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Abstract

Radiology report generation (RRG) aims to automatically
generate a free-text description from a specific clinical radio-
graph, e.g., chest X-Ray images. Existing approaches tend
to perform RRG with specific models trained on the public
yet limited data from scratch, where they often lead to infe-
rior performance owing to the problem of inefficient capa-
bilities in both aligning visual and textual features and gen-
erating informative reports accordingly. Currently, large lan-
guage models (LLMs) offered a promising solution to text
generation with their power in learning from big data, es-
pecially for cross-modal scenarios such as RRG. However,
most existing LLMs are pre-trained on general data, and suf-
fer from the same problem of conventional approaches caused
by knowledge gap between general and medical domain if
they are applied to RRG. Therefore in this paper, we pro-
pose an approach to bootstrapping LLMs for RRG with a
in-domain instance induction and a coarse-to-fine decoding
process. Specifically, the in-domain instance induction pro-
cess learns to align the LLM to radiology reports from general
texts through contrastive learning. The coarse-to-fine decod-
ing performs a text elevating process for those reports from
the ranker, further enhanced with visual features and refine-
ment prompts. Experimental results on two prevailing RRG
datasets, namely, IU X-Ray and MIMIC-CXR, demonstrate
the superiority of our approach to previous state-of-the-art
solutions. Further analyses illustrate that, for the LLM, the
induction process enables it to better align with the medical
domain and the coarse-to-fine generation allows it to conduct
more precise text generation.

1 Introduction
Medical imaging plays an important role in clinical di-
agnosis and treatment recommendation, where physicians
normally write reports according to the syndromes of pa-
tients that are reflected in images so as to form profes-
sional records. As a special type of medical images, radio-
graphs are essential in evaluating patients’ medical condi-
tion with analyzing internal structures of their bodies, and
have been widely used in orthopedics, dentistry, cardiology,
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and pulmonology, etc. Yet, writing radiology reports is a
time-consuming job, and always error-prone for inexperi-
enced radiologists, which motivate a series of studies (Jing,
Xie, and Xing 2018; Chen et al. 2020, 2021; Qin and Song
2022; Tanida et al. 2023; Liu, Tian, and Song 2023) on auto-
matic reports generation. They have achieved great success
on this topic that has emerged as an attractive research di-
rection in both artificial intelligence and clinical medicine.

Aforementioned approaches for radiology report gener-
ation (RRG) employ the encoder-decoder architecture and
mainly focus on improving the capabilities of cross-modal
alignment and text generation, which are fundamentally re-
stricted when they are learned from a rather small and fixed
set of radiograph-report pairs. Consider recent large lan-
guage models (LLMs) illustrate their superiority in gener-
ating high-quality text with few examples, it is expected
to apply LLMs in RRG by fine-tuning with limited data.1
However, in doing so, one faces a challenging barrier of do-
main variance since ready-to-use LLMs are often pre-trained
on general data, which causes a series of problems such as
ill-representing visual and textual features from in-domain
data, generating texts without domain characteristics, etc.
Therefore, domain adaptation and refined text generation are
expected on LLMs for in-domain applications, thus requir-
ing particular LLM optimization processes for RRG.

In this paper, we propose an approach to bootstrapping
LLM for RRG, with two components designed for domain
adaptation and task-specific generation, namely, in-domain
instance induction and coarse-to-fine decoding. Specifically,
in-domain instance induction adapts the LLM with learn-
ing on radiology reports-alike data, equipped with two parts,
related instance retrieval and contrastive semantic ranking.
Related instance retrieval provides a series of reports with
ranked semantic relations to the input radiograph, and these
reports are used in contrastive semantic ranking as related
instances, comparing with less correlated instances from
other medical sources. The LLM in this induction process
is then learned to generate reports similar to high-ranked in-
stances than lower ones, so as to fast align with in-domain
and task-specific data. The coarse-to-fine decoding process

1In practice, fine-tuning LLMs for in-domain tasks still requires
a rather large amount of labeled data for better performance when
LLMs are not pre-trained on the data from particular domains.
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Figure 1: The overall architecture of our proposed approach based on MiniGPT-4 for RRG. The approach consists of three
main components, namely, visual encoding, in-domain instance induction (I3), and coarse-to-fine decoding (C2FD), which are
represented in red, yellow, and green backgrounds, respectively. The dashed blue box cross visual encoding and C2FD refers to
MiniGPT-4. The dashed orange box in the left part of in-domain instance induction stands for the toolkit to retrieve instances
from different sources, where the darker colored instances in the output are more related to the input radiograph than the lighter
ones. Note that the text generator (LLM) of MiniGPT-4 is shared in I3 and C2FD, indicated by a gray dashed line.

optimizes the LLM to refine intermediate reports generated
from the induction process to the precise final reports. Ex-
perimental results and analyses on two RRG benchmark
datasets, i.e., IU X-RAY (Demner-Fushman et al. 2016) and
MIMIC-CXR (Johnson et al. 2019) demonstrate the supe-
riority of our approach, which outperforms strong baselines
and achieves state-of-the-art performance on both datasets.

