QE . Specifi-
cally, for instance-level triples (h, r, t) under correspond-
ing ontology-level triple (Ch, r, Ct) ∈ To − Ts, those with
the selection probability higher than 0.5 are included, i.e.,
QE = {Q(h,r,t)

I |fθI (sIt (h, r, t)) ≥ 0.5} can be obtained.

Test Case Execution
To alleviate the overconfidence of LLMs, we devise a
hallucination-free detection (HFD) strategy to execute test
cases QE and boost the robustness of LLMs’ yes or no re-
sponse. Especially, take ontology-level triple (Person, birth-
Place, City) and its instance-level triple (LeBron James,
birthPlace, Akron), (Barack, birthPlace, Honolulu) as an ex-
ample (Figure 2 Stage #3), we first construct the simple neg-
ative sample by replacing the tail entity Akron with a mean-
ingless character N/A. If LLMs respond yes, it is clear that
they lack that factual information. If not, we proceed to con-
struct the hard negative sample by replacing tail entity with
Honolulu under the same ontology. If answer is still No, the
original positive triple (LeBron James, birthPlace, Akron) is
adopted. Overall, the output depends on three aspects:

LLM(QE) = 1[s1 ≡ No]∧1[s2 ≡ No]∧1[s3 ≡ Yes] (7)

where 1[·] denotes the indicator operator, ∧ imply the logi-
cal conjunction operator, and s1, s2, and s3 denote LLMs’
answer w.r.t. simple negative, hard negative, and positive
samples, respectively. During the test case execution, LLMs
may generate responses that are not simply Yes or No. In re-
sponse to this situation, a natural language inference (NLI)
model is introduced for auxiliary judgment, converting Yes
or No into entailment or contradiction.

Finally, the missing factual triples set Tmft can be estab-
lished by triples with a finite answer No. Meanwhile, for
each ontology-level triple, we calculate its error rate by the
corresponding instance triple in Tmft and then add those
ontology-level triples with an error rate greater than 50%
to the un-fact ontology skeleton set Tuos.

Experiments
Experimental Setup
In this section, we describe datasets and benchmarks, typical
LLMs, evaluation metrics, and implementation details.

Datasets and Benchmarks. To investigate the LLMs’ fac-
tuality for general knowledge, we employ three large-scale
KGs, where DBpedia (Lehmann et al. 2015) and YAGO
4.5 (Pellissier Tanon, Weikum, and Suchanek 2020) are in
English (ENG) while CN-DBpedia (Xu et al. 2017) is in
Chinese (CNS). Regarding specific domains, we adopt a
bilingual biomedical KG (Yu et al. 2022), i.e., BIOS 2.2
(ENG) and BIOS 2.2 (CHS). Table 1 provides the statistics.

LLMs. For English baselines, we choose 20 LLMs (1B
to 175B parameters) from 7 unique LLMs-families, includ-
ing ChatGPT-175B (Ouyang et al. 2022), LLaMA (Tou-
vron et al. 2023), T0pp (Sanh et al. 2022), OPT (Zhang
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Dataset #Ontologies #Instances
Trip./Conc./Prop. Trip./Ent./Rel.

DBpedia 31,353/405/459 636,532/581,374/459
YAGO 15,876/1,987/51 707,758/622,651/51

CN-DBpedia 16,963/469/657 634,450/725,714/657
BIOS 2.2 (ENG) 430/27/12 42,858/40,561/12
BIOS 2.2 (CHS) 364/27/12 36,250/33,729/12

Table 1: Dataset statistics (Trip, Conc, Prop, Ent, Rel denote
triples, concepts, properties, entities, and relations, respec-
tively).

et al. 2022), BLOOM (Scao et al. 2022), GPT (Radford
et al. 2019), FLAN-T5 (Chung et al. 2022). For Chi-
nese baselines, 12 LLMs (6B to 175B parameters) are se-
lected, including ChatGPT-175B (Ouyang et al. 2022), Chat-
GLM (Zeng et al. 2023), and LLaMA (Touvron et al. 2023).

