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Abstract

There are two primary approaches to addressing cross-lingual
transfer: multilingual pre-training, which implicitly aligns the
hidden representations of various languages, and translate-
test, which explicitly translates different languages into an
intermediate language, such as English. Translate-test offers
better interpretability compared to multilingual pre-training.
However, it has lower performance than multilingual pre-
training and struggles with word-level tasks due to trans-
lation altering word order. As a result, we propose a new
Machine-created Universal Language (MUL) as an alterna-
tive intermediate language. MUL comprises a set of dis-
crete symbols forming a universal vocabulary and a natu-
ral language to MUL translator for converting multiple nat-
ural languages to MUL. MUL unifies shared concepts from
various languages into a single universal word, enhancing
cross-language transfer. Additionally, MUL retains language-
specific words and word order, allowing the model to be eas-
ily applied to word-level tasks. Our experiments demonstrate
that translating into MUL yields improved performance com-
pared to multilingual pre-training, and our analysis indicates
that MUL possesses strong interpretability. The code is at:
https://github.com/microsoft/Unicoder/tree/master/MCUL.

Introduction
Cross-lingual transfer aims to tackle NLP tasks in multiple
languages using training data from only one or a few lan-
guages, such as English. There are two primary approaches
to addressing cross-lingual transfer: first, multilingual pre-
training involves constructing a multilingual encoder, fine-
tuning it in English, and directly testing it in other languages.
The multilingual encoder combines words from all target
languages to create a large vocabulary, and the hidden rep-
resentations in the intermediate layers are implicitly aligned
to facilitate the cross-lingual transfer. Second, the translate-
test approach translates the test set of other languages into
an intermediate language, typically English. This allows the
model to use English as input for both training and testing,
explicitly solving cross-lingual tasks.

Compared to multilingual pre-training, translate-test of-
fers better interpretability by utilizing an intermediate lan-
guage. However, it has two drawbacks: Translate-test yields
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worse performance compared to cross-lingual transfer. For
instance, its performance on XNLI is 3.1% lower than that of
multilingual pre-training (Conneau et al. 2020). Translate-
test cannot be applied to word-level tasks such as sequential
labeling or machine reading comprehension, as translation
alters the word order.

To retain the interpretability of an intermediate language
while addressing its limitations, we propose to create a new
language specifically designed for cross-lingual tasks. This
language, created by machines without requiring human ex-
pertise, is called the Machine-created Universal Language
(MUL). MUL consists of a set of discrete symbols that form
a universal vocabulary and an NL-MUL translator for con-
verting multiple natural languages (NL) to MUL. The NL-
MUL translator maps shared concepts from different lan-
guages to the same universal words, facilitating better cross-
lingual transfer. Additionally, it preserves word order and
language-specific vocabulary, allowing for easy application
to word-level tasks. This is consistent with the research pre-
sented by Chai, Liang, and Duan 2022, which indicates that
word order does not affect cross-lingual abilities, thus allow-
ing for the preservation of distinct word orders in different
languages. To solve cross-lingual NLP tasks, we can trans-
late both the English training dataset and the multilingual
test dataset into MUL, enabling the model to use MUL as
input for both training and testing.

To create MUL, our approach consists of three compo-
nents: First, we pre-train the encoder using multilingual
MLM loss and generate word alignment supervision on
bilingual data, with the word alignment supervision being
created through an unsupervised method. Second, we em-
ploy an inter-sentence contrastive learning approach to fur-
ther enhance the alignment of contextualized word embed-
dings across languages. Lastly, we introduce vector quanti-
zation with cross-lingual alignment (VQ-CA) to improve the
interpretability of the universal vocabulary.

We conduct experiments on XNLI, NER, MLQA, and
Tatoeba using MUL as input. Compared to the combined
vocabulary in multilingual pre-training, our model has a
smaller vocabulary size and necessitates fewer parameters
at the word embedding layer. We obtain comparable results
to XLM-R with 50% fewer parameters and achieve superior
results after redistributing the parameters from word embed-
ding to the transformer’s weights. Further analysis reveals
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that MUL exhibits strong interpretability, as translating to
MUL results in less ambiguity compared to translating to
English.