2 The Approach
The overall architecture built upon MiniGPT-4 (Zhu et al.
2023)2 is illustrated in Figure 1, with three main compo-
nents, namely, visual encoding, in-domain instance induc-
tion (I3), and coarse-to-fine decoding (C2FD).

The visual encoding process employs an encoder fve (i.e.,
MiniGPT-4 visual encoder) to extract latent representations
of an input radiograph I. Then, the in-domain instance in-
duction process uses a text generator ftg (i.e., MiniGPT-4
text generator, namely, Vicuna (Chiang et al. 2023)) to gen-
erate intermediate reports based on the resulted radiograph
representation from the visual encoder and a generation
prompt pg , where in training stage, related and unrelated
reports are retrieved and sampled to provide a set of ranked
instances, for the induction process to update the generator
with domain-specific knowledge. Finally, the coarse-to-fine
decoding process uses the same text generator ftg to produce

2LLaVA (Liu et al. 2023) is also replaceable and claims similar
results in our experiments. We choose MiniGPT-4 because it more
focuses on generation tasks that are more relevant to the RRG task,
whereas LLaVA is specialized in vision-language understanding
tasks according to how they are applied in their original settings.

the final report Ŷ based on the resulted intermediate reports,
along with the radiograph representations and a refinement
prompt pr. Thus, RRG in our approach is formalized as

Ŷ = ftg (fve(I),pr, ftg (fve(I),pg)) (1)

where Ŷ is the final report and I is the input radiograph. In
training, the model is optimized based on the in-domain in-
stance induction loss LI3 and the cross-entropy loss LC2FD

from the generated final reports Ŷ and the gold standard Y∗,
therefore resulting the final loss L as

L = β1LI3 + β2LC2FD (2)

where β1 and β2 are hyper-parameters to balance the contri-
bution of the losses. In the following text, we introduce each
component according to the aforementioned processing se-
quence in details, including visual encoding, in-domain in-
stance induction, and coarse-to-fine decoding, respectively.

2.1 Visual Encoding
The MiniGPT-4 visual encoder fve consists of three mod-
ules, namely, the vision transformer fv (Dosovitskiy et al.
2021), the Q-Former fq (Li et al. 2023), and a linear pro-
jection layer, formulated as fve(·) = Linear(fq(fv(·))).
Therefore, radiographs are firstly fed into the vision trans-
former model fv , with their features hv extracted through

hv = fv(I) (3)

and are further processed by the Q-Former fq to transfer vi-
sual representations into textual semantic space by

hq = fq(hv) (4)
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where hq represents the output features. Finally, a linear pro-
jection layer is used to further project hq into the latent rep-
resentations v to align hq to the dimension of hidden states
in the text generator through

v = Linear(hq) (5)
where v is used in I3 and C2FD as visual features to guide
the generation process of intermediate and final reports.

2.2 In-domain Instance Induction
Once the visual features are extracted, the next step is to gen-
erate a corresponding radiology report through a text gener-
ator, i.e., an LLM in our approach. In doing so, it still strug-
gles to produce highly patternized radiology reports with
professional medical terminology if the generator is trained
in the general domain, where misalignment occurs between
the general and medical semantic spaces. However, domain
adaptation for LLMs is not a trivial task, especially when in-
domain training data is limited. Inspired by studies (Ouyang
et al. 2022; Bai et al. 2022; Touvron et al. 2023a) that op-
timize LLMs by learning from ranked texts, we propose a
novel method, in-domain instance induction, to bootstrap
LLMs with effective domain adaptation based on two se-
quentially connected components, namely, related instance
retrieval and contrastive semantic ranking, whose details are
presented in the following texts.