Evaluation Metrics. To metric the factuality of LLMs, we
leverage the exhausting strategy combined with the HFD
strategy in all benchmarks to calculate the error proportion
(EP) of ontology-level triples. For each ontology-level triple,
if negative answers of correlated instance-level triples ex-
ceed 50%, an un-fact triple occurred. For ORL, which is de-
signed to predict whether a given ontology-level triple is an
un-factual domain for LLMs, it can be viewed as a binary
classification task. Therefore, we measure the performance
of ORL utilizing commonly used accuracy ACC, precision
P, recall R, and the corresponding F1-score. Specifically, we
randomly select one-third of datasets for training, and calcu-
late the above metric of ORL on the rest two-thirds parts.

Implementation Details. All experiments are imple-
mented on the NVIDIA A100 (80GB) GPU. In all exper-
iments, for the embedding of instance graphs, the embed-
ding size of entities and relations is 300 and 100, respec-
tively. For the embedding of ontology graphs supplemented
with ontology-level triples, the embedding size of concepts
and properties is 100. Besides, the instance-view agent is
the two-layer MLP in which the activation function of the
hidden layer is ReLU, and the number of neural units is
kept consistent with the size of the input dimensions. The
value of γ in the total reward R(τ) for each ontology-level
triple is 0.95, and the value of α is 12.0. For the threshold
c, it is set to 0.5. In the ontology-view agent, both the ac-
tor network and the critic network are the two-layer MLP in
which the activation function of the hidden layer is ReLU,
and the number of neurons in the hidden layer is kept con-
sistent with the size of the input dimension. The size of M
in the optimized ontology-view agent is 2. The value of γ
used in the optimized criticism network is 0.95. The value
of β used in the soft optimization of the target action-critic
network is 0.001. Moreover, three Adam optimizers with a
learning rate of 1e−4 are used in ORL to optimize the actor
network, the critic network in the ontology-view agent, and
the instance-view agent, respectively. In the test case execu-
tion, for LLMs in the English datasets and Chinese datasets,
we utilize the t5 xxl true nli mixture2 and the Erlangshen-

2https://huggingface.co/google/t5 xxl true nli mixture

MegatronBert-1.3B-NLI3, respectively.

Main Result
The main results are reported in Table 2 and Table 3, and we
have the following observations and conclusions.

First, the factuality of LLMs is generally poor, even lower
than random prediction. Specifically, factual error rates of
LLMs on general domain datasets DBpedia, YAGO, and
CN-DBpedia are 51.6%-100%, 53.8%-100%, and 33.9%-
100%, respectively. In statistics, ChatGPT and BLOOM3B

hold the best and worst with average EP scores of 50.1%
and 100.0%, respectively. For the domain-specific dataset
BIOS, ChatGPT achieves a lower error rate with 9.1% in
BIOS (CHS) and 36.3% BIOS (ENG), while BLOOM3B has
a high error rate (100%) on BIOS (ENG). In comparison
with raw LLaMA7B, BenTsao7B enhances a considerable
factuality (16.4% decline in EP), which could benefit from
fine-tuning with medical datasets. These results demonstrate
the different awareness of specific knowledge between dif-
ferent LLMs, which can provide support for personalized
knowledge injection of LLMs.

Second, LLMs with larger parameters tend to offer higher
factuality. Regarding the three English datasets, ChatGPT
with 175B parameters yields an average error rate of 50.9%,
while the result of the second largest model LLaMA13B is
73.1%, which exists a gap of more than 22.2%. For more de-
tails, we investigate the LLMs’ factuality in different inter-
vals in Figure 3, where larger LLMs tend to lower error in-
tervals (50%-69%). Moreover, the performance of the same
LLMs-family under small-to-large parameter scales further
echoes the above viewpoint. Incrementally, OPT6.7B im-
proves the average factual accuracy by 2.1% and 3.9% over
its 2.7B and 1.3B versions. However, OPT13B has a 14.6%
increase in average un-factual rate compared to its 6.7B ver-
sion due to significant overconfidence. Another notable ob-
servation is that the EP of BLOOM7B and LLaMA13B out-
perform ChatGPT on YAGO dataset by 10.9% and 10.4%,
respectively, despite parameters being 10-100 times smaller.
This is primarily because ChatGPT refuses to respond to nu-
merous of the historical celebrity details included in YAGO.

Third, the ORL mechanism demonstrates promising er-
ror prediction and fact detection ability. On DBpedia,
LLaMA7B has a high error rate of 99.7%, while ORL
achieves a high prediction accuracy of 99.8% and F1 score
of 99.9%. Meanwhile, LLaMA13B obtains a lower error rate
(74.6%), and the corresponding ORL’s prediction accuracy
also drops to 76.5%. This demonstrates a significant positive
correlation between ORL’s error prediction performance and
LLMs’ inherent error rate. Besides, ORL achieves a recall
rate as high as 50.0%-100% and F1 score as high as 56.9%-
100% in domains that are not seen during training. Such
ability of ORL to explore unknown domains can be general-
ized to analyze the unexpected hallucination of LLMs.

Last, ChatGPT is surprisingly more factual in Chinese
benchmarks than in English ones. Specifically, the average
EP of ChatGPT on the English general dataset is 50.9%,

3https://huggingface.co/IDEA-CCNL/Erlangshen-
MegatronBert-1.3B-NLI
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LLMs DBpedia YAGO BIOS 2.2 (ENG)
EP↓ ACC↑ P↑ R↑ F1↑ EP↓ ACC↑ P↑ R↑ F1↑ EP↓ ACC↑ P↑ R↑ F1↑

Random 54.3 - - - - 54.3 - - - - 54.0 - - - -
LLaMA7B 99.7 99.8 99.8 99.9 99.9 95.5 94.0 94.2 99.7 96.9 97.4 97.8 97.8 100 98.9
LLaMA13B 74.6 76.5 80.2 90.3 85.0 54.3 82.6 87.9 78.9 83.2 90.5 87.4 87.4 100 93.3
Vicuna13B 85.6 88.9 90.5 95.3 92.8 80.3 90.3 92.3 96.5 94.4 92.7 96.6 96.5 97.8 97.1
Alpaca7B 79.3 86.6 88.1 90.7 89.4 72.8 86.5 89.3 92.5 90.9 95.1 94.8 94.8 100 97.3
T0pp11B 93.1 93.9 94.6 99.1 96.8 69.2 82.2 89.8 74.9 81.7 92.8 90.0 90.0 100 94.7
OPT1.3B 85.9 88.7 90.2 95.8 92.9 79.7 90.7 93.3 96.1 94.7 100 100 100 100 100
OPT2.7B 84.2 86.3 88.3 96.1 92.0 78.6 83.6 87.3 90.5 88.9 97.2 96.1 96.1 100 98.0
OPT6.7B 80.6 87.8 89.3 93.2 91.2 74.1 88.7 91.5 93.8 92.6 99.1 98.7 98.7 100 99.3
OPT13B 98.3 96.8 99.4 95.8 97.6 99.2 99.4 99.4 100 99.7 100 100 100 100 100

BLOOM1.1B 99.9 99.9 99.9 100 99.9 99.9 99.9 99.9 100 99.9 91.4 84.8 85.5 99.0 91.8
BLOOM1.7B 98.1 98.1 98.2 99.9 99.1 92.5 93.7 95.1 97.9 96.5 86.7 75.7 87.4 81.7 84.5
BLOOM3B 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
BLOOM7B 76.8 83.1 87.7 90.3 89.0 53.8 84.9 85.7 79.7 82.6 82.6 96.1 96.1 100 98.0