Our work offers two significant contributions. First, we
introduce a new universal language, MUL, along with a
translator between multiple natural languages and MUL.
Our experiments demonstrate that translating to MUL
achieves strong cross-lingual transfer performance and ex-
hibits good interpretability. Second, we propose an inno-
vative approach to create MUL, which incorporates inter-
sentence contrastive learning and vector quantization with
cross-lingual alignment.

Related Work
Multilingual pre-training was first proposed by mBERT (De-
vlin et al. 2019b), which extended the pre-training of
BERT (Devlin et al. 2019a) to 100 languages by creating
a large vocabulary for all languages and building a multi-
lingual encoder. To improve the cross-lingual transfer per-
formance, lots of works extended monolingual pre-training
methods to multiple languages and achieved good cross-
lingual performance, such as XLM-Roberta (Conneau et al.
2020) extended Roberta (Liu et al. 2019), mT5 (Xue et al.
2021) extended T5 (Raffel et al. 2020), XLM-E (Chi et al.
2022) extended Electra (Clark et al. 2020). These methods
can be improved by introducing bilingual data (Conneau and
Lample 2019; Huang et al. 2019) or multilingual knowledge
(Jiang et al. 2022) to improve the implicitly cross-lingual
alignment between different languages. All of these works
take natural language as input and achieve cross-lingual
transfer by implicitly cross-lingual alignment. Translate-test
is a baseline of XNLI proposed by Conneau et al. 2018. Fur-
ther experiments show that both XLM (Conneau and Lam-
ple 2019) and XLM-R (Conneau et al. 2020) can achieve
better performance compared to the translate-test baseline.
Our work achieves better performance compared to XLM-R
by translating all data to MUL.

Abstract Meaning Representation(AMR) (Banarescu
et al. 2013) targets to map natural language sentence to ab-
stract graph, and can server as the transfer layer in MT sys-
tem (Xue et al. 2014). Our work share the same motivation
and propose new methods for cross-lingual pre-training.

VQ-VAE is proposed by van den Oord, Vinyals, and
Kavukcuoglu 2017 to create discrete symbols in the neu-
ral network, which is usually used to create discrete sym-
bols for image (Ramesh et al. 2021; Esser, Rombach, and
Ommer 2021), video (Wu et al. 2022) and audio (Baevski
et al. 2020). It’s rare to be applied to natural language which
is already discrete symbols. The symbols in our MUL have
better interpretability than the symbols for other modalities.

Methodology
In this section, we begin by defining the Machine-created
Universal Language (MUL) and providing an overview of
its creation process. Following that, we present the de-
tailed steps involved in creating MUL, including multi-
lingual masked language modeling (MLM), inter-sentence

contrastive learning, and vector quantization with cross-
lingual alignment.

Machine-Created Universal Language (MUL)
MUL comprises a set of discrete symbols that form a uni-
versal vocabulary, along with an NL-MUL translator and a
MUL-NL translator for translating between multiple natural
languages and MUL.

Each symbol in the universal vocabulary is defined as a
universal word. Each universal word corresponds to a con-
cept identified by the model. Most universal words can be
aligned with words in multiple natural languages, explicitly
facilitating cross-lingual transfer. Some universal words cor-
respond to specific words in certain languages, helping to
understand linguistic features unique to those languages.

The NL-MUL translator aims to translate natural lan-
guages into MUL. It preserves the word order and generates
one universal word for each natural word, which assists the
model in solving word-level tasks such as sequential tagging
and machine reading comprehension. The mapping relation-
ship between natural words and universal words is context-
dependent, meaning a single natural word may correspond to
different universal words in varying contexts. Therefore, the
translation from NL to MUL involves word disambiguation,
which can reduce the model’s difficulty in accomplishing
specific tasks. The MUL-NL translator, on the other hand,
restores NL from MUL and calculates the auto-encoder loss
during the MUL creation process.

When addressing cross-lingual NLP tasks, we can employ
the NL-MUL translator to convert both the English training
dataset and the multilingual test dataset into MUL, which
can then be used as input for the model.

Overview of MUL Training
In order to create MUL, we initially construct an encoder
capable of generating contextualized word embeddings for
each sentence. For two words with context in different lan-
guages, their embeddings are close to one another if and only
if they share the same meaning. Subsequently, we create dis-
crete symbols in the embedding space, to ensure that each
symbol corresponds to a single concept.