Related Instance Retrieval (RIR) The first component
serves as the data provider that offers a series of in-domain
references for LLM domain adaptation. In RIR, we retrieve
in-domain data from two sources, namely, the training data
of RRG and public medical corpora, to provide task-specific
and ranking-support references, respectively, where each
source contributes M instances (2M instances in total). This
two-source design allows the text generator to not only learn
domain information by being optimized on in-domain data,
but also be equipped with task-specific information by learn-
ing to distinguish related instances from others. Specifically,
in the retrieval process from the training data, we randomly
sample a set of radiology reports R = {R1, · · · , RN} with
a retrieval size of N . Next, we utilize an image encoder f ′

ve
and its corresponding text encoder f ′

te from an off-the-shelf
toolkit (i.e., MedCLIP (Wang et al. 2022b)) to project the
input radiograph I and the sampled reports R into the same
semantic space through

vr = f ′
ve(I) (6)

and
{u1, · · · ,uN} = f ′

te(R1, · · · , RN ) (7)
where vr and {u1, · · · ,uN} are visual and text representa-
tions, respectively. Afterwards, for each text representation
ui, we compute its cosine similarity score ci with vr and
select the top M ones based on ci, then retrieve their cor-
responding reports from the training data. For the rest M
instances from public medical corpora, we randomly sam-
ple them out and compute their cosine similarity scores with
vr following the same process as that we do for ci. Fi-
nally, we merge the two aforementioned instance lists into
S = [S1 · · ·S2M ], with the first M instances from public
medical corpora, and the rest M ones from the training data.

DATASET
IU X-RAY MIMIC-CXR

TRAIN VAL TEST TRAIN VAL TEST

IMAGE 5.2K 0.7K 1.5K 369.0K 3.0K 5.2K
REPORT 2.8K 0.4K 0.8K 222.8K 1.8K 3.3K
PATIENT 2.8K 0.4K 0.8K 64.6K 0.5K 0.3K
AVG. LEN. 37.6 36.8 33.6 53.0 53.1 66.4

Table 1: The statistics of the two benchmark datasets w.r.t.
their training, validation, and test sets, including the num-
bers of images, reports, and patients, and the averaged word-
based length (AVG. LEN.) of all reports in each category.

Contrastive Semantic Ranking (CSR) With the retrieved
instance list S , LLM learns to rank them in a contrastive
manner by learning over and comparing the representations
of LLM output Ẑ and S. Firstly, by using the visual fea-
ture v of the input radiograph obtained from Eq. (5) and the
generation prompt pg , we generate the intermediate report
Ẑ = ẑ1 · · · ẑNz

with Nz tokens through

Ẑ = ftg(v,pg) (8)

where the representation on of the n-th token ẑn is extracted
from the last layer3 of ftg by

on = ftg(v,pg; ẑ1 · · · ẑn−1) (9)

Then, we compute the mean pooling of all on and use the
resulting vector o to represent Ẑ . For each instance Sm in
S , we perform a similar process as that we do for Ẑ to obtain
its representation o′

m, with the representation of each token
in Sm computed through

o′
m,n = ftg(v,pg; sm,1 · · · sm,n−1) (10)

where sm,1 · · · sm,n−1 are the n-1 tokens prior to the current
token as that we do in Eq. (9). Afterwards, to facilitate the
learning process in a contrastive manner, we construct M
instance pairs SP = [(S1, S1+M ), · · · , (SM , S2M )], where
in each pair, the former comes from public medical corpora
and the latter from the training data, which guarantees con-
trast between unrelated and related instances in each pair.
Finally, we compute LI3 through a pairwise optimization

LI3 =
1

M

M∑
m=1

[
∥o− o′

m+M∥ − ∥o− o′
m∥+ α

]
(11)

where ∥ · ∥ computes the Euclidean norm of a vector, α is a
positive real number that controls the margin. For further ex-
planation, Eq. (11), ftg learns to update the LLM by gener-
ating intermediate reports that are closer to the high-ranking
instance Sm+M in every pair (Sm, Sm+M ), so that ftg is
gradually aligned to both the medical domain as well as the
reports related to the RRG task.

