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Abstract
The recent proliferation of research into transformer based
natural language processing has led to a number of studies
which attempt to detect the presence of human-like cogni-
tive behavior in the models. We contend that, as is true of
human psychology, the investigation of cognitive behavior in
language models must be conducted in an appropriate popu-
lation of an appropriate size for the results to be meaningful.
We leverage work in uncertainty estimation in a novel ap-
proach to efficiently construct experimental populations. The
resultant tool, PopulationLM, has been made open source. We
provide theoretical grounding in the uncertainty estimation
literature and motivation from current cognitive work regard-
ing language models. We discuss the methodological lessons
from other scientific communities and attempt to demonstrate
their application to two artificial population studies. Through
population based experimentation we find that language mod-
els exhibit behavior consistent with typicality effects among
categories highly represented in training. However, we find
that language models don’t tend to exhibit structural priming
effects. Generally, our results show that single models tend
to over estimate the presence of cognitive behaviors in neural
models.

Introduction
In the wake of success following the introduction of trans-
formers in (Vaswani et al. 2017) and the public deployment
of powerful variants of GPT, many have started to question
if these models exhibit behavior similar to human cognition.

Work analyzing the cognition of these powerful, Turing-
complete (Roberts 2023) models is important not only to
the explanation and interpretation of the models themselves
but may offer insight into cognition more generally, a syner-
gism best embodied by the interplay of reinforcement learn-
ing and neuroscience (Subramanian, Chitlangia, and Baths
2022). We believe this emerging study of cognitive behav-
ior in neural models can be improved by adopting methods
from branches of science more typically associated with sta-
tistical testing. Without appropriate experimental method-
ology conclusions may not be robust in the face of vari-
ations, a symptom associated with the greater replicability
crisis (Goodman, Fanelli, and Ioannidis 2016). Research at-
tempting replication and extension of ToM results in GPT-4
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found that relatively small experimental alterations caused
the effect to disappear (Ullman 2023). This suggests the ex-
perimental design in the original study was insufficient to
support the drawn conclusions.

This is precisely the motivation for the present paper.
Claims that fail to be reproducible regarding powerful AI
models may ultimately result in erosion of the public’s trust
and attention. Any study of neural model cognitive behav-
ior should characterize not only the presence but the size of
the effect and the significance. Doing so necessitates rigor
which may decrease erroneous conclusions, and will per-
mit better explanation of neural model cognitive behavior
through meta-analytic study. To this end, we present and
demonstrate an artificial population generation method for
the study of cognitive phenomena in neural models with the
hope that it will aid in the reproducibility of research regard-
ing the behavior of neural models.

This paper contributes by drawing connections between
social and behavioral experimental design and neural model
uncertainty estimation resulting in a (1) tool called Popu-
lationLM for the creation of populations of neural models
via stratified MC dropout. We harvest novel metrics and ex-
plore population best practices by applying artificial popula-
tions to the (2) replication and extension of (Misra, Ettinger,
and Rayz 2021) (correlation analysis) and (3) (Sinclair et al.
2022) (difference analysis). We present novel results regard-
ing the presence of typicality and structural priming effects
in language models.

Behavioral Phenomena in Neural Models
In this section we review the current work related to the
study of cognitive behavior in neural language models pay-
ing specific attention to the measures reported and method-
ology. Table 1 summarizes the works that have been identi-
fied, organized by the behavioral phenomenon that they in-
vestigate. This review and meta-commentary does not inval-
idate any of the findings in the associated papers. Rather, it
serves as a compendium of work so far in this field and helps
to illuminate the problem we wish to address.