GPT-Neo1.3B 93.4 94.2 94.4 99.7 97.0 92.7 93.8 93.6 94.1 93.8 100 100 100 100 100
GPT2-XL1.5B 92.5 93.6 95.2 98.7 96.9 90.3 91.2 94.7 95.0 94.8 84.7 80.4 81.7 97.3 88.8
GPT-Neo2.7B 94.8 94.4 95.3 99.0 97.1 87.4 91.4 93.1 97.7 95.3 77.2 81.7 82.1 97.1 89.0

GPTJ6B 96.8 98.2 99.1 97.5 98.3 93.4 91.6 91.9 95.8 93.8 98.8 95.7 99.5 96.0 97.7
FLAN-T5-XL3B 96.8 97.2 98.8 99.6 99.2 88.9 87.5 90.1 91.4 90.7 91.6 86.5 86.5 100 92.8

FLAN-T5-XXL11B 94.2 93.9 94.3 99.5 96.8 80.0 92.4 95.1 95.2 95.1 67.8 63.0 63.0 98.5 76.9
ChatGPT175B 51.6 73.2 80.3 64.2 71.4 64.7 95.2 95.3 98.2 96.7 36.3 72.9 66.1 50.0 56.9

Table 2: Comparison of English LLMs, where ↑ indicates a larger value is preferred and ↓ means the opposite. Random refers
to randomly classifying ontology-level triples into un-fact. EP(%) denotes the error proportion of ontology-level triples, where
bold indicates the best performance and underline denotes the second-best performance. ACC(%) represents the ORL’s accuracy
in predicting ontology-level triples. P(%), R(%), and F1(%) denote the ORL’s precision, recall, and F1 score, respectively.

LLMs CN-DBpedia BIOS 2.2 (CHS)
EP↓ACC↑ P↑ R↑ F1↑ EP↓ACC↑ P↑ R↑ F1↑

Random 54.3 - - - - 54.4 - - - -
ChatGLM6B 53.4 86.4 86.0 84.5 85.3 83.5 79.0 79.0 100 88.3
ChatGLM26B 51.6 84.3 86.4 83.8 85.1 48.6 50.8 48.5 94.3 64.1
CHSLAAp7B 88.7 87.8 87.8 99.9 93.5 81.9 80.3 84.7 100 91.7

BELLE7B 100 100 100 100 100 100 100 100 100 100
BELLE13B 86.7 92.2 93.3 97.6 95.4 52.5 80.5 97.6 64.4 77.6
Baichuan7B 99.0 98.3 98.8 99.5 99.1 89.0 88.7 89.0 99.7 94.0
Baichuan13B 49.8 85.1 87.2 81.0 84.0 56.6 91.3 91.3 100 95.4

DoctorGLM6B 93.6 95.8 96.7 98.2 97.4 100 100 100 100 100
BenTsao7B 95.2 96.7 96.9 98.1 97.5 83.6 85.9 87.1 88.4 87.7

HuatuoGPT7B 97.2 98.0 98.6 99.5 99.0 49.2 79.4 84.2 71.5 77.3
LLaMA7B 99.7 99.1 99.8 99.3 99.5 100 100 100 100 100
LLaMA13B 100 100 100 100 100 100 100 100 100 100

ChatGPT175B 33.9 81.3 81.4 79.6 80.5 9.1 92.0 75.6 72.8 74.2

Table 3: Comparison of Chinese LLMs.

which is 29.4% higher than that of the Chinese general
dataset. On one hand, compared with Chinese, the wider ap-
plication of English makes its knowledge broader. On the
other hand, different language proportions used in the pre-
training of LLMs could also differ in the support of Chinese
and English. Typically, since LLaMA’s training corpus in-
cludes limited Chinese corpora, its EP in Chinese datasets
is significantly higher than in English datasets. However,
for Chinese-LLaMA-Alpaca-pro7B (CHSLAAp7B) using
LLaMA7B as the base model and then continuing to pre-
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Figure 3: Statistics of the LLMs’ un-facts on YAGO (left)
and DBpedia (right) datasets.

train it with large-scale Chinese language corpora, as well
as Baichuan7B, which holds the same model structure as
LLaMA7B but is trained from scratch with large Chinese
corpora, the EP decrease by 11.0% and 0.7% in CN-
DBpedia, respectively, compared to raw LLaMA7B.

Analysis Experiment
In this section, we conduct experiments to analyze ORL
learning efficiency and LLM factual skeleton.

About ORL Learning Efficiency. To verify the efficiency
of the ORL mechanism, we remove ORL and adopt the
exhausting strategy (referred to w/o) to detect LLMs’ un-
factual ontology-level triples on DBpedia and YAGO. Par-
ticularly, one-third of the dataset is first fed to ORL for train-
ing, and the rest is used for comparison. It is worth noting
that in the ORL time calculation, the training time of ORL
is also included for fairness of comparison. Combining the
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LLMs DBpedia YAGO
ORL(h) w/o(h) ↓(%) ORL(h) w/o(h) ↓(%)

LLaMa13B 32.51 60.73 46.47 21.97 44.09 50.17
Vicuna13B 32.48 57.20 43.21 18.31 44.10 58.48
Alpaca7B 13.27 24.95 46.82 18.71 50.73 63.12
T0pp11B 8.14 16.68 51.20 13.37 20.66 35.29

BLOOM7B 25.89 68.22 62.05 23.21 50.72 54.24
GPTJ6B 17.54 35.06 49.97 21.64 43.49 50.24

ChatGPT175B 109.53 267.04 58.98 209.96 330.75 36.52

Table 4: The graph search time (hour) of ORL, where ↓(%)
indicates the time-reducing proportion with ORL.

consuming time from Table 4 and the recall rate from Ta-
ble 2, the ORL mechanism is able to reduce the evaluation
budget by 35.29%-63.12%, while identifying 64.2%-99.1%
of un-factual triples. These results simultaneously provide
support for both the learning effect and efficiency of ORL.

About LLMs Factuality Skeleton. As shown in Figure 4,
the principle of un-factual fact-skeleton is fantastic. On the
one hand, the non-facts of LLMs show obvious aggregation
and clustering (see the left part of Figure 4). On the other
hand, the centers of each cluster are the highest un-factual
ontology-level triples and gradually disperse to the lowest
un-factual ones (see the right part of Figure 4). To further
understand the generation process of such fact-skeleton, we
further illustrate the Euclidean distance between two neigh-
bor ontology-level triples during graph searching of ORL on
YAGO in Figure 5. In the process of exploring un-factual
domains, the ORL exhibits an interesting behavior char-
acterized by periodic jumps and smooth periods of explo-
ration. This behavior can be observed by examining the Eu-
clidean distances between points in the ORL trajectory. On
the whole, ORL first greedily touches the neighboring triples
of afore-mined un-fact ones for a period, and then jumps
to a remote location, expecting to explore more diverse un-
factual domains. The fantastic skeleton is formed in the re-
peated interaction of ORL.

Case Study
In this section, we provide two case studies to help further
understand our OntoFact.

Example of Hallucination-Free Detection. To demon-
strate the effectiveness of the hallucination-free detection
(HFD) strategy, we present relevant cases in Table 5. First,
straightforward prompt containing implicit cues could lead
to biased responses from LLMs. Regarding the first line,
the phrases with yes or no and with no or yes
guide LLMs to generate opposite answers for the same
question. To tackle this commonly occurred issue in low-
and mid-parameter (1B-13B) LLMs, we employ question
prompts devoid of implicit answer cues. Secondly, the
Tense of questions influences the factuality evaluation of
LLMs. Regarding the second line, to address the tendency of
ChatGPT to reject answering present-tense questions,
we predominantly structure the question types in the past
tense. Finally, the proposed HFD mechanism effectively
mitigates overconfidence in LLMs. Regarding the third line,

(a) Fact-skeleton of DBpedia, and visualization of regions 0 and 3.

(b) Fact-skeleton of YAGO, and visualization of regions 8 and 17.

Figure 4: Visualization of fact-skeleton for ChatGPT. Em-
beddings of ontology-level triples are dimension-reduced
and clustered into 20 regions (left). Two random regions are
detailed (right), where the color gradient from dark to light
indicates the extent of LLMs’ un-facts from high to low.
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Figure 5: Visualization of the neighbors’ Euclidean distance
under ORL search on YAGO (left) and DBpedia (right).

Type Question Answer

SP

Please answer questions with yes or no:
Was LeBron James born in Akron? Yes

Please answer questions with no or yes:
Was LeBron James born in Akron? No

T

Did LeBron James win NBA All-Star Game? Yes
Does LeBron James win NBA All-Star Game? GU

Was Alex Neri a member of Planet Funk? Yes
Is Alex Neri a member of Planet Funk? GU

HFD
Was Allegheny Forest located in N/A? Yes

Was Allegheny Forest located in California? Yes
Was Allegheny Forest located in Pennsylvania? Yes

Table 5: Examples of hallucination-free detection (HFD),
where SP means straightforward prompt, T means tense of
questions, and GU implies that LLMs give up answering.

when directly asking OPT-13B judgment questions, it con-
sistently responds with yes rather no than in most cases. By
incorporating two types of negative samples (e.g., N/A and
California) for each positive sample, we can effectively
prevent such biased factuality evaluation issues.

Example of ORL Graph Search. To illustrate the graph
search process of ORL between the ontology and instance
level KGs, we conduct experiments using ChatGPT and
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TS Ontology-Level Triples ED UR
Ti (Plant, hybrid, Species) 25.8 72.0
TS Instance-Level Triples Action Answer
T 0
i (Pixie mandarin, hybrid, Cam sành) No Select Yes

T 1
i (Kalette, hybrid, Kale) Select No
...

...
...

...
T 49
i (Haruka citrus, hybrid, Hyuganatsu) Select Yes

TS Ontology-Level Triples ED UR
Ti+1 (Plant, wineRegion, Place) 8.8 76.7
TS Instance-Level Triples Action Answer
T 0
i+1 (Assyrtiko, wineRegion, Greece) Select No

T 1
i+1 (Baco noir, wineRegion, Wisconsin) Select No
...

...
...

...
T 49
i+1 (Aleatico, wineRegion, Tuscany) No Select Yes

Table 6: Example of ORL graph search for ChatGPT on DB-
pedia at two time stamps, with TS as time stamp, ED as Eu-
clidean distance, and UR as the un-fact rate of instance-level
triples associated with the current ontology-level triple.

present the record in Table 6. At a specific time step, denoted
as Ti, the ontology-view agent traverses a distance of 25.8,
jumping from a remote domain to the plant-related field. The
instance-view agent then identifies the associated instance-
level triples, addressing the error-prone triples properly. De-
spite occasional mistakes in triple judgment (e.g., at time
T 49
i ), the overall predictions remain within an acceptable

range. At time stamp Ti+1, due to the clustering nature of
factual errors, the ontology-view agent greedily searches for
another neighbor ontology-level triple related to plants, lo-
cated nearby with a distance of only 8.8. In conclusion, the
instance-view agent systematically identifies the instance-
level triples, one by one, in order to infer the factual proba-
bilities of the corresponding ontology-level triples.

Discussion
KG Search Motivation KG Searching aims to efficiently
mine ontology-level triples that are error-prone for LLMs
based on knowledge graph embeddings (Hao et al. 2019;
Liu et al. 2023; Shang et al. 2023), where the ontology-view
agent is in the continuous space and the instance-view agent
is in the discrete space. The motivation for setting contin-
uous and discrete spaces depends on the number of search
states. Typically, the general domain datasets constructed in
this paper contain 15K-31K ontology-level triples, with an
average of only 30-100 corresponding instance-level triples
per ontology triple. Therefore, large ontology and small in-
stance sub-graphs indicate the suitability of continuous and
discrete space searching, respectively.

Explanation of HFD Hallucination-free Detection (HFD)
alleviates over-confidence of LLMs through: (1) modifying
the head or tail entity with N/A or other ontology-specific
entities to produce negative samples, and (2) feeding ad-
ditional negative samples into LLMs to obtain a robust re-
sponse. Over 32 LLMs on 5 benchmarks, for each instance-
level triple, modifying the head or tail entities of the same
triple (two negative samples) yields an average error pro-

portion (EP) improvement of 13% against only modifying a
single entity (one negative sample).

Human Evaluation OntoFact adopts the discriminative
Q&A (Yes/No) with a unique answer to model factuality
assessment. To some extent, the setting of discriminative
Q&A alleviates the issue of unfair evaluation performance
measurement when the same entity has multiple represen-
tations, which commonly occurs with the commonly used
evaluation metric, e.g., Exact Match. However, the Onto-
Fact proposed in this paper requires the NLI model for as-
sisted judgment. Therefore, we further manually evaluate
judgments made by the NLI model. Specifically, for all test
cases, we sampled 500 test cases and compared the judg-
ments of the NLI model with the manual evaluation of the
generated response of LLMs. Results demonstrate a high
agreement (97%) between machine (using the off-the-shelf
NLI model) and human evaluation.

Related Work
The hallucinations of LLMs have gained significant at-
tention due to their noxious impact on practical applica-
tions. According to Ji et al. (2023), hallucinations can be
categorized as intrinsic or extrinsic (Maynez et al. 2020;
Huang et al. 2021). Intrinsic hallucinations refer to con-
flicts between LLMs’ output and the source, while ex-
trinsic hallucinations involve unverifiable output. Previous
works have analyzed the cause and interpretability of hal-
lucinations in various aspects (McKenna et al. 2023; Zhang
et al. 2023; Zheng, Huang, and Chang 2023). Another re-
search line aims to evaluate LLMs’ hallucinations in dif-
ferent NLP tasks, primarily focusing on assessing intrinsic
hallucinations through factuality detection (Xie et al. 2021;
Honovich et al. 2022; Mountantonakis and Tzitzikas 2023;
Min et al. 2023; Pezeshkpour 2023). Generally, the factu-
ality detection can be categorized into text-driven and KG-
driven methods. On one hand, Honovich et al. (2022) and
Xie et al. (2021) measure LLMs’ factuality using standard-
ized text corpora from diverse tasks. On the other hand,
KG-driven methods generate test cases with concise entity-
relation triples (Mountantonakis and Tzitzikas 2023). Min et
al. (2023) introduce a biography KG to evaluate the factual-
ity of LLMs. Pezeshkpour et al. (2023) employ information
theory-based measurements to estimate the factual knowl-
edge of LLMs. In summary, existing techniques fail to un-
cover the missing fact skeleton and provide a beneficial fact
injection strategy for alleviating the hallucination, which is
the core focus of our proposed work.

Conclusion
In this paper, we address the main challenges of the fac-
tuality evaluation of LLMs and present OntoFact, an adap-
tive un-facts detection framework with a sophisticated ORL
mechanism, aiming to mine the ontology-level knowledge-
lacking skeleton. Experimental results on a wide range of
LLMs and datasets demonstrate the robustness and general-
ization of OntoFact in predicting errors, detecting facts, etc.
Moreover, we release five large-scale benchmarks that can
be beneficial for relevant research.
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