3For the sake of simplicity, in Eq. (9) and (10), we still use ftg
to represent representation computation, which is actually different
from the generation since the last linear projection layer is omitted.
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L AVG. ∆ P R F1

IU
X-RAY

MINIGPT-4 0.207 0.068 0.022 0.007 0.091 0.161 - - - -
+ I3 0.277 0.163 0.122 0.083 0.107 0.181 47.2% - - -
+ C2FD 0.263 0.154 0.113 0.075 0.101 0.169 28.6% - - -
+ I3+C2FD (THIS WORK) 0.326∗ 0.204∗ 0.154∗ 0.119∗ 0.132∗ 0.234∗ 57.5% - - -

MINIGPT-4 (FT) 0.389 0.262 0.181 0.134 0.169 0.308 - - - -
+ I3 0.458 0.296 0.210 0.158 0.183 0.357 12.8% - - -
+ C2FD 0.437 0.289 0.205 0.151 0.178 0.336 9.4% - - -
+ I3+C2FD (THIS WORK) 0.499∗ 0.323∗ 0.238∗ 0.184∗ 0.208∗ 0.390∗ 22.0% - - -

MIMIC
-CXR

MINIGPT-4 0.135 0.048 0.014 0.003 0.064 0.104 - 0.126 0.103 0.113
+ I3 0.212 0.120 0.075 0.031 0.106 0.175 58.2% 0.157 0.113 0.131
+ C2FD 0.178 0.084 0.051 0.017 0.097 0.163 48.7% 0.144 0.109 0.124
+ I3+C2FD (THIS WORK) 0.266∗ 0.152∗ 0.093∗ 0.060∗ 0.109∗ 0.210∗ 64.9% 0.228∗ 0.147∗ 0.179∗

MINIGPT-4 (FT) 0.323 0.184 0.110 0.069 0.122 0.220 - 0.335 0.246 0.284
+ I3 0.358 0.203 0.137 0.091 0.139 0.256 14.9% 0.383 0.279 0.323
+ C2FD 0.345 0.191 0.128 0.079 0.134 0.243 9.2% 0.354 0.251 0.294
+ I3+C2FD (THIS WORK) 0.402∗ 0.262∗ 0.180∗ 0.128∗ 0.175∗ 0.291∗ 31.5% 0.465∗ 0.482∗ 0.473∗

Table 2: NLG and CE evaluations of different models on the test sets of IU X-RAY and MIMIC-CXR datasets. “MiniGPT-
4 (FT)” denotes the model with MiniGPT-4 pre-trained on MIMIC-CXR training data. “BL” is the abbreviation of BLEU;
“MTR” and “RG-L” denote METEOR and ROUGE-L, respectively. The average improvements over all NLG metrics compared
to MiniGPT-4 and MiniGPT-4 (FT) correspondingly are also presented in the “AVG. ∆” column, respectively. “∗” marks the
results where the improvements are statistically significant over all baselines at p ≤ 0.05 level.

2.3 Coarse-to-Fine Decoding
Although I3 offers a rather strong learning process to adapt
LLM to the medical domain, it is still limited for the LLM to
generate precise reports for the RRG task, since only coarse
image-text alignment and low-level text references are pro-
vided. To further facilitate the generation ability of LLM for
RRG, we propose to enhance the LLM with a coarse-to-fine
decoding process. Specifically, the text generator4 (i.e., the
LLM, which is the same as the one in I3) takes the visual
representation v, the refinement prompt pr, and the inter-
mediate report Ẑ to generate the final report Ŷ by

Ŷ = ftg(v,pr; Ẑ) (12)

Afterwards, we compute the cross-entropy loss LC2FD

based on the generated and the gold standard reports for each
input radiograph and combine it with LI3 based on Eq. (2)
to jointly optimize the LLM accordingly during training.

3 Experiment Settings
3.1 Datasets
We conduct our experiments on two conventional bench-
mark datasets, i.e., IU X-RAY (Demner-Fushman et al.
2016) from Indiana University and MIMIC-CXR (Johnson
et al. 2019) from the Beth Israel Deaconess Medical Cen-
ter. The former dataset is relatively small with 7,470 chest
X-Ray images and 3,955 radiology reports. The latter one

4It is worth noting that, the text generator learns to generate in-
termediate and final reports with different inputs. Compared with
intermediate report generation, final report generation has an addi-
tional input (i.e., the intermediate report Ẑ) and a different prompt.

is the largest public radiology dataset with 473,057 chest
X-Ray images and 206,563 reports. We follow the experi-
mental setup of previous studies (Li et al. 2018; Chen et al.
2020, 2021; Qin and Song 2022) by selecting findings sec-
tions and excluding samples without such sections for both
datasets. We follow the dataset split in Li et al. (2018) for
IU X-RAY and the official split of MIMIC-CXR. Table 1
reports the statistics of all datasets in terms of the numbers
of radiographs, reports, patients, and average report length
according to each split of the datasets.