Our approach comprises three components, and we
demonstrate their impact on the embedding space with Fig-
ure 1. First, we pre-train the encoder using a multilingual
masked language model (MLM) loss. The embeddings are
depicted in Figure 1.a. Although different words with sim-
ilar meanings do not have similar embeddings, the encoder
can be employed to create unsupervised word alignment la-
bels for bilingual sentence pairs (Dou and Neubig 2021).

Second, we implement an inter-sentence contrastive
learning approach to enhance the alignment of contextual-
ized word embeddings across languages. The results can be
observed in Figure 1.b, which shows that different words
with the same meanings now have similar embeddings.

Lastly, we introduce vector-quantization with cross-
lingual alignment (VQ-CA) to establish the universal word
list in the universal language. Figure1.b and Figure1.c rep-
resent training without and with VQ-CA, respectively. The
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Figure 1: The visualization of contextualized word embeddings at various training stages. Each color represents a word and
each point denotes the contextualized embedding of that word in different contexts. Figure 1.a displays the embeddings after
pre-training with multilingual MLM, Figure 1.b exhibits the embeddings after inter-sentence contrastive learning, and Figure
1.c demonstrates the embeddings following VQ-CA.

black points in these figures are the embeddings of the cre-
ated universal words. For each group of words with the same
meanings, we observe that the model trained without VQ-
CA generates multiple universal words, while the model
trained with VQ-CA produces a single universal word in
most instances.

Creating Word Alignment Supervision by
Multilingual MLM

First, we pre-train our encoder Encoder(x) using a multi-
lingual Masked Language Model (MLM). This encoder has
a vocabulary that includes words from all target languages,
as well as a transformer encoder comprising 12 layers.

The contextualized word embeddings generated by the
pre-trained encoder demonstrate good performance on the
word alignment task (Dou and Neubig 2021). Specifically,
the word alignment task involves processing two sentences,
Ss and St, from different languages that have the same
meanings. These sentences consist of n and m tokens, re-
spectively, which can be represented as Ss = s1, s2, ..., sn
and St = t1, t2, ..., tm. The model’s objective is to identify
the aligned words or phrases between these two sentences.

We input the two sentences into the pre-trained model
Encoder(x) to obtain their contextualized representations,
Hs = Encoder(Ss) = hs1 , hs2 , ..., hsn and Ht =
Encoder(St) = ht1 , ht2 , ..., htm . The alignment matrix is
then computed by A = HsH

T
t .

Next, we apply the softmax function to the first and sec-
ond dimensions to obtain At2s and As2t, respectively. The
word alignment results are determined by P = At2s >
c ∧ As2t > c, where c represents the threshold. Intuitively,
this approach identifies the most similar words in the St sen-
tence for each word si in Ss and vice versa. If both si and tj
are the most similar words to each other, they are predicted
to be aligned words.

Inter-sentence Contrastive Learning
While the pre-trained contextualized word embeddings can
achieve good cross-lingual word alignment performance,
there are still two notable shortcomings. Firstly, the distance
between aligned words is not close to zero, even though
they are the most similar words between the source and tar-
get sentences, as illustrated in Figure1.a. Secondly, the dis-
tance between words of the same type is too close, and it
becomes even closer when the model is trained with vanilla
contrastive loss. For instance, words of the same type can
include time-related terms such as ”year”, ”month”, ”day”,
and ”hour”, or adverbs of frequency like ”always”, ”never”,
and ”sometimes”. In bilingual sentences, there is typically
only one or a few words for each type. Consequently, be-
ing adept at identifying words of the same type is sufficient
for achieving good word alignment performance. However,
such granularity is too coarse for MUL.

To address this issue, we propose inter-sentence con-
trastive learning. This approach has two main steps. First,
we employ contrastive learning to minimize the distance be-
tween aligned words while maintaining a larger distance be-
tween non-aligned words. Second, we utilize words from
other sentence pairs as negative samples to ensure that words
of the same type remain distant from one another.

In the contrastive learning process, we consider all
aligned words in matrix P as positive pairs. We perform
post-processing on the unaligned words in P and represent
the negative matrix as N ∈ 0, 1n×m. The contrastive loss is
defined as

losscts = −log
∑
i,j

Pij expHsiH
T
tj

+ log
∑
i,j

(
Pij expHsiH

T
tj +Nij expHsiH

T
tj

)
In inter-sentence contrastive learning, we sample multi-

ple bilingual pairs and generate a new pair by concatenating
the source and target sentences, respectively. For example,
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consider two pairs: (S1
s , S

1
t ) and (S2

s , S
2
t ). The new pair is

([S1
s , S

2
s ], [S

1
t , S

2
t ]). We create the positive alignment matri-

ces P 1 and P 2 for the two pairs separately. Subsequently,
we merge the two positive alignment matrices and construct
a positive matrix for the concatenated sentence pair:

Pinter =

[
P 1 0
0 P 2

]
This means that we won’t treat any pairs between

(S1
s , S

2
t ) and (S2

s , S
1
t ) as positive alignment. We avoid con-

catenating the two sentences initially to generate Pinter di-
rectly, as this could introduce additional interference in word
alignment and diminish alignment quality. By employing
this method, we can effectively push words of the same type
further apart. For negative pairs, we apply the same post-
processing technique.

Vector Quantization with Cross-lingual Alignment
(VQ-CA)
To create a universal vocabulary, one option is using VQ-
VAE (van den Oord, Vinyals, and Kavukcuoglu 2017) to
learn a set of discrete symbols. However, the symbols gen-
erated by VQ-VAE lack clear meanings and are difficult
for humans to comprehend. For instance, in Figure1.b,
multiple symbols are created for each meaning, and each
symbol lacks a precise definition. So we propose Vector-
Quantization with Cross-Lingual Alignment (VQ-CA) to
guide the learning of discrete symbols by aligning them with
multiple languages simultaneously. In most cases, the sym-
bols produced by VQ-CA correspond to a single concept,
making them easier to understand compared to those created
by VQ-VAE.

We define the embedding of universal vocabulary as e =
{e1, e2, ..., eK}, where ei ∈ RD is the embedding of dis-
crete symbol i. K is the size of the universal vocabulary and
D is the dimension of hidden representation.

Our model comprises an Encoder(x) and a Decoder(x).
The Encoder(x) contains word embedding layers and mul-
tiple transformer layers. For a sentence S = s1, s2, ..., sn,
we map it to contextualized word embeddings H =
Encoder(S) = h1, h2, ..., hn. We generate the sentence
in the universal language by mapping each contextualized
word representation hi to symbol ki = Quantize(hi) =
argminj∥ej − hi∥2. The sentence in MUL is Su =
k1, k2, ..., kn and its embedding is E = ek1 , ek2 , ..., ekn .
The Encoder(x) and Quantize(x) together form the NL-
MUL translator. The Decoder(x) consists of several trans-
former layers and a softmax layer, which can generate the
probability of mapping the sentence embedding in MUL
back to natural language as P (S|E) = Decoder(E). The
Decoder(x) serves as the MUL-NL translator.

To train the Encoder(x), Decoder(x) and universal vo-
cabulary embedding e, our loss is:

lossV Q−CA = logP (S|E) + ∥sg(E)−H∥2
+ λ∥E − sg(H)∥2 + lossCA

The notation sg(x) represents the stop gradient opera-
tion. The first three losses are derived from VQ-VAE. The

Figure 2: Visualization of VQ-CA. The orange dots shows
the embeddings related to a pair of aligned words. The light
orange dots shows the embeddings that map to symbol a and
b.

first term is the auto-encoder loss, which aims to recover
the original natural language sentences from the MUL sen-
tences. The second term constraint contextualized word em-
beddings to be close to universal language embeddings. In
our experiment The third term constraints universal lan-
guage embeddings to be close to contextualized word em-
beddings. In our experiments, we find that the update speed
for the embeddings of the universal language is too slow.
Consequently, we replace the third loss with exponential
moving averages, following the approach of van den Oord,
Vinyals, and Kavukcuoglu 2017.

The fourth loss, LCA, constrains the aligned words to map
to the same symbol. For aligned words that map to different
symbols, the loss LCA pushes one symbol away and retains
only the other symbol in the nearby region. Consequently,
both words can be mapped to the preserved symbol, ensuring
that aligned words share the same symbol in the universal
language representation.

We illustrate lossCA in Figure 2. Formally, let’s con-
sider two aligned words with embeddings ha and hb. We
quantize them to two symbols a = quantize(ha) and
b = quantize(hb). The original VQ-VAE loss requires
the symbol a to move towards ha and symbol b to move
towards hb. However, in lossCA, one symbol should be
pushed away. The selection of which symbol to push away
is determined by the number of natural language words that
are mapped to it. Without loss of generality, we assume that
a should be pushed away. Then we create an embedding
h′
a = ea + λ ∗ (ea − ha) at the opposition direction of ha,

and add a new loss lossCA = ∥ea−h′
a∥2 for it. We also use

exponential moving averages to update ea. This loss moves
ea in the direction opposite to that of the VQ-VAE. Once
a has been moved far away from ha, the nearest symbol of
ha may change to b. As training progresses, symbol b will
dominate the region of symbols a and b, while symbol a will
fade away.

Experiments
In this section, we begin by presenting the training details,
followed by experiments on four diverse cross-lingual tasks.
Lastly, we conduct the ablation study to examine the differ-
ent components of our method.
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Model Parameter en de fr es el bg ru tr ar vi th zh hi sw ur avg
mBERT 178M 82.1 73.8 74.3 71.1 66.4 68.9 69 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3

XLM 250M 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
XLM-R Base 278M 85.3 78.3 79.2 79.9 77.3 78.6 76.1 74.7 73.8 75.6 73.3 74.6 71.7 68.6 68.2 75.7

mT5 Base 580M 84.7 77.4 79.1 80.3 77.1 78.6 77.1 72.8 73.3 74.2 73.2 74.1 70.8 69.4 68.3 75.4
Unicoder 278M 85.4 78.2 79.2 79.8 77.3 78.5 76.7 73.8 73.9 75.9 71.8 74.7 70.1 67.4 66.3 75.3
InfoXLM 278M 86.4 79.3 80.3 80.9 77.8 79.3 77.6 75.6 74.2 77.1 74.6 77.0 72.2 67.5 67.3 76.5

MUL Small 132M 84.0 78.5 79.5 79.9 78.4 79.0 75.8 74.4 74.8 75.8 70.9 73.8 70.8 71.1 68.1 75.7
MUL Base 277M 85.5 80.5 81.1 81.4 79.8 80.6 78.4 75.9 77.4 78.4 72.8 76.0 73.8 72.9 69.9 77.6

Table 1: Evaluation results on XNLI.

Model NER MLQA Tatoeba
XLM-R Base 61.9 65.6 / 47.9 63.4

mT5 Base 59.5 64.4 / 45.0 -
InfoXLM - 68.1 / 49.7 77.8

MUL Small 60.8 65.6 / 47.4 74.6
MUL Base 63.0 69.4 / 50.8 79.3

Table 2: Evaluation results on three cross-lingual tasks.

Training Details
In the first stage, we pre-train the encoder with a multilingual
MLM objective on 15 languages of XNLI. The vocabulary
size is 250K, and the model contains 12 layers and 768 hid-
den states, identical to XLM-R base. Limited by resources,
we pre-train the model for 500K steps with a batch size of
8192, which is less than XLM-R Base. The pre-training cor-
pus is CC-Net (Wenzek et al. 2020).

In the second stage, we train our model on bilingual data
OPUS-100 (Zhang et al. 2020). The encoder has 8 layers,
and the decoder has 4 layers. They are initialized by the first
8 and last 4 layers of the encoder pre-trained in the first
stage. We select 8 as encoder layers because previous re-
search(Dou and Neubig 2021) shows that outputs of the 8th
layer have the best cross-lingual alignment quality. The size
of the universal vocabulary K is set to 60K, as the vocabu-
lary size of GPT is 50K.

Once we have the encoder, decoder, and universal vo-
cabulary, we proceed with pre-training and fine-tuning on
MUL. As both pre-training and fine-tuning require multi-
ple epochs, we translate the corpus into MUL during the
pre-processing stage, saving significant time. The vocabu-
lary size is reduced from 250K to 60K. We try two sets
of model sizes: MUL Small and MUL Base. The small
model has the same layer number and hidden size as XLM-
R Base, with the total parameter number being only half of
XLM-R Base, due to the reduction in vocabulary size. The
base model reallocates parameters from embedding layers
to transformer layers, keeping the total parameter number
unchanged. The hyper-parameters in pre-training and fine-
tuning are the same as those of natural language. We run all
fine-tuning experiments four times and report the average of
the results.