The measures reported refers to the measure applied to
the model output. Statistic refers to the statistical analysis
applied to the measures. We find that most papers used atyp-
ical measures of effect like frequency of occurrence or qual-
itative analysis and tend to not use statistical testing. Those
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Phenomena Study by Measure(s) Statistic Significance Experimental Var

Theory of Mind

Bubeck et al. qualitative — — not isolated
Kosinski frequency — — not isolated
Sap et al. frequency — — not isolated
Ullman frequency — — isolated*

Trott et al. token probs χ2 + β reported not isolated

Logical Reasoning
Binz and Schulz token probs χ2 + t + β reported isolated*

McCoy, Pavlick, and Linzen frequency — — isolated
Lamprinidis frequency — — not isolated

Framing &
Anchoring

Binz and Schulz token probs χ2 + t + β reported isolated*
Jones and Steinhardt frequency — — isolated

Suri et al. frequency — reported isolated*
Decision-making
Heuristics

Binz and Schulz token probs χ2 + t + β reported isolated*
Jones and Steinhardt frequency — — isolated

Typicality Misra, Ettinger, and Rayz token probs r + ρ reported isolated
Priming Sinclair et al. token probs — — isolated
Emotion Induction Coda-Forno et al. frequency r + t + probit β reported not isolated

Table 1: Review summary of large language model behavioral studies. r = Pearson, ρ = Spearman, β = Berksons, t = t-test.

employing t-tests don’t typically specify the particular test.
Analogously, we find that less than a third of the papers re-
port significance levels for their results. In contrast, most
authors did isolate the experimental, independent variable.
Rows marked with an * indicate works that did so only in a
subset of reported experiments.

No study in our review utilizes uncertainty estimation to
systematically perturb the model or the input. Therefore, no
work has been done to study neural behavior in a population.
In the latter half of this paper, we study two behavioral phe-
nomena from table 1 in artificial populations: typicality and
structural priming (SP). Typicality refers to a high degree
of agreement across subjects in humans when ranking items
as more or less typical of a given category and is known to
be related to rate of retrieval of an item given the category
(Rosch 1975). Structural priming refers to the predilection
for a sentence structure similar to the most recently observed
syntactical structure (Pickering and Ferreira 2008).

Populations of Neural Models
In all social and behavioral science, conclusions drawn from
a single subject face severe limitations. Without a population
of subjects it is impossible to know if the individual is typical
along the dependent variable in the population or an outlier.

Studying the cognitive behavior of neural models, either
as an ontology or in relation to human psychology, suffers
from a similar limitation. There always exists a possibility
that an expression of a behavior is anomalous or that the
behavior is tenuously supported in the network.

In this paper we refer to models and their derivatives as
different species. i.e. BERT and DistilBERT are individual
species, while they both belong to the same family. Genus is
reserved for fine-tuned variants.

Forming inter-species populations is an intuitive but
flawed approach since we wish to facilitate the study behav-
iors that may emerge in specific species, as is known to occur
as a function of model size (Wei et al. 2022). Inter-species

populations don’t permit this type of myopic study.
Instead we form populations using work from neural

model uncertainty estimation. In that context, the goal is
not a population but an estimation of model uncertainty.
However, this is precisely the characteristic typically ex-
tracted from a population study, the degree to which a re-
sult is consistent across individuals. We refer to this as the
population uncertainty. Several uncertainty estimation meth-
ods have been proposed in literature and can be placed into
4 broad groups (Gawlikowski et al. 2023), single network
deterministic, test time augmentation, ensemble techniques,
and Bayesian approximations.

Single network deterministic methods attempt to estimate
the uncertainty of a network without multiple predictions
being made. However, they trade accuracy for speed. Test
time augmentation methods perform perturbations of the in-
put data and estimate uncertainty across a single model’s
outputs (Lyzhov et al. 2020). Though this is a promising
solution for closed source models, there exists a bound on
the perturbation resolution possible in transformers with test
time augmentation due to Hahn’s lemma (Hahn 2020). En-
semble techniques, generally outperform Bayesian methods
(Lakshminarayanan, Pritzel, and Blundell 2017) but require
multiple models trained independently. The price associated
with from scratch training makes this a poor solution (Sharir,
Peleg, and Shoham 2020). Therefore, Bayesian approxima-
tion is the most applicable uncertainty estimation technique
for the creation of populations of open source models.