3.2 Baselines and Evaluation Metrics

To verify our proposed approach, we try three baselines: the
first uses the visual encoder and text generator to directly
generate final reports, which is equivalent to the standard
MiniGPT-4; the second and third baselines add I3 and C2FD
on top of the first baseline, denoted as “+I3” and “+C2FD”,
respectively. Note that we have two groups of such baselines
according to whether MiniGPT-4 is fine-tuned on RRG data,
with details of its fine-tune illustrated in the next subsection.

Following previous studies (Chen et al. 2020, 2021),
we evaluate different approaches with two types of assess-
ments, namely, natural language generation (NLG) metrics
and clinical efficacy (CE) metrics. NLG metrics consist of
BLEU (Papineni et al. 2002), METEOR (Denkowski and
Lavie 2011) and ROUGE-L (Lin 2004). For CE metrics,
CheXpert (Irvin et al. 2019) is utilized to label the gener-
ated reports and compare the results with ground truths in 14
different categories related to thoracic diseases and support
devices, with precision, recall, and F1 used for evaluation.
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

IU
X-RAY

ST (Vinyals et al. 2015) 0.216 0.124 0.087 0.066 - 0.306 - - -
ATT2IN (Rennie et al. 2017) 0.224 0.129 0.089 0.068 - 0.308 - - -
ADAATT (Lu et al. 2017) 0.220 0.127 0.089 0.068 - 0.308 - - -
COATT (Jing, Xie, and Xing 2018) 0.455 0.288 0.205 0.154 - 0.369 - - -
HRGR (Li et al. 2018) 0.438 0.298 0.208 0.151 - 0.322 - - -
CMAS-RL (Jing, Wang, and Xing 2019) 0.464 0.301 0.210 0.154 - 0.362 - - -
R2GEN (Chen et al. 2020) 0.470 0.304 0.219 0.165 - 0.371 - - -
CA (Liu et al. 2021b) 0.492 0.314 0.222 0.169 0.193 0.381 - - -
CMCL (Liu, Ge, and Wu 2021) 0.473 0.305 0.217 0.162 0.186 0.378 - - -
PPKED (Liu et al. 2021a) 0.483 0.315 0.224 0.168 - 0.376 - - -
R2GENCMN (Chen et al. 2021) 0.475 0.309 0.222 0.170 0.191 0.375 - - -
R2GENRL (Qin and Song 2022) 0.494 0.321 0.235 0.181 0.201 0.384 - - -
XRAYGPT (7B) (Thawkar et al. 2023) 0.177 0.104 0.047 0.007 0.105 0.203 - - -

OURS (14.2B) 0.499∗ 0.323∗ 0.238∗ 0.184∗ 0.208∗ 0.390∗ - - -

MIMIC
-CXR

ST (Vinyals et al. 2015) 0.299 0.184 0.121 0.084 0.124 0.263 0.249 0.203 0.204
ATT2IN (Rennie et al. 2017) 0.325 0.203 0.136 0.096 0.134 0.276 0.322 0.239 0.249
ADAATT (Lu et al. 2017) 0.299 0.185 0.124 0.088 0.118 0.266 0.268 0.186 0.181
TOPDOWN (Anderson et al. 2018) 0.317 0.195 0.130 0.092 0.128 0.267 0.320 0.231 0.238
R2GEN (Chen et al. 2020) 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276
CA (Liu et al. 2021b) 0.350 0.219 0.152 0.109 0.151 0.283 - - -
CMCL (Liu, Ge, and Wu 2021) 0.344 0.217 0.140 0.097 0.133 0.281 - - -
PPKED (Liu et al. 2021a) 0.360 0.224 0.149 0.106 0.149 0.284 - - -
R2GENCMN (Chen et al. 2021) 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278
R2GENRL (Qin and Song 2022) 0.381 0.232 0.155 0.109 0.151 0.287 0.342 0.294 0.292
ITA (Wang et al. 2022a) 0.395 0.253 0.170 0.121 0.147 0.284 - - -
WARMSTART (Aaron Nicolson 2022) 0.392 0.245 0.169 0.124 0.153 0.285 0.359 0.412 0.384
RGRG (Tanida et al. 2023) 0.373 0.249 0.175 0.126 0.168 0.264 0.461 0.475 0.447
XRAYGPT (7B) (Thawkar et al. 2023) 0.128 0.045 0.014 0.004 0.079 0.111 - - -
MED-PALM (562B) (Tu et al. 2023) 0.317 - - 0.115 - 0.275 - - 0.378

OURS (14.2B) 0.402∗ 0.262∗ 0.180∗ 0.128∗ 0.175∗ 0.291∗ 0.465∗ 0.482∗ 0.473∗

Table 3: Comparisons of our approach with previous studies on the test sets of IU X-RAY and MIMIC-CXR with respect to
NLG and CE metrics. The best and the second-best results are highlighted in boldface and underlines, respectively. For LLM-
based methods (i.e., XRAYGPT, MED-PALM, and OURS), we illustrate the number of parameters in parentheses. “∗” marks
the results where the improvements are statistically significant over all baselines at p ≤ 0.05 level.