Performance on Cross-lingual Tasks
We test MUL on four diverse cross-lingual tasks: cross-
lingual Natural Language Inference (XNLI)(Conneau et al.
2018) is a sentence classification task; NER(Pan et al. 2017)

is a sequential labeling task; MLQA (Lewis et al. 2020) is a
machine reading comprehension task; Tatoeba (Artetxe and
Schwenk 2019) is a cross-lingual sentence retrieval task. We
only use English training data in the first three tasks and
don’t use any training data in Tatoeba.

We compare our model with six baseline models that use
natural language as input. The first three models are pre-
trained exclusively on monolingual datasets: mBERT (De-
vlin et al. 2019b) and XLM-R Base (Conneau et al. 2020)
share the same pre-training objective as ours, while mT5
(Xue et al. 2021) is pre-trained using a denoising objective.
The last three models are pre-trained on both monolingual
and bilingual datasets: XLM (Conneau and Lample 2019)
employs multilingual MLM and TLM in the 15 languages
of XNLI. Unicoder (Liang et al. 2020) and InfoXLM (Chi
et al. 2021) introduce new bilingual objectives; their mono-
lingual datasets are the same as our model, but their bilin-
gual datasets are larger. For a fair comparison, we continue
to pre-train XLM-R Base on the 15 languages of XNLI.

We show the performance of XNLI for each language
in Table 1, and present the results on NER, MLQA, and
Tatoeba in Table 2. Based on the results, we can draw three
conclusions: 1) MUL Base achieves the best performance
on all tasks with the same parameter number as XLM-R
Base, Unicoder, and InfoXLM. This demonstrates that tak-
ing MUL as input can achieve excellent cross-lingual trans-
fer performance. 2) MUL Small also achieves compara-
ble performance to baselines with minimal parameters. On
Tatoeba, it achieves better performance compared to XLM-
R Base and slightly lower than InfoXLM, which introduces
sentence-level contrastive learning. On XNLI, MLQA, and
NER, MUL Small can achieve comparable results to base-
lines. 3) On XNLI, both MUL Small and Base achieve good
performance on low-resource languages, such as Swahili
(sw) and Urdu (ur).

Ablation Study
We evaluate the quality of MUL using performance on word
alignment and XNLI:

Word alignment with MUL We translate natural lan-
guage sentences into MUL and predict aligned words by
checking if they correspond to the same universal word.
Word alignment can help us understand whether words with
the same meanings are mapped to the same universal word.
We report three metrics: precision, recall, and alignment er-
ror rate (AER). We don’t train our model on the word align-
ment training dataset and directly evaluate it on the test
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Setting Precision ↑ Recall ↑ AER ↓ XNLI ↑
MUL (pair=4) 90.0 51.2 35.3 74.0
w/o VQ-CA 89.1 42.3 43.4 73.7

w/o contrastive loss + VQ-CA 69.2 11.5 80.9 69.7
w/o inter-sentence contrastive loss (pair=1) 90.1 46.0 39.8 72.9

inter-sentence contrastive loss (pair=2) 90.5 49.5 36.6 73.4

Table 3: The ablation study of MUL. The first row is the best setting in our paper which uses inter-sentence contrastive on 4
pairs of sentences. We skip pre-training and only fine-tuning in these experiments to reduce computational costs.

Table 4: The examples to translate natural language sentences into universal language. For each example, we show the results
of tokenization and the universal word corresponding to each token.

dataset. We evaluate our model on German-English (de-en),
French-English (fr-en), and Chinese-English (zh-en) and re-
port the averaged results. The test datasets come from Mi-
halcea and Pedersen 2003; Vilar, Popović, and Ney 2006;
Liu and Sun 2015 respectively.

XNLI results We report the results on XNLI to evalu-
ate the quality of using MUL as input to solve cross-lingual
tasks. We don’t conduct pre-training on MUL in the ablation
study limited by resources. In fine-tuning, we load the trans-
former weight of the pre-trained encoder. The word embed-
ding of each universal word is the weighted sum of its cor-
responding natural words, and the weights are the frequency
of the corresponding natural words.

The results of the ablation study are presented in Table 3
and include two aspects:

Ablation of loss After removing VQ-CA, the recall of
word alignment drops about 10 percent. This is because the
model without VQ-CA often generates multiple universal
words for the same concept. As a result, aligned words are
mapped to different concepts even if they have similar con-
textualized word embeddings. After removing both of them,
the performance on word alignment becomes very poor, and
the performance on XNLI drops significantly. This is be-
cause the embeddings of aligned words are far from each
other and are mapped to different universal words.

Ablation of inter-sentence contrastive learning The
inter-sentence contrastive learning leverages multiple sen-
tence pairs, and we report the performance of 1, 2, and 4
sentence pairs. Using one sentence pair means vanilla con-

trastive and removes the inter-sentence strategy. We find that
a larger number of sentence pairs leads to better performance
both on word alignment and XNLI. However, increasing the
sentence pair numbers also increases GPU memory usage
and training time, so we can only set it to 4.

Analysis
We conduct the analysis focusing on three aspects: the inter-
pretability of MUL, the word disambiguation in NL-MUL
translation, and the language-specific words in MUL.

The Interpretability of MUL
To better understand MUL, we show two groups of examples
in Table 4. Each group contains three sentences in English,
French, and Chinese, all with the same meanings. We first
tokenize these sentences and then translate them into MUL.

To understand the meaning of each universal word, we can
summarize the natural words that are often translated into it.
In Table 5, we list the top 2 natural words that correspond to
the universal word in three languages. For example, the uni-
versal word “43227” corresponds to “chaise” in French and
“chair in Chinese”, which helps us to know that “43227”
means a chair, which is a piece of furniture for one person to
sit on. Similarly, we can deduce that “38789” means the per-
son in charge of the meeting based on “président” in French.

For most words in different languages with the same
meanings, their universal words are the same as each other.
By mapping to the same universal words, knowledge can
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Table 5: For each universal word, we list the top 2 natural words that correspond to it in three languages.

be easily transferred between languages, enabling effective
cross-lingual learning and understanding.

chair chairman Chair (seat)
30320 2 0
38789 100 13
43227 11 102
53430 2 0

Table 6: The statistics of relation between universal words
and different meanings of “chair”.

apple apple inc apple (fruit)
18766 668 44
20027 224 848

Table 7: The statistics of the relation between universal
words and different meanings of “apple”.

club club nightclub Club (weapon)
50064 54 54 54

Table 8: The statistics of the relation between universal
words and different meanings of “club”.

Word Disambiguation of NL-MUL Translation
For a word that has different meanings in different con-
texts, it may correspond to different universal words during
the NL-MUL translation. For example, in Table 4, “chair”
means “furniture” in the first group and means “a person”
in the second group, so it corresponds to different universal
words. Compared to natural words, the meaning of univer-
sal words is closer to concepts shared across multiple lan-
guages. This makes them less ambiguous. For example, we
can distinguish the meaning of 43227 and 38789, while we
can’t distinguish the meanings of two instances of “chair”
without context.

We conduct more statistical experiments on the
CoarseWSD-20 dataset (Loureiro et al. 2021) and present
the results in Table 6, Table 7, and Table 8. We can find
that the universal words of “chair” and “apple” have a
good correlation to concepts, while the universal words for
“club” are the same in most cases. This is because most

of the “club” instances in bilingual data correspond to the
first concept, only 3% of “club” means “nightclub,” and
almost no “club” means “club (weapon).” This shows that
translating to MUL can disambiguate parts of words, but the
disambiguation is not good enough due to the unbalanced
distribution of concepts in our data.

During translation, two different words in non-English
languages may be translated into the same word in En-
glish. This increases the ambiguity of words. However, when
translated into different universal words, this ambiguity is
reduced. By using universal words, the difficulty of solving
NLP tasks is decreased.

Conclusion
In this work, we present a new universal language MUL cre-
ated by machines, which can serve as an intermediate lan-
guage and solve cross-lingual tasks by translating all lan-
guages into MUL. We introduced inter-sentence contrastive
learning and VQ-CA which are critical to creating MUL.
The experiments show that the model with MUL as input
achieves excellent cross-lingual performance and greatly re-
duces the size of vocabulary size. Further analysis shows the
good interpretability of MUL and the capability for word
disambiguation.
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