PopulationLM
We use Monte Carlo (MC) dropout (Gal and Ghahramani
2016) to form populations from base models. A neuron mask
is assembled from the instances of random variables and
placed on the network. The resulting masked network is then
used to perform inference. Each network mask is typically
applied once and discarded. However, in the context of be-
havioral studies, it is desirable to apply a set of stimuli to
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Model Species Paper Typicality KS test SP KS test Type (parameters) Training Data
DistilBERT Sanh et al. 0.056 (p≈0.055) ✗ 0.04 (p<0.05) MLM (66M)

BookCorpus, WikiBERT Base Devlin et al. 0.051 (p≈0.108) ✗ 0.03 (p≈0.06) ✗ MLM (110M)
BERT Large 0.072 (p<0.01) 0.05 (p<0.01) MLM (340M)

GPT Radford et al. 0.069 (p<0.01) 0.08 (p<0.01) MLM (120M) BookCorpus
DistilGPT-2 Sanh et al. -0.072 (p<0.01) 0.45 (p<0.01) CLM (82M)

BookCorpus, WebTextGPT-2 Radford et al. -0.03 (p≈0.685) ✗ 0.29 (p≈0.1) ✗ CLM (117M)
GPT-2 Medium 0.075 (p<0.01) 0.51 (p<0.01) CLM (345M)
RoBERTa Base Liu et al. 0.065 (p<0.02) 0.08 (p<0.01) MLM (125M) BERT train data, Stories,

CC, OpenWebText, NewsRoBERTa Large 0.15 (p<0.1) 0.19 (p<0.1) MLM (355M)

Table 2: Kolmogorov-Smirnov test for each population and each experiment compared to the base model. Null hypothesis H0 is
population probabilities and base model probabilities are drawn from the same underlying distribution per species. Populations
very similar to the base model have an ✗.

the static population for within-group, paired-sample tests.
We contribute stratified MC dropout, a variation that gener-
ates and maintains a user defined number of masks for any
PyTorch compatible network. While the provided library is
implemented only for PyTorch, the method is, in princi-
ple, applicable to any neural network library that supports
inference-time dropout.

While it is true that dropout populations approximate the
distribution of a deep Gaussian process (Gal and Ghahra-
mani 2016), the degree to which this will approximate a
group of humans is not known. Therefore, we don’t claim
that this method approximates results typical of human stud-
ies. We claim that evaluating the dropout population outputs
as a group will help the results to be more robust in the face
of variation due to decreased presence of poorly supported
behaviors as a direct consequence of their tendency to con-
verge to a Gaussian process.

We do not apply any aggregation to the population out-
puts. Instead, we adopt methodologies from psychological
and pharmaceutical domains to treat the model responses as
populations of individuals and directly apply statistical anal-
ysis. This approach provides a more robust view of expected
model behavior under variation with improved insights re-
garding population certainty and statistical significance.

Analysis of the Populations
We evaluated the efficacy of the populations to generate out-
puts which are statistically distinct from the base models for
each species via the non-parametric Kolmogorov–Smirnov
(KS) test. It compares the shape and location of two dis-
tributions but makes no assumptions about the nature of the
underlying distributions. The null hypothesis is that the sam-
ple distributions will have similar shape and location.

In table 2, we find that the underlying distributions for the
species’ base models and their populations are not represen-
tative of the same distribution with the exception of GPT-2,
BERT base, and DistilBERT as judged by the significance
of the p value. We inspected these results by observing plots
of each and include RoBERTa in figure 1 juxtaposed with
its associated dropout population. An obvious benefit of the
population is the narrowing of the confidence bounds on the
regression due to augmented elimination of alternative re-
gressions. As suggested by the KS test, the relationship be-

tween typicality and population probability in experiment 1
is shown to be quite distinct from that of the base model.

The KS test is a useful method to characterize the likeli-
hood with which population results will vary from the base
model on a given task, with a high effect size indicating high
likelihood. However, the test is meaningful for the target be-
havior or context only. This is evinced by the large change
in effect among the GPT-2 family from the typicality exper-
iment to the structural priming in table 2.

Figure 1: Single model regression vs population of models
probability-typicality regression for RoBERTa Large. Rank
is inversely related to typicality. 95% confidence intervals
shown for both with very narrow bounds on the population.

How Much Dropout Is Necessary? MC dropout has been
applied to transformers previously in (Shelmanov et al.
2021) and (Vazhentsev et al. 2022). In both of these pa-
pers the authors experimentally found 0.1 to be the most
effective dropout rate for discouraging incorrect, poorly sup-
ported outputs.

We experimented with dropout rates from 0.1 to 0.8. We
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Figure 2: For each model the, colored bars show within category Pearson correlation (p<0.03). For each model the total Pearson
correlation (p<0.03) is shown as the gray background bar. The total Pearson correlation (p<0.01) for well understood categories
(categories with an average item frequency > 60000 in training data for Bert) is shown as the light blue bar. In well understood
categories, typicality of the item may explain up to r2 ≈ 20% of the category probability volatility.

found no advantage in using larger rates of dropout for ex-
periments, as increased rates caused signal erosion with all
behavioral correlations being dissolved beyond rates of 0.5
Therefore, we recommend that statistical studies adopt a 0.1
nominal dropout rate.

How Big Should the Artificial Population Be? Popula-
tion size for a study is related to two important statistical
measures, significance and power. The significance of a re-
sult is a measure of the probability of the null hypothesis.
The power of a test is a measure of the probability that the
test will correctly reject the null hypothesis and avoid a false
negative.

For evaluating cognitive behavior in neural models, the
power of a test is less important as the effect of a false nega-
tive is not likely to cause damage. However, the significance
of a result is of the utmost importance as this permits meta-
analytical extension and can act as a mitigator of sensation-
alism when applied properly.

We empirically find that a population of 50 is an accept-
able compromise, providing sufficient statistically signifi-
cant deviation from the base model in table 2 without dra-
matic computational costs. Interestingly, it seems the models
tend to have correlated relationships with associated dropout
populations. The KS tests for the two experiments in table 2
show that BERT, GPT-2, and RoBERTa models tended to
have KS effect sizes which were rank correlated across ex-
perimental populations within model families. However, the
model correlations don’t extend outside the family. This sug-
gests that 50 member populations may tend to be sufficient
for the approximated deep Gaussian process to emerge.

Experiment 1: Typicality Effects
We reproduce and extend the experiment conducted in
(Misra, Ettinger, and Rayz 2021) which assessed the base
model total correlation between probability and typicality.
Our base model probabilities agree with past results, and we
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contribute novel tests using dropout populations and within
category analysis which shed light on the factors that support
the emergence of typicality effects in language models.

Experimental Setup We use typicality data from (Rosch
1975) which gives a typicality rank, ri, for each item, i,
in category C. As in the original experiment, we construct
prompts, πi, for each i ∈ C and measure the probability
assigned to the category given the prompt, P (C|πi). So,
for each category, only the item in the prompt (independent
variable) will change across queries while the effect on the
category probability is measured (dependent variable). Af-
ter each prompting, the model input is flushed, guaranteeing
that only the independent variable is manipulated for each
trial for each category. This necessitates that the results be
evaluated within category, since cross category results are
not controlled. However, we also evaluate the test results
across all categories for each model as a direct comparison
to the results reported in the original paper.

Individual Probability Correlation Test For each pop-
ulation, we test for behavior consistent with typicality by
evaluating the Pearson correlation between P (C|πi) and ri
for all i ∈ C and for all categories in the dataset. We hypoth-
esize that, consistent with previous results, the probabilities
output by the models will be positively correlated with typi-
cality.

As predicted, all models show significant (p<0.05) proba-
bility/typicality correlation within nearly all categories con-
sistent with typicality in humans in figure 2. DistilBERT
shows insignificant correlation with the categories tool and
vegetable, while DistilGPT2 and RoBERTa base both have
insignificant correlation with tool. More generally, the cor-
relation between probability and typicality is strongly con-
ditioned upon category for all models. The behavior shows
strong differentiation between causal (CLM) and masked
language models (MLMs). Among all MLMs the total cor-
relation is markedly higher than for CLMs. Further, the cate-
gories for which each model most exhibits typicality behav-
ior differs across MLMs and CLMs.

The green bars in figure 2 represent the total correla-
tion (across categories) obtained by evaluating only the
base models and agree with past results (Misra, Ettinger,
and Rayz 2021). However, the total population correlation,
shown in dark blue, suggests that the base model total corre-
lation is an over estimation of the true total correlation.

Population Uncertainty Correlation Test We hypothe-
size that population uncertainty will be positively corre-
lated with diminishing typicality. That is, as stimuli become
less typical, the population will have decreasing agreement.
Therefore, we test for correlation between normalized pop-
ulation standard deviation (as a measure of group uncer-
tainty), σ(P (C|πi))

µ(P (C|πi))
and typicality rankings ri.

In figure 3, for masked language models, mean normal-
ized population uncertainty has a significant positive cor-
relation as typicality diminishes mediated by category. The
models tend to become more uncertain as the items become
less typical. Therefore, we believe that masked language
models, like humans (Rosch 1975), are more certain when

inferencing about typical items. The categories which are
most positively correlated with population certainty tend to
be consistent with those which were most correlated with
probability.

Interestingly, the standard deviation of model probabil-
ities was found to scale with the mean of the probability,
giving the appearance of increased population agreement as
probability declined. Therefore, mean normalization is used.
Mean normalized uncertainty may be more meaningful than
standard deviation alone for models which learn to output
probabilities.

Figure 3: CLMs exhibit negative Uncertainty/Typicality cor-
relation while MLMs exhibit positive correlation. Within
category, total Spearman correlation (p<0.08), and total
well represented category (item frequency > 60000) Spear-
man correlation (p<0.01) are shown.

In sharp distinction, all causal language models exhibit
negative certainty/typicality correlation. We speculate that
this may be due to differences in training data and mod-
eling objective. i.e. it is not typical for humans to say ex-
tremely obvious things like ”A sparrow is a bird.” Therefore,
a dropout trained conversational model may have high un-
certainty regarding highly typical item/category pairings in
completions. However, this hypothesis is not readily testable
due to GPT-2 training data unavailability. Further, the cate-
gories among the CLMs which are most negatively corre-
lated with population certainty do not seem to be the same
categories as those which were most positively correlated
with probability in figure 2. This suggests that CLMs rep-
resent something all together different than MLMs in their
population uncertainty.

Confound Test We considered that frequency of an item
within the training data could act as a third variable and con-
found the results. To address this we evaluate the Pearson
correlation of item frequency in the training data with typi-
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cality ranking. We hypothesized that item frequency would
act as a confound at some level. We used the BERT family
training data frequencies from (Zhou et al. 2022) to assess
training data frequency correlations.

We found no correlation between item typicality and fre-
quency in the training corpus. Nor did we find a correla-
tion between the normalized certainty and item frequency.
There was a slight correlation (Spearman’s r=-0.08 p<0.01)
between probabilities output by BERT and item frequency.
However, the effect size suggests that this is insignificant.

Figure 4: Emergence of within category behavior consistent
with typicality in BERT is strongly predicted by within cat-
egory item frequency in training data.

We hypothesized that category ”understanding” may be
important for the emergence of typicality behavior and that
mean within category item frequency in training data may
predict category understanding. To test this, we performed a
regression between within category Pearson correlation and
mean within category item frequency in the training data for
the BERT population.

In figure 4 we find that average item frequency within a
category is highly correlated with the strength of typicality
effects exhibited by the model within that category. The ex-
ception being the categories tool and toy. Further research
may be necessary to determine why these categories do not
fit the otherwise established trend. We suspect that this is the
result of conflicts from the basic-level effect, that humans
have a preferred level of categorization, which has a known
relationship with typicality (Rosch et al. 1976). Tool and toy
may be outliers because they are not at the basic categoriza-
tion level for many of the items listed in those categories.

If the anomalous categories are removed, the correlation
between within category probability/typicality correlation

and within category mean item frequency in training data
is Pearson r=0.98 (p<0.01) and with tool and toy included
Pearson r=0.7 (p<0.03).

Another measure of concept ”understanding” is the per-
sistence of a concept through growing rates of dropout.
As the dropout rate increases, more and more neurons are
masked in the population members causing concepts with
fewer constituent neurons to be ablated. So, we swept the
dropout rate for the population from 0.1 to 0.8 and found that
the categories which were highly represented in the training
data tended to persist as dropout increased, while the cate-
gories with less training data representation tended to decor-
relate at lower dropout rates.

We interpret these complimentary results to suggest that
model ”understanding” of a category may be driven by over-
all category representation in the training data and that,
within categories which are well understood, models are
likely to exhibit typicality effects. We find that this is the
case for all tested model species as restricting the total Pear-
son correlation to the categories which are well represented
in the BERT training data, a partial constituent of all other
model’s training, leads to significant increases in all model
probability-typicality correlations in figure 2.

Comments We find that language models strongly exhibit
typicality effects both in individual model probabilities and
in population uncertainty mediated by model ”understand-
ing” of category. The square of probability/typicality cor-
relation in figure 2 shows that 10% < r2 < 25% of the
well represented category probability variances for all model
populations, excluding GPT-1 which was trained on sub-
stantially less data, are accounted for by typicality effects.
Strong typicality effects tend to emerge in categories with at
least 80000 training examples per within category item.

Experiment 2: Structural Priming Effects
In (Sinclair et al. 2022) the authors investigated whether lan-
guage models exhibit behavior consistent with the structural
priming effect. We run a similar experiment using sentence
data from their work. However, we use a dropout population,
modify the experimental setup to control for unaddressed
confounds, and perform a split-group cross validation.

Experimental Setup To test for SP in language models
we adopt 3 treatment conditions: the control (CT) is the
probability of a sentence, Sx, without any priming P (Sx);
the primed treatment (PT) is the probability of that sentence
when the language model is first prompted with a sentence,
πx, of similar structure P (Sx|πx); and the alternative treat-
ment (AT) is the probability of Sx when prompted with a
sentence, πy , of differing structure P (Sx|πy) but identical
semantic meaning. Any effect AT has will not be analogous
to SP. However, it is not a placebo as it may not be inert.
Therefore, both AT and PT must be compared to CT for con-
textualization.

We split 3000 examples into two groups and conduct all
3 treatments on all 50 population members per species. The
results for the first group of 1500 are reported and the results
for the second set of 1500 are used for cross validation. The

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18911



Model Species Wilcoxon P (Sx|πx) > P (Sx)
µ(P (Sx|πx))−µ(P (Sx))
µ(P (Sx|πy))−µ(P (Sx))

Pearson(AT-CT, PT-CT) r Structural Priming

DistilBERT 0.42 (p≈1) — — None
BERT Base 0.27 (p≈1) — — None

BERT Large 0.47 (p≈1) — — None
GPT 0.14 (p≈1) — — None

DistilGPT-2 0.82 (p≈0) 0.93 ±0.001 0.89 (p<0.01) None
GPT-2 0.96 (p≈0) 0.96 ±0.001 0.93 (p<0.01) None

GPT-2 Medium 0.99 (p≈0) 0.98 ±0.001 0.94 (p<0.01) None
RoBERTa Base 0.99 (p≈0) 0.98 ±0.001 0.70 (p<0.01) Marginal

RoBERTa Large 0.99 (p≈0) 0.96 ±0.001 0.67 (p<0.01) Marginal

Table 3: Test results used to detect structural priming. From left to right: the first relates preference for priming; the second finds
the percent of the preference magnitude not attributable to SP; the third measures the correlation between SP and an alternative.

cross validation showed all results repeated within ±0.02
(p<0.01) of our reported results.

Individual Probability Difference Test For behavior
consistent with SP to be present, the relationship PT>CT
must tend to hold. To test this, we employ the Wilcoxon
signed rank test, a non-parametric test appropriate for testing
relative ranking of paired samples.

In table 3 the results show that only GPT-2 and RoBERTa
exhibit a preference for PT over the control. These models
require subsequent testing as SP is one possible explanation
for their preference, but an alternative hypothesis is that the
models prefer being primed with anything at all.

Preference for priming could be induced by the presence
of WebText and OpenWebText in the training data of GPT-2
and RoBERTa families as these possess conversational data
in which SP is more likely to be observed.

Elimination of Alternative Hypotheses To eliminate a
preference for priming regardless of structure as an alter-
native hypothesis, we find the 95% confidence interval of
µ(AT )−µ(CT )
µ(PT )−µ(CT ) . This is the fraction of the probability change
induced by PT which is not attributable to SP. Wilcoxon is
not used in this case as it would result in the cancellation of
the control group due to internal subtraction. It is possible
that the effect magnitude will be similar but the individual
samples not be correlated. Therefore, we also find the Pear-
son correlation between PT-CT and AT-CT.

For all models the alternative treatment produced an aver-
age effect which was 96% as large as the mean change due
to SP. Further, the GPT-2 family showed strong correlation
between AT-CT and PT-CT, suggesting these models do not
prefer priming with a similar structure. However, the results
in table 3 show that the RoBERTa family has a response to
PT distinct from the AT response based on Pearson’s r.

Comments In contrast to previous work we find little ev-
idence for the presence of structural priming effects. The
RoBERTa family of models exhibits a response that is dis-
tinct when primed with a sentence of similar structure to
the target sentence. However, the preference magnitude is
not differentiable from an alternative structure priming. No
other models exhibit significant, distinct effects.

1https://github.com/JesseTNRoberts/PopulationLM

Conclusions

This paper addresses a current need in the study of cognitive
behavior in neural models by introducing PopulationLM1,
a system built on MC dropout for the creation of efficient
populations of neural models. This permits population based
analysis of model behavior which may decrease the presence
of atypical behaviors. In both experiments our population
studies, when compared to the original experiments of other
authors, show that conclusions drawn from single models
tend to over estimate the presence of cognitive behaviors.
Beyond robustness, populations permit the study of diver-
gence or decorrelation as a function of dropout and charac-
terization of population uncertainty or disagreement.

We have conducted novel experiments using Popula-
tionLM regarding the presence of typicality and structural
priming in language models, being careful to isolate and an-
alyze along independent variables and report effect sizes and
significance. We find that typicality is consistently present
while structural priming seems to not be, with both having
predictable ties to behavior representation in training data.

PopulationLM may have further reaching applications be-
yond the study of cognitive behavior. Many papers have be-
gun to systematically study prompt pattern effects (White
et al. 2023). These possess similar issues of robustness to
cognitive studies and could benefit from study among a pop-
ulation. Further, it’s possible that populations of models may
serve as proxies for initial human behavior studies in the fu-
ture. This could augment the ethical and financial efficacy of
psycholinguistic research (Brysbaert 2019).

Test time augmentation (Gawlikowski et al. 2023) may
be used to create local variations that perform similarly to
dropout populations. However, the effects will decay with
the length of the decoder context (Hahn 2020). The longer
the priming, the less effect each individual token, including
the experimental prompt, will have. We intend to investigate
the use of test time augmentation for closed source language
model systematic population studies in future work.

Finally, future work should investigate the (1) surpris-
ing increase in CLM certainty with decreased typicality, (2)
the use of mean normalization to characterize probabilistic
model certainty, and (3) the presence and impact of other
cognitive phenomena like basic level effects.
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Ethical Statement
Some work in the area of large language model cognitive
behavior has produced conclusions which are not replica-
ble when small variations are applied to the experiments.
This coupled with the wide attention being given to large
language models can lead to sensationalism and potentially
contribute to the erosion of the public’s trust in the scientific
community. The hoped effect of this paper is to bring aware-
ness and partially address the current situation by providing
a more systematic method for improving the robustness of
results.

Alternatively, if data were to be improperly handled or in-
appropriate statistical testing performed, the impact could be
negative. PopulationLM has the ability to augment the num-
ber of datapoints on which testing may be performed. If not
analyzed appropriately, the increased data may potentially
be used to support fallacious conclusions.
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