3.3 Implementation Details
We use MiniGPT-4 with its default hyper-parameter settings
(i.e., ViT-G version of vision transformer from EVA-CLIP
(Fang et al. 2022) with 40 encoding layers, Q-Former (Li
et al. 2023) with 12 layers, a linear projection layer corre-
sponding to Eq. (5), and Vicuna (Chiang et al. 2023) (13B)
as the text generator with its default 40 transformer lay-
ers). In order to obtain an enhanced baseline, we fine-tune
MiniGPT-4 on the training set of public radiology bench-
mark MIMIC-CXR following the standard fine-tuning pro-
cess, with the resulted model marked as MiniGPT-4 (FT) in
following texts. For the public medical data used in I3, we
randomly sampled 3, 000 medical documents from PubMed
dataset5. In addition, motivated by the practice of optimiz-
ing LLaMA-2 (Touvron et al. 2023b) by learning to rank
instances in a binary form, we only retrieve a small number6

of related instances in I3, i.e., M = 3, which refers to that
there are three instances retrieved from the training set and

5https://pubmed.ncbi.nlm.nih.gov/pubmed
6We try M ∈ [1, 5] and adopt M = 3 with the best results.

three from the public medical corpora, respectively. For our
full model, we train them on the training set of IU X-RAY
and MIMIC-CXR with different hyper-parameter settings
and use the one with the highest performance on the valida-
tion set. The batch sizes for IU X-RAY and MIMIC-CXR
are set to 12. The weights to balance I3 and C2FD loss in
Eq. (2) are set to β1 = 1 and β2 = 1, respectively. In train-
ing, we only update parameters in the linear projection layer
in the visual encoder and Vicuna through AdamW (Kingma
and Ba 2015) with learning rate set to 1×10−6. Note that in
inference, we only use visual encoding, intermediate report
generation in I3 without RIR and other parts of CSR, and
C2FD, to generate reports.

4 Results and Analysis
4.1 Overall Results
Experiment results of different models on the two bench-
mark datasets are reported in Table 2, with several observa-
tions. First, under different settings with original MiniGPT-
4 and its fine-tuned version, our approach with I3 (i.e.,
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NLG METRICS
BL-1 BL-2 BL-3 BL-4 MTR RG-L

I3 (TD) 0.339 0.182 0.120 0.084 0.126 0.238
I3 (PMD) 0.310 0.167 0.112 0.074 0.109 0.215

Table 4: I3 performance with only using training data (TD)
or public medical data (PMD) as the retrieval source.

Figure 2: The curves of L2 distance between the represen-
tation of the reports from different models (i.e., MiniGPT-4
(FT)+I3 and MiniGPT-4 (FT)) and that of the top-ranked or
bottom-ranked instances against training steps.

“+I3”) and C2FD (i.e., “+C2FD”) consistently outperforms
all baselines on the test set of both datasets under all evalua-
tion metrics, which demonstrates the effectiveness of our ap-
proach given the baselines, especially the MiniGPT-4 (FT),
have already achieved outstanding performance. Second, the
ablation of either I3 or C2FD leads to inferior performance
compared with the full model, which presents that both com-
ponents play essential roles in this task. Third, in most cases,
model with I3 achieves better performance than the one with
C2FD. The performance gap is much more significant when
the models are equipped with the original MiniGPT-4 than
the fine-tuned one, which indicates the power of I3 to bridge
the domain gap and improve RRG, especially when the gap
is rather large under the original MiniGPT-4 setting.

We further compare our approach (i.e., MiniGPT-4
(FT)+I3+C2FD) with existing state-of-the-art methods on
the same datasets, where results are reported in Table 3
on both NLG metrics and CE metrics. Overall, our ap-
proach significantly outperforms all existing studies on both
NLG and CE metrics, which further confirms the validity of
our approach to enhance LLMs for RRG by learning from
ranked instances and generating the final reports in a coarse-
to-fine manner. Notably, our approach outperforms exist-
ing methods with medical domain LLMs (i.e, XRAYGPT
(Thawkar et al. 2023) and MED-PALM7 (Tu et al. 2023))

7MED-PALM does not release the model weights and its RRG
test set. Therefore, for fair comparisons, we approximate their set-
tings to randomly curated 10 groups of test instances with the same
size (i.e., 246 cases) as that used in MED-PALM. Our approach

NLG METRICS
BL-1 BL-2 BL-3 BL-4 MTR RG-L

INTER. 0.364 0.211 0.142 0.093 0.145 0.261
FINAL 0.402 0.262 0.180 0.128 0.175 0.291

Table 5: Comparison of intermediate (INTER.) and final re-
ports that input to and output from C2FD w.r.t. NLG metrics.

with significant improvements.

4.2 Analysis
In this section, we analyze the effect of different components
of our approach. Specifically for I3, we explore it separately
with its two components, namely, RIR and CSR. Then, we
investigate how C2FD performs and finally present the con-
tribution of different components through a case study.

Effect of Related Instance Retrieval To investigate the
effect of instance retrieval methods, we try alternative set-
tings that only use the training data or public medical cor-
pora as the retrieval sources in I3, as a comparison to that
in our main experiment. Table 4 compares the results on
MIMIC-CXR test set, where I3 (TD) and I3 (PMD) de-
note the aforementioned two settings, respectively. By com-
paring the results in Table 4 to “MiniGPT (FT)+I3” reported
in Table 2, it is observed that I3 in our approach outper-
forms both I3 (TD) and I3 (PMD) with rather large mar-
gin, which confirms the validity of our design because single
retrieval source contributes less differentiated instances for
effectively ranking, therefore affects domain and task adap-
tation of the LLM to RRG. Moreover, the performance com-
parison between I3 (TD) and I3 (PMD) verifies that in-
stances from the training data are more important than those
ones irrelevant to the task, which further illustrates the fea-
sibility and practicability of tuning LLM to RRG by our ap-
proach (especially using I3) with employing limited data.

Effect of Contrastive Semantic Ranking We analyze
the changing of L2 distance between the representations
of the intermediate reports and the ranked instances (i.e.,
∥o − o′

m∥) during training, so as to analyze how CSR
performs. Figure 2 presents the curve of distance with re-
spect to the training steps, where the red nodes stand for
the distances between the intermediate report generated by
MiniGPT-4 (FT)+I3 and the top-ranked instances, and green
ones for that between the same report and bottom-ranked in-
stances, respectively. As comparing references, blue/yellow
nodes indicate the distances between the report generated by
MiniGPT-4 (FT) and the top-/bottom-ranked instances, re-
spectively. It is observed that, with more training steps, the
distance (green dots) between the reports from MiniGPT-
4+I3 and the top-ranked instances decreases and that (red
dots) between the same report and the bottom-ranked in-
stances increases, which indicates that our approach suc-
ceeds to enable the generator to produce texts that are closer
to good references and separated from irrelevant informa-
tion. On the contrary, MiniGPT-4 (FT) without the assis-

achieves performance similar to the results reported in Table 3.
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MiniGPT-4 (FT)+I3: Lung volumes are normal. The heart size is within normal limits. The thoracic aorata is widened 
but elongated. No local abnormality is identified. The cardiac and mediastinal silhouettes are unremarkable. No 
abnormalities in local contours are identified. No pleural effusion and pneumothorax is seen.

MiniGPT-4 (FT): The given radiology image is a frontal chest radiograph of an adult male. The image is oblique, with 
no abnormalities visible. The lungs are well aerated and the heart is in its normal position. The mediastinum is not 
enlarged and there is no evidence of any infiltrates or consolidation. 

MiniGPT-4 (FT)+C2FD: Frontal chest radiograph is presented. The image is normal and unremarkable, with no 
evidence of vascular abnormalities. The chest radiograph shows moderate opacities in both lungs, consistent with 
chronic bronchitis. The heart is mildy enlarged. Mediastinum contours are clear and there is no pleural effusion or 
focal consolidation.

MiniGPT-4 (FT)+I3+C2FD: There are low lung volumes. Heart size is mildly enlarged. Mediastinal contours are 
unremarkable. Patchy atelectasis are seen at the lung bases. There is mild pulmonary vascular congestion without 
overt interstitial edema. No pleural effusion or pneumothorax is present. There are no acute osseous abnormalities.

Gold Standard: Lung volumes are 
low.  Mediastinal and hilar contours
are unremarkable. The heart is mildly 
enlarged. Streaky opacities in the lung
bases likely reflect areas of 
atelectasis. No pleural effusion or 
pneumothorax is present. There are 
no acute osseous abnormalities.

MiniGPT-4: Key Findings:
* A large mass in the right lung field, likely a malignancy
* Irregularly shaped mass with a irregular border...

Original Image

Figure 3: An illustration of the reports generated by different models with a given input radiograph, where the gold standard is
also presented for reference. Medical terms shared by the gold standard and model outputs are highlighted in the same color.
Correct and incorrect content in the generated reports are highlighted in green and red background, respectively.

tance of I3 is unable to distinguish related reports from the
unrelated ones, which is not capable of aligning LLMs to the
task and thus obtains inferior performance.

Effect of Coarse-to-Fine Decoding To investigate how
C2FD performs, we run our full model and extract the re-
ports input (intermediate) to and output (final) from C2FD.
Table 5 compares NLG results of those reports on MIMIC-
CXR test set, where significant improvements are observed
on final reports, confirming the effectiveness of C2FD in re-
fining the intermediate reports with precise and coherent el-
evation when an appropriate model design is applied.

Case Study To further qualitatively investigate how our
approach bootstraps LLMs for RRG, we perform a case
study on the output reports of different models with the same
input chest X-ray image chosen from MIMIC-CXR. Figure
3 shows the results, with several observations from differ-
ent perspectives drawn as follows. The original MiniGPT-4
fails to handle RRG and generates reports that contain few
medical terms. On the contrary, MiniGPT-4 (FT) generates
a much better report with more relevant medical terms (e.g.,
“heart”, “mediastinum”) compared to the original MiniGPT-
4. However, the generated reports still include irrelevant
descriptions (e.g., “This image is oblique.”) owing to less
alignment to the task, which is also found in MiniGPT-
4 (FT)+I3 although it produces reports that are well patt-
ernized and better aligned to the medical domain. MiniGPT-
4 (FT)+C2FD produces more informative and precise re-
ports than that without C2FD, where some missing diag-
noses from MiniGPT-4 (FT) are resolved by the C2FD pro-
cess (e.g., “There is no pleural effusion”). Finally, MiniGPT-
4 (FT)+I3+C2FD generates the best report over all other
models, whose problems are all alleviated to some extent,
thus confirms the superiority of the proposed approach.

5 Related Work
Clinical medicine has raised increasing attention nowadays
(Wu et al. 2019; Tian et al. 2020; Song et al. 2020). Partic-
ularly, RRG is a challenging application, requiring to gen-
erate long text in the medical domain. In doing so, some
studies try to leverage useful visual and textual features to
improve RRG, e.g., regional visual features (Tanida et al.
2023), report templates (Li et al. 2018), and structure-level
descriptions (Wang et al. 2022a). From another aspect, some
studies focus on improving cross-modal alignment through
co-attention (Jing, Xie, and Xing 2018), memory networks
(Chen et al. 2020, 2021), and reinforcement learning (Qin
and Song 2022), to better matching different information to
guide the generation process. Recently, with the extraordi-
nary generation ability of LLMs (Touvron et al. 2023a; Gan
et al. 2023; Yuanhe Tian 2023), recent studies have applied
LLMs to multimodal scenarios (Li et al. 2023; Zhu et al.
2023; Liu et al. 2023), including applications in the medi-
cal domain (Thawkar et al. 2023; Tu et al. 2023). Compared
with them, our approach offers an alternative solution to im-
prove RRG, where we start from general domain LLM (i.e.,
MiniGPT-4) and design special learning processes to boot-
strap it for RRG with limited in-domain data for domain
adaptation and generation optimization.

6 Conclusion
In this paper, we propose to bootstrap LLMs for RRG, where
I3 and C2FD are proposed to align LLMs with the medical
domain and improve report generation, respectively. Experi-
ment results demonstrate our superiority to current state-of-
the-art models on IU X-Ray and MIMIC-CXR with analysis
further conducted to verify its validity. So that the fine-tuned
LLM and our designed components in this work offer a new
reference framework for future RRG studies. Notably, our
approach provides a practical paradigm of adapting general
domain LLMs to applications in specific domains, which re-
veals the potential of extending the approach to other tasks.
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