
DeepSpeed Data Efficiency: Improving Deep Learning Model Quality and Training
Efficiency via Efficient Data Sampling and Routing

Conglong Li*, Zhewei Yao*, Xiaoxia Wu*, Minjia Zhang, Connor Holmes, Cheng Li, Yuxiong He
Microsoft

Abstract

Recent advances on deep learning models come at the price
of formidable training cost. The increasing model size is one
of the root causes, but another less-emphasized fact is that
data scale is actually increasing at a similar speed as model
scale, and the training cost is proportional to both of them.
Compared to the rapidly evolving model architecture, how
to efficiently use the training data (especially for the expen-
sive foundation model pretraining) is both less explored and
difficult to realize due to the lack of a convenient framework
that focuses on data efficiency capabilities. To this end, we
present DeepSpeed Data Efficiency, a framework that makes
better use of data, increases training efficiency, and improves
model quality. Specifically, we propose and combine two data
efficiency techniques: efficient data sampling via a general
curriculum learning library, and efficient data routing via a
novel random layerwise token dropping technique. For GPT-3
1.3B language model pretraining, our work achieves 12.5x less
data/time/cost ($3.7K if rent on Azure), while still maintaining
95% of model quality compared to baseline with full data and
cost ($46.3K). For GPT-3 1.3B and BERT-large pretraining,
our work can also achieve the same model quality with up to
2x less data/time/cost, or achieve better model quality under
same data/time/cost. DeepSpeed Data Efficiency is easy to use
and tune, enabling us to easily apply it and verify its benefit
on additional tasks including GPT-3 MoE model pretraining
and small-scale GPT-2/ViT finetuning.

1 Introduction
Recently, large-scale deep learning models are empower-
ing us to achieve more in many ways, such as code genera-
tion (GitHub 2021) and text-to-image generation (Ramesh
et al. 2022; Rombach et al. 2022). To keep improving the
service quality, deep learning model architecture evolves
rapidly, and the model size is also growing at a tremendous
speed. The increasing model size leads to unprecedented
training cost (especially for foundation model pretraining),
which recently grows to 2 months on thousands of GPUs/T-
PUs (Smith et al. 2022; Chowdhery et al. 2022). On the other
hand, a less-emphasized perspective is that data scale is ac-
tually increasing at a similar speed as model scale, and

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

BERT
(2018)

GPT-2
(2019)

GPT-3
(2020)

BLOOM
(2022)

PaLM
(2022)

0
200
400
600
800

Bi
llio

n Model Scale (Billion)
Data Scale (Billion)

Figure 1: Model scale (number of parameters) and data scale
(number of consumed training tokens) of representative lan-
guage models in the last 5 years (Devlin et al. 2019; Shoeybi
et al. 2019; Brown et al. 2020; Scao et al. 2022; Chowdhery
et al. 2022).

the training cost is proportional to both of them. As plot-
ted in Fig. 1, for several representative language models in
the last 5 years both the model and data scales increase at a
similar speed. Recent works including Chinchilla (Hoffmann
et al. 2022) and PaLM 2 (Google 2023) emphasize the need
of increasing data scale at an even faster speed. This demon-
strates the importance of improving data efficiency: achieve
same model quality with less data and reduced training cost,
or achieve better model quality with the same amount of data
and similar training cost.

There are two popular research directions among existing
data efficiency techniques: Data sampling techniques aim to
improve the convergence speed by sampling the most suitable
next data batch from the whole data pool; Data routing tech-
niques aim to reduce the computation by routing each data
to only a subset of the model components. These techniques
improve data and training efficiency, but existing solutions
have several limitations:
• Techniques like curriculum learning (CL) improve data

efficiency by indexing and sampling training data based
on certain difficulty metric (Bengio et al. 2009), and it
has recently proved effective on large-scale pretraining
tasks (Li, Zhang, and He 2022). However, implementing
different CL strategies for different user tasks can require
a lot of code-refactoring, which is time-consuming and
error-prone. In addition, existing implementations have
less consideration on scalability, which makes it difficult

NOTICE: We highly recommend you instead read the ex-
tended and complete version of this paper on arxiv (Li et al. 2022):
https://arxiv.org/abs/2212.03597.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18490

to analyze and index large-scale training data based on
different difficulty metrics.

• Existing data routing techniques such as token drop/by-
pass/pruning were mostly designed for inference and inap-
plicable to training. TokenBypass (Hou et al. 2022), to our
knowledge the only data routing technique for foundation
model pretraining, skips the compute of part of the input
tokens at some middle layers during BERT pretraining,
reducing pretraining cost while maintaining model quality.
However, it requires several special implementations that
may only work for the tested BERT pretraining case, such
as the importance score-based token dropping decisions
and the whitelist for special tokens. This could limit the
possibility and benefit of applying it to other cases.

• Although promising data efficiency solutions have been
proposed independently, even a small customization to
the strategy would require nontrivial changes in multiple
places deep inside the training pipeline: data loader, data
sampler, model architecture, etc. Another challenge is that
existing techniques usually add additional hyperparameters
but without a clear and low-cost tuning strategy.

To address these above challenges, we present DeepSpeed
Data Efficiency, a framework that makes better use of data,
increases training efficiency, and improves model quality.
Specifically, DeepSpeed Data Efficiency demonstrates the
following contributions:
• Efficient data sampling via general curriculum learning

library. We present a general curriculum learning (CL)
library that is both scalable and customizable: it includes a
map-reduce based data analyzer that enables scalable anal-
ysis and indexing of massive data based on any possible
CL metric; it includes a general CL-based data sampler and
loader design for users to apply any customized CL strate-
gies. Using this library, we are able to thoroughly explore
different CL strategies for GPT-3 1.3B and BERT-large
pretraining, and identify the best solution that provides bet-
ter data and training efficiency than existing CL solution.
This library (and the whole DeepSpeed Data Efficiency
framework) has been open sourced in a deep learning ac-
celeration library (name hidden for anonymity) that is fully
compatible with PyTorch. This will benefit the whole com-
munity as a useful tool to apply curriculum learning to their
own training tasks.

• Efficient data routing via random layerwise token drop-
ping. We present a novel data routing technique called
random layerwise token dropping (random-LTD) to skip
the computation of a subset of the input tokens at all mid-
dle layers. Random-LTD employs a simple yet effective
routing strategy and requires minimal model architecture
change. It is very flexible to apply random-LTD to various
tasks (GPT-3/GPT-3 MoE/BERT pretraining and GPT/ViT
finetuning) which the SOTA technique (TokenBypass) does
not explore or provides less improvement.

• An easy to use/tune framework that maximizes data/-
training efficiency. DeepSpeed Data Efficiency seamlessly
composes the two proposed techniques, and only requires
minimal changes on user side. We demonstrate that com-
posing data sampling and routing techniques can lead to
even better data/training efficiency, especially for founda-

1%
$463

2%
$925

4%
$1850

8%
$3.7K

16%
$7.4K

32%
$14.8K

50%
$23.1K

100%
$46.3K

Consumed data and cost (log scale)

80
85
90
95

100
105

M
od

el
 q

ua
lit

y
(%

)

Baseline
DeepSpeed Data Efficiency

Figure 2: GPT-3 1.3B pretraining: relative model quality
(baseline with full data as 100% quality) under different data
consumption (1% to 100%) and training cost (when renting
on Azure).

tion model pretraining: For GPT-3 1.3B pretraining, Fig. 2
shows that our approach provides better model quality at
all cost budgets, advancing the whole cost-quality Pareto
frontier. In particular, we achieve up to 12.5x data/time/cost
saving while still maintaining 95% of the model quality
(zero-shot eval accuracy) compared to the baseline with full
data, while baseline can only maintain 91% of the model
quality, a 1.8x higher quality degradation. It requires 2x
cost to achieve 95% quality without our approach. Based
on measured training time, 12.5x would be a cost reduc-
tion from $46.3K to $3.7K if renting similar hardware on
Azure (Azure 2023), greatly democratizing research and
usage of foundation models for AI community. For GPT-
3 1.3B and BERT-large pretraining, we can also achieve
up to 2x data and 2x time saving together with better or
similar model quality as compared to the baseline training
with full data, greatly surpassing state-of-the-art data ef-
ficiency solutions. Both techniques under our framework
are easy to use and tune, and we include a low-cost tun-
ing strategy and a summarized usage guidelines. This en-
ables us to easily apply proposed work and verify its ben-
efits on additional workloads including GPT-3 Mixture-
of-Experts (MoE) model pretraining and small-scale GPT-
2/ViT model finetuning. The proposed framework has been
open sourced in a deep learning acceleration library called
DeepSpeed1.

2 Background and Related Works
Data sampling. For deep learning, the most common data
sampling method for minibatch stochastic gradient descent is
uniform sampling, where at each step a batch of data is drawn
uniformly at random from the whole training data. However,
it’s potentially beneficial to focus on different kinds of data at
different training stages. One example is the curriculum learn-
ing technique (Bengio et al. 2009) which aims to improve
training convergence speed by presenting relatively easier
or simpler examples earlier during training. Building a cur-
riculum learning solution usually requires two components:
the difficulty metric (i.e., how to quantify the difficulty of
each data sample) and the pacing function (i.e., how to decide
the difficulty range when sampling next training data batch).
In the NLP area, curriculum learning has been applied on

1https://github.com/microsoft/DeepSpeed

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18491

small-scale one-stage tasks and downstream finetuning tasks,
such as neural machine translation (NMT) (Kocmi and Bojar
2017; Bojar et al. 2017; Zhang et al. 2018; Platanios et al.
2019; Zhang et al. 2019) and natural language understand-
ing (NLU) (Sachan and Xing 2016, 2018; Tay et al. 2019;
Xu et al. 2020). There are also a few works that explore
curriculum learning for language model pretraining (Press,
Smith, and Lewis 2020; Zhang et al. 2021; Campos 2021;
Li, Zhang, and He 2022). However, one common limitation
among existing works is that there does not exist a scalable
and customizable curriculum learning library, making it diffi-
cult to analyze large-scale data and explore custom difficulty
metrics/pacing functions. One evidence is that most of the
curriculum learning works for language model pretraining
only focus on the sequence length metric due to the difficulty
of exploring other metrics on the huge pretraining dataset.

Data routing. In common deep learning training, the
model is considered as a whole and all sampled data will
be routed to all model components. However, it’s potentially
beneficial to route each data sample to only a subset of model
components, improving the training efficiency. One direction
of efficient data routing is to add data bypassing/skipping ca-
pability to existing model architectures such as Transformer.
Transformer (Vaswani et al. 2017) architecture is a stack of
transformer layers, each of which has two main ingredients,
i.e., the multi-head attention (MHA) and the feed-forward
connection network (FFC). Suppose the transformer has l
layers denoted as L1, . . . , Ll. Let Xi ∈ Rs×d be the output
tensor of i−th transformer layer, and x0 be the input (after
embedding) of the transformer. Here s is the sequence length
and d is the hidden dimension.

Several token dropping/bypassing/pruning tech-
niques (Kim et al. 2021; Goyal et al. 2020; Kim and
Cho 2020; Press, Smith, and Lewis 2021; Wang, Zhang, and
Han 2021) were proposed for BERT inference to reduce
the computational overhead, but they are not practical for
training. In these works, if a token i (Xj,i) is decided to
be dropped at layer j (Lj), the compute cost of this token
through all remaining layers (Lk where k > j) is eliminated.
As such, the sequence length si of the i-th layer’s input
Xi−1 will be a non-increasing array, i.e., s0 ≥ s1 ... ≥ sl.
However, such a configuration has been shown instability
for adaptive token-dropping inference (Kim and Cho 2020).
Therefore, (Kim and Cho 2020) utilize the sandwich rule and
distillation from (Yu and Huang 2019) to stabilize training
and boost accuracy. But these two methods also significantly
increase the training cost. Thus, such techniques cannot be
applied to speed up the pretraining procedure.

Recently, TokenBypass (Hou et al. 2022) enabled token
dropping for BERT pretraining. It uses several importance
scores/metrics to determine the dropped tokens (token fre-
quency and cumulative loss). It proposed two main mech-
anisms to overcome the training instability issue: (1) the
sandwich token dropping rule, where the first (L1 to Li) and
the last few BERT layers (Ll−j to Ll) capture all tokens
(no token dropping) and only bypass s′ ≤ s tokens from Li

to Ll−j middle layers. Particularly, the authors (only) test
on the encoder transformer (12-layer BERTbase and 24-layer
BERTlarge), and let i = l/2 − 1, j = 1, s′ = s/2. (2) spe-

Figure 3: Design of the DeepSpeed Data Efficiency frame-
work.

cial token treatment, where special tokens (e.g., [MASK],
[CLS], [SEP]) are never dropped. Compared to Token-
Bypass, our random-LTD (1) does not require importance
score metric, special token treatment, or the sandwich token
dropping rule, which dramatically reduces the manual design
effort; (2) has been broadly tested on GPT-3/BERT pretrain-
ing tasks and GPT-2/ViT finetuning tasks, providing better
data/training efficiency than TokenBypass.

3 Design
At high-level, the proposed DeepSpeed Data Efficiency
framework has two components as shown in Fig. 3: First
we have efficient data sampling, where instead of the base-
line’s random sampling, we aim to sample the most suitable
next data batch from the whole data pool by a general cur-
riculum learning (CL) library. Second we have efficient data
routing, where instead of passing all input data to all model
components, we aim to efficiently route each data through
different components of model by leveraging the proposed
random layerwise token dropping (random-LTD) technique.
This section presents the design of the two techniques, how
we compose them, together with a low-cost tuning strategy
and a summarized usage guidelines.

3.1 Efficient Data Sampling via Curriculum
Learning

To solve the limitations of existing CL solutions as described
in previous sections, we design and implement a general

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18492

curriculum learning library emphasizing the scalability and
customizability. It consists of three components as shown in
top part of Fig. 3. First we use a data analyzer to perform
the offline CPU-only data analysis which indexes the whole
data pool based on any difficulty metric, which could be the
sequence length, the vocabulary rarity, or anything defined by
user. This data analyzer employs a Map-Reduce scheme: Dur-
ing the Map stage, user provides a function that computes the
desired difficulty metric, the raw training dataset, and other
configurations such as number of CPU nodes and number of
threads per node. Then the data analyzer will automatically
splits the dataset based on number of workers, compute the
difficulty values in a batched fashion, and write the results to
two indexes: one index maps each data sample to its difficulty
value, and another index maps each distinct difficulty value to
the corresponding samples. During the Reduce stage, the data
analyzer will merge the index files produced by all workers.
This Map-Reduce scheme is necessary since the training data
could be huge thus has to be distributed. For instance, we
have 173 million data samples (each with sequence length
2048) for GPT-3 pretraining and 2.5 billion data samples
(each with sequence length ⩽ 512) for BERT pretraining.
To reduce the memory overhead when analyzing the huge
dataset, we write the index files as numpy memory-mapped
files. Using this data analyzer we are able to efficiently an-
alyze GPT-3 and BERT pretraining data based on various
difficulty metrics. Using 40 CPU threads on a single node
with AMD EPYC 7V12 64-Core Processor, we can finish the
analysis on one metric within 3/80 hours for GPT-3/BERT
data, respectively.

Next, during training, the curriculum scheduler will de-
termine the difficulty threshold for the current step based
on a pacing function such as linear, rooted, or any strategy
provided by user. Then the data sampler will sample the data
with desired difficulty from the indexed data pool. To apply
the proposed CL solution to a existing training pipeline, user
just need to call an API and provide the raw training data, the
difficulty metric index (computed in the offline analysis), and
the pacing function configurations. Our framework will then
provide a curriculum learing-based data loader that users can
simply iterate at each step. Using our CL library for GPT-
3/BERT pretraining, we are able to easily analyze and index
the huge training data based on 7 difficulty metrics:
• Truncation-based sequence length (seqtru), for GPT

and BERT. This metric starts with shorter data samples
and gradually increases the sequence length during training.
To change the sequence length, this metric will truncate the
sequences (from the end of sequence) while keeping the
number of samples unchanged, thus the number of tokens
will decrease. This metric is recently applied to GPT-2 and
GPT-3 models and demonstrate decent training efficiency
gains (Li, Zhang, and He 2022).

• Reshape-based sequence length (seqres), for GPT. This
metric is similar to seqtru metric, but instead of truncating
we break the original sequences into segments based on
the desired new sequence length. Thus we are essentially
“reshaping” the input tensor into more samples and shorter
lengths. This metric is proposed in MosaicML Composer
as a variant of the seqtru metric (MosaicML 2022), but

their documentation does not describe which way provides
better model quality. We don’t apply the seqres to BERT
case because unlike GPT data where all tokens are valid,
BERT input sequences only include two natural sentences
thus each sequence has different “effective sequence length”
and then padded to 512. If we simply “reshape” BERT
sequences, some of the new short sequences may only
contain padding tokens.

• Reorder-based sequence length (seqreo), for BERT. This
metric is similar to seqtru metric, but instead of truncating
we adjust the sequence length by reordering the training
data based on the “effective sequence length” in BERT
training data sequences.

• Vocabulary rarity (voc), for GPT and BERT. This
metric was proposed in a CL work for neural machine
translation (Platanios et al. 2019). It computes the prod-
uct of the unigram probabilities for each sequence by
−
∑N

k=1 log(p(wk)) where p(wk) is the vocabulary fre-
quency (inside whole training data) of the kth word in
the sequence. Lower value indicates that the sequence has
more common vocabularies.

• seqtru voc, for GPT and BERT. seqres voc, for GPT.
seqreo voc, for BERT. These 3 metrics are combinations
of above metrics. For seqtru voc and seqres voc, we first
reorder the training data based on voc metric, then apply se-
qtru or seqres as a kind of post-processing. For seqreo voc,
we treat it as a single new metric and index the data based
on it.

Besides the difficulty metrics, another set of CL hyperparam-
eters is the pacing function: the start and end difficulty (ds
and de), total number of CL steps (Tc), and the kind of pacing
function (linear, sqrt, or users can plug in any customized
function to the proposed framework). For seqtru and seqres
metrics, we set the ds and de as value-based (e.g., ds = 80,
de = 2048) since the possible values of these two metrics are
continuous. For other metrics, we set ds and de as percentile-
based (e.g., ds = 1%, de = 100%) since the possible values
of these metrics are discrete. For seqtru and seqres we use a
linear pacing function (dt = ds + (de − ds)×min(t

Tc
, 1))

following the preivous work (Li, Zhang, and He 2022),
while for seqreo and voc we use a sqrt pacing function
(dt = ds + (de − ds) × min((t

Tc
)0.5, 1)). This is because

seqreo and voc will only sample from a subset of data pool
before reaching the end difficulty, and previous work finds
that in such case it’s beneficial to use a sqrt function to avoid
sampling too much easy samples at the beginning (Platanios
et al. 2019). Sec. 3.3 includes low-cost tuning strategy and
usage guidelines for our CL solutions.

3.2 Efficient Data Routing via Random-LTD
Layerwise Token Dropping. Existing token dropping meth-
ods for inference and training either permanently drop tokens
from the compute graph at intermediate layers, or at least
make some tokens fully skip a consecutive series of middle
layers (Sec. 2). However, several works (Vig and Belinkov
2019; Michel, Levy, and Neubig 2019; Voita et al. 2019)
have shown that MHA focuses on different tokens at dif-
ferent layer depths and the attention map aligns with the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18493

dependency relation most strongly in the middle of trans-
former architectures. Therefore, fully skipping middle layers
like TokenBypass (Hou et al. 2022) may hinder the learnabil-
ity/generalization of the architecture during pretraining/infer-
ence. We conjecture that this might be why multiple first/last
layers need to disable token bypassing and the special token
treatment is needed.

In order to overcome this problem, we propose a layer-
wise token dropping (LTD) mechanism. Instead of fully
bypassing same tokens over all middle layers, each trans-
former layer independently drops/retains its own set of to-
kens. In more detail, recall that the input of (i + 1)-th
layer (Li+1) is Xi ∈ Rs×d. Denote the dropped token
index as Ji = {j1, j2, ..., jai

} and the kept token index
as Ki = {k1, ..., kbi} such that ai + bi = s. We have
Ji ∪ Ki = {1, 2, 3..., s} and Ji ∩ Ki = ∅ for each layer.
Meanwhile, for any two different layers Li1 and Li2 , Ji1 and
Ji2 are independent, though the dropped ratios are the same.
With this layerwise mechanism, each token rarely bypasses
all middle layers. Thus, its dependency on other tokens can
be captured by MHA.

Random Token Dropping. Various importance score-
based metrics are used to determine the token dropping cri-
terion. Most of them can be categorized in attention score-
based or loss/frequency-based metrics. However, both of
them introduce challenges that make LTD less practical: For
attention score-based metrics, the compute cost for LTD is
too high since the metric has to be calculated for every layer;
For loss/frequency-based metrics, the accumulated loss or
frequency would not be changed within the same iteration,
which leads the dropped token to be the same for different lay-
ers, breaking the desired LTD mechanism. Instead of impor-
tance score, we propose to use purely random token dropping
assignment and prove its effectiveness in all our experiments.
For each transformer layer, we randomly (uniformly) select
a small batch of tokens to proceed with the compute and
drop the rest. In more details, assume Mi ={mi(1), mi(2),
..., mi(s)} is a random shuffle of S ={1, 2, ..., s}. Then the
dropped token set is Ji ={mi(1), mi(2), ..., mi(ai)} for the
input of Li+1.

Random and Layerwise Token Dropping. Combining
layerwise token dropping with random token dropping, we
have our final random and layerwise token dropping method
(random-LTD), which can efficiently apply token dropping
for each individual layer and can capture the attention depen-
dency of each token with other others in middle layers with
high probability. As a result, our experiments on BERT pre-
training confirm that random-LTD does not require and won’t
benefit from special token treatment used by the TokenBy-
pass work, further reducing the implementation complexity.
Fig. 4 presents the comparison between standard baseline
training and random-LTD. For each layer, random-LTD ran-
domly selects (function “gather”) a subset of the tokens and
feeds (function “Layer”) them into the transformer layer.
Afterward, we combine (function “combine”) the output of
transformer layer with the dropped tokens to recover the full
sequence length in a order-preserved manner. Thus, the next
layer still receives the full sequence and can repeat this pro-
cess. To apply random-LTD to an existing training pipeline,

Figure 4: Transformer layers for baseline and random-LTD.
The dash-line box is repeated by l − 2 times.

user just needs to provide the module class name that they
want to apply random-LTD (e.g., a TransformerLayer class).
Then DeepSpeed Data Efficiency will wrap the module with
a new module that includes token dropping capability, and
drop some of the input tokens for this module during training.

Layers without Token Dropping. While TokenBypass
needs to keep half of the layers in full sequence length
training, random-LTD has no such limitation. Thanks to its
attention-capture feature, we can apply random-LTD to most
of the transformer layers except the first and last layers, en-
abling further training efficiency gain. Our experiments show
that keeping the first and last layers in full sequence length
training usually leads to better performance since (1) the first
layer directly connects to the embedding, and it can help
refine the raw feature; (2) directly connected to the final pre-
diction, the last layer provides a feature realignment for all
tokens which could improve the model quality.

Monotonic Sequence Length Growth. In order to reduce
the gradient variance introduced by random-LTD, we grad-
ually increase the kept sequence length throughout training
with a linear schedule (referred to as MSLG). Thus random-
LTD has two hyperparameters similar to CL: starting from
a sequence length rs which denotes the size of kept token
set Ki for each middle layer after dropping, random-LTD
will gradually drop less tokens (following a linear function)
and eventually stop dropping after Tr steps. Our experiments
show that MSLG provides better model quality than constant
drop schedule under similar data/compute savings. Sec. 3.3
includes low-cost tuning strategy and usage guidelines for
random-LTD.

3.3 Composing CL and Random-LTD, Tuning
Strategy, Usage Guidelines

CL and random-LTD are complementary: CL helps to sample
the next data batch, and random-LTD helps to decide how to
route each sampled data inside the model. DeepSpeed Data
Efficiency hides several complexities when composing the
two techniques so that users can easily enjoy the compound
benefit. As one example, some CL metrics would affect the
actual sample sequence length, thus inside our framework

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18494

Case Guidelines

GPT-3 CL: ds = 80/1% (seqtru/voc), Tc = 40% steps
pretraining random-LTD: rs = 128, Tr = 70% steps

BERT CL: ds = 128/5% (seqtru/voc), Tc = 50% steps
pretraining random-LTD: rs = 128, Tr = 100% steps

GPT-2 CL: ds = 32 (seqres), Tc = 70% steps
finetuning random-LTD: rs = 128, Tr = 30% steps

ViT finetuning random-LTD: rs = 32/66, Tr = 80% steps

Table 1: CL and random-LTD usage guidelines.

we make sure the random-LTD’s token dropping mechanism
is aware of this, and also adjust the calculation of number
of actual consumed tokens which are affected by both tech-
niques. This token consumption calculation is also critical to
the learning rate schedule: previous CL work (Li, Zhang, and
He 2022) finds that if a CL technique reduces the number
of tokens on certain steps, it is desirable to use a learning
rate decay schedule based on consumed tokens instead of
consumed steps. This is because if baseline and CL use the
same step-wise LR decay, it leads to much faster token-wise
LR decay for CL which hurts model quality. In this work,
we apply the token-based LR decay schedule for both CL
and random-LTD. To our knowledge this is the first work
to apply such LR schedule to token dropping/data routing
techniques, and our experiments show that it does help im-
proving random-LTD’s performance. Our CL library’s gen-
eral data analyzer/sampler/loader and random-LTD’s module
wrapping design makes it easy to apply our framework to
different model training tasks. And the overall composibility
of DeepSpeed Data Efficiency enables us to leverage both
data efficiency techniques and achieve even better data and
training efficiency (Sec. 4).

Tuning Strategy and Usage Guidelines. Both CL and
random-LTD only have two parameters that need user tuning:
the starting CL difficulty/random-LTD seqlen (ds/rs), and
the total CL/random-LTD steps (Tc/Tr). 2 And for both CL
and random-LTD we find that it’s possible to apply a low-cost
tuning strategy proposed in previous CL work (Li, Zhang,
and He 2022), where we perform binary search on a very
small portion (e.g., 2%) of training to find the smallest ds/rs
and largest Tc/Tr that don’t trigger substantial validation
loss fluctuations (“whether the perplexity value becomes
larger than 1.3x of the previous best perplexity”). For GPT-
2 finetuning, given the low training cost we also perform
full training of 16 different CL/random-LTD settings which
confirm that (1) the low-cost tuning strategy is able to find
very good hyperparameters; (2) both CL and random-LTD are
not sensitive to hyperparameter choices. Tab. 1 summarizes
the usage guidelines based on our tuning results, which we
believe can be directly applied to any similar models (at least
as a very good starting point for any further tuning).

2For CL, the ending difficulty de is always the highest possible
difficulty.

Data Time Avg Avg
(billon (hours on 0-shot 10-shot

Case tokens) 64 V100) accuracy accuracy

(1)baseline 300 (1x) 260 (1x) 42.5 44.0
(2)CL seqtru 300 (1x) 257 (1.01x) 43.4 44.8
(3)CL seqres 300 (1x) 248 (1.05x) 43.0 44.5
(4)CL voc 300 (1x) 257 (1.01x) 42.3 44.5
(5)CL seqtru voc 300 (1x) 259 (1.00x) 43.6 44.9
(6)CL seqres voc 300 (1x) 248 (1.05x) 43.0 44.4
(7)random-LTD 300 (1x) 263 (0.99x) 43.7 44.9
(8)CL seqtru voc 300 (1x) 260 (1.00x) 43.8 45.1
+random-LTD

(9)baseline 200 (1.5x) 174 (1.49x) 41.9 44.0
(10)CL seqtru voc 200 (1.5x) 171 (1.52x) 42.7 44.5
(11)random-LTD 200 (1.5x) 176 (1.48x) 43.1 44.8

(12)baseline 150 (2x) 130 (2.00x) 42.0 42.7
(13)CL seqtru voc 150 (2x) 129 (2.02x) 42.6 43.7
(14)random-LTD 150 (2x) 131 (1.98x) 42.7 43.5
(15)CL seqtru voc 150 (2x) 130 (2.00x) 42.8 44.0
+random-LTD

(16)baseline 300 (1x) 111 (1x) 42.8
(17)CL seqtru voc 300 (1x) 111 (1.00x) 43.5
+random-LTD

Table 2: GPT-3 1.3B (case 1 to 15) and GPT-3 MoE 6.7B
(case 16, 17) pretraining cost and average evaluation accuracy
on 19 tasks. GPT-3 MoE only has 0-shot accuracy due to
time constraints. Accuracy results for each single task can be
found in Appendix A.1.

4 Evaluation
We evaluate DeepSpeed Data Efficiency by GPT-3/GPT-3
MoE/BERT pretraining and GPT-2/ViT finetuning. Appendix
A.5 includes studies of the TokenBypass method on GPT fine-
tuning and pretraining, further demonstrating the advantages
of the proposed random-LTD method.

4.1 GPT-3 and GPT-3 MoE Pretraining
We use the Pile public dataset (Gao et al. 2020) to perform
the pretraining of GPT-3 1.3B (Brown et al. 2020) (24 layers,
2048 hidden size, 16 attention heads) model. We also pretrain
a GPT-3 Mixture-of-Experts (MoE) 6.7B model (24 layers,
1024 hidden size, 16 attention heads, 64 experts on every
other layer) following related work (Rajbhandari et al. 2022).
We then perform 0-shot and 10-shot evaluations on 19 tasks to
evaluate the model quality of the pretrained models. Detailed
experimental setup and additional discussions on results are
described in Appendix A.1.

Tab. 2 summarizes the evaluation results. Key findings
include:
• Results under 100% data shows that the CL difficultiy met-

ric (5)CL seqtru voc provides the best model quality, better
than both baseline and the CL metric (2)CL seqtru pro-
posed in previous work (Li, Zhang, and He 2022) (Tab. 2
case 1 to 6).

• With 67% data, our CL solution is able to achieve better
0-shot and 10-shot accuracy than baseline with 100% data,
achieving a 1.5x data and time saving (case 1, 9, 10).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18495

Data Time GLUE
(billon (hours on finetune

Case tokens) 64 V100) score

(1)baseline 1049 (1x) 261 (1x) 87.29±0.53
(2)CL seqtru 1049 (1x) 265 (0.98x) 87.31±0.57
(3)CL seqreo 1049 (1x) 261 (1.00x) 87.48±0.61
(4)CL voc 1049 (1x) 261 (1.00x) 87.36±0.64
(5)CL seqtru voc 1049 (1x) 266 (0.98x) 87.60±0.34
(6)CL seqreo voc 1049 (1x) 262 (1.00x) 87.06±0.52
(7)random-LTD 1049 (1x) 302 (0.86x) 88.17±0.48
(8)CL seqtru voc 1049 (1x) 290 (0.90x) 87.69±0.32
+random-LTD

(9)baseline 703 (1.5x) 175 (1.49x) 87.19±0.49
(10)CL seqtru voc 703 (1.5x) 178 (1.47x) 87.29±0.62
(11)random-LTD 703 (1.5x) 201 (1.3x) 87.99±0.38

(12)baseline 524 (2x) 131 (1.99x) 86.61±0.5
(13)CL seqtru voc 524 (2x) 133 (1.96x) 86.9±0.33
(14)random-LTD 524 (2x) 150 (1.74x) 87.32±0.48
(15)CL seqtru voc 524 (2x) 144 (1.81x) 87.44±0.46
+random-LTD

Table 3: BERT-large pretraining cost and GLUE finetuning
score (median±std, details in Appendix A.2).

• When applying the proposed random-LTD technique, re-
sults show similar benefit as CL: better model quality when
using 100% data (case 7), and 1.5x data/time saving while
maintaining model quality (case 11).

• With 100% data, results (case 5, 7, 8) show that using both
techniques together further improves the model quality.

• With 50% data, the composed solution is able to achieve
the same model quality as baseline with 100% data, demon-
strating a 2x data and 2x time saving (case 15).

• As presented in Sec. 1 and Fig. 2, our approach provides
better model quality at all cost budgets, advancing the
whole cost-quality Pareto frontier. In particular, we achieve
up to 12.5x data/time/cost saving (from $46.3K to $3.7K
if renting similar hardware on Azure (Azure 2023)) while
still maintaining 95% of the model quality compared to the
baseline with full data. It requires 2x cost to achieve 95%
quality without our approach.

• Our approach can also improve MoE model’s model quality
(case 16, 17), confirming its broad applicability.

4.2 BERT-Large Pretraining
We use the Pile public dataset (Gao et al. 2020) to perform
the pretraining of BERT-large (Devlin et al. 2019) (24 layers,
1024 hidden size, 16 attention heads) model. We then perform
GLUE finetuning to evaluate the model quality of the pre-
trained models. Detailed experimental setup and additional
discussions on results are described in Appendix A.2.

Tab. 3 summarizes the evaluation results. Key findings
include:
• Same as the GPT-3 case, results under 100% data shows

that the CL difficultiy metric (5)CL seqtru voc provides
the best model quality (Tab. 3 case 1 to 6).

• With 67% data, our CL solution is able to achieve on-par
GLUE score as baseline with 100% data, achieving a 1.5x

data and time saving (case 1, 9, 10).
• Random-LTD is able to achieve better GLUE score even

with 2x less data than baseline (case 14), greatly surpass-
ing the 1.33x data saving by the state-of-the-art Token-
Bypass method. The time saving is less than data saving
because the token dropping mechanism adds a computation
overhead at each step. However, even with this overhead
random-LTD is still a more data/time-efficient solution
than baseline and TokenBypass.

• At 50% data, the composed solution further improves the
GLUE score from the CL/random-LTD-only cases (case
15), achieving a 2x data and 1.8x time saving while main-
taining the GLUE score compared to baseline.

• At 100% data, the composed solution (case 8) improves
the GLUE score from the CL-only case, but is worse than
the random-LTD-only case.

4.3 GPT-2 and ViT Finetuning
To verify the effectiveness of the proposed work on small-
scale tasks, we apply our techniques to PTB finetuning
task (Marcus, Santorini, and Marcinkiewicz 1993) for an
already-pretrained GPT-2350M model checkpoint from Hug-
gingface. Given the much smaller training cost, we focus on
improving the model quality under the same amount of data,
and results shows that the proposed approaches are able to
improve the model quality as expected. Detailed experimen-
tal setup, hyperparameter tuning, and additional discussions
on results are described in Appendix A.3.

We also try finetune the vision transformer (ViT) on both
ImageNet and CIFAR. We only test random-LTD for this task,
due to time/resource limitation. Detailed experimental setup
is described in Appendix A.4. Results show that random-LTD
is able to achieve 1.3-1.4x data savings while maintaining the
model quality, demonstrating its broad applicability.

5 Conclusion
In this work we propose the DeepSpeed Data Efficiency
framework, which demonstrates the power of composing 2
novel data efficiency techniques together. This enables us to
achieve up to 12.5x data/time/cost saving (from $46.3K to
$3.7K on Azure) while maintaining 95% of model quality for
GPT-3 pretraining, an up to 2x saving for GPT-3 and BERT
pretraining while maintaining 100% model quality, or to
achieve even better model quality under similar data and cost.
DeepSpeed Data Efficiency is easy to use and tune, which
enables us to apply it and verify the benefit on additional
GPT-3 MoE pretraining and GPT-2/ViT finetuning tasks.

References
Azure, M. 2023. Pricing calculator. https://azure.microsoft.
com/en-us/pricing/calculator/.
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J. 2009.
Curriculum learning. In ICML.
Bojar, O.; Helcl, J.; Kocmi, T.; Libovickỳ, J.; and Musil,
T. 2017. Results of the wmt17 neural mt training task. In
Proceedings of the second conference on machine translation.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18496

A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.;
Child, R.; Ramesh, A.; Ziegler, D.; Wu, J.; Winter, C.; Hesse,
C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.;
Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever,
I.; and Amodei, D. 2020. Language Models are Few-Shot
Learners. In NeurIPS.
Campos, D. 2021. Curriculum learning for language model-
ing. arXiv:2108.02170.
Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra,
G.; Roberts, A.; Barham, P.; Chung, H. W.; Sutton, C.;
Gehrmann, S.; et al. 2022. Palm: Scaling language mod-
eling with pathways. arXiv:2204.02311.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL-HLT.
Gao, L.; Biderman, S.; Black, S.; Golding, L.; Hoppe, T.;
Foster, C.; Phang, J.; He, H.; Thite, A.; Nabeshima, N.; et al.
2020. The pile: An 800gb dataset of diverse text for language
modeling. arXiv:2101.00027.
GitHub. 2021. GitHub Copilot. https://github.com/features/
copilot/.
Google. 2023. PaLM 2 Technical Report. https://ai.google/
static/documents/palm2techreport.pdf.
Goyal, S.; Choudhury, A. R.; Raje, S.; Chakaravarthy, V.; Sab-
harwal, Y.; and Verma, A. 2020. PoWER-BERT: Accelerat-
ing BERT inference via progressive word-vector elimination.
In ICML.
Hoffmann, J.; Borgeaud, S.; Mensch, A.; Buchatskaya, E.;
Cai, T.; Rutherford, E.; Casas, D. d. L.; Hendricks, L. A.;
Welbl, J.; Clark, A.; et al. 2022. Training Compute-Optimal
Large Language Models. arXiv:2203.15556.
Hou, L.; Pang, R. Y.; Zhou, T.; Wu, Y.; Song, X.; Song, X.;
and Zhou, D. 2022. Token Dropping for Efficient BERT
Pretraining. In ACL.
Kim, G.; and Cho, K. 2020. Length-adaptive transformer:
Train once with length drop, use anytime with search.
arXiv:2010.07003.
Kim, S.; Shen, S.; Thorsley, D.; Gholami, A.; Kwon, W.;
Hassoun, J.; and Keutzer, K. 2021. Learned token pruning
for transformers. arXiv:2107.00910.
Kocmi, T.; and Bojar, O. 2017. Curriculum Learning and
Minibatch Bucketing in Neural Machine Translation. In
RANLP.
Li, C.; Yao, Z.; Wu, X.; Zhang, M.; Holmes, C.; Li, C.; and
He, Y. 2022. DeepSpeed Data Efficiency: Improving Deep
Learning Model Quality and Training Efficiency via Efficient
Data Sampling and Routing. arXiv:2212.03597.
Li, C.; Zhang, M.; and He, Y. 2022. The Stability-Efficiency
Dilemma: Investigating Sequence Length Warmup for Train-
ing GPT Models. In NeurIPS.
Marcus, M. P.; Santorini, B.; and Marcinkiewicz, M. A. 1993.
Building a Large Annotated Corpus of English: The Penn
Treebank. Computational Linguistics, 19(2): 313–330.
Michel, P.; Levy, O.; and Neubig, G. 2019. Are sixteen heads
really better than one? NeurIPS.

MosaicML. 2022. Sequence Length Warmup, MosaicML
Composer. https://docs.mosaicml.com/en/v0.11.1/method
cards/seq length warmup.html.
Platanios, E. A.; Stretcu, O.; Neubig, G.; Póczos, B.; and
Mitchell, T. M. 2019. Competence-based Curriculum Learn-
ing for Neural Machine Translation. In NAACL-HLT.
Press, O.; Smith, N. A.; and Lewis, M. 2020. Short-
former: Better Language Modeling using Shorter Inputs.
arXiv:2012.15832.
Press, O.; Smith, N. A.; and Lewis, M. 2021. Train short,
test long: Attention with linear biases enables input length
extrapolation. arXiv:2108.12409.
Rajbhandari, S.; Li, C.; Yao, Z.; Zhang, M.; Aminabadi,
R. Y.; Awan, A. A.; Rasley, J.; and He, Y. 2022. Deepspeed-
moe: Advancing mixture-of-experts inference and training to
power next-generation ai scale. In ICML.
Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; and Chen, M.
2022. Hierarchical text-conditional image generation with
clip latents. arXiv:2204.06125.
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2022. High-resolution image synthesis with latent
diffusion models. In CVPR.
Sachan, M.; and Xing, E. 2016. Easy questions first? a case
study on curriculum learning for question answering. In ACL.
Sachan, M.; and Xing, E. 2018. Self-training for jointly
learning to ask and answer questions. In NAACL.
Scao, T. L.; Fan, A.; Akiki, C.; Pavlick, E.; Ilić, S.; Hesslow,
D.; Castagné, R.; Luccioni, A. S.; Yvon, F.; Gallé, M.; et al.
2022. Bloom: A 176b-parameter open-access multilingual
language model. arXiv:2211.05100.
Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper,
J.; and Catanzaro, B. 2019. Megatron-lm: Training multi-
billion parameter language models using model parallelism.
arXiv:1909.08053.
Smith, S.; Patwary, M.; Norick, B.; LeGresley, P.; Rajbhan-
dari, S.; Casper, J.; Liu, Z.; Prabhumoye, S.; Zerveas, G.;
Korthikanti, V.; et al. 2022. Using deepspeed and megatron
to train megatron-turing nlg 530b, a large-scale generative
language model. arXiv:2201.11990.
Tay, Y.; Wang, S.; Luu, A. T.; Fu, J.; Phan, M. C.; Yuan, X.;
Rao, J.; Hui, S. C.; and Zhang, A. 2019. Simple and Ef-
fective Curriculum Pointer-Generator Networks for Reading
Comprehension over Long Narratives. In ACL.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In NeurIPS.
Vig, J.; and Belinkov, Y. 2019. Analyzing the structure of at-
tention in a transformer language model. arXiv:1906.04284.
Voita, E.; Talbot, D.; Moiseev, F.; Sennrich, R.; and Titov,
I. 2019. Analyzing multi-head self-attention: Special-
ized heads do the heavy lifting, the rest can be pruned.
arXiv:1905.09418.
Wang, H.; Zhang, Z.; and Han, S. 2021. Spatten: Efficient
sparse attention architecture with cascade token and head
pruning. In HPCA.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18497

Xu, B.; Zhang, L.; Mao, Z.; Wang, Q.; Xie, H.; and Zhang, Y.
2020. Curriculum learning for natural language understand-
ing. In ACL.
Yu, J.; and Huang, T. S. 2019. Universally slimmable net-
works and improved training techniques. In ICCV.
Zhang, W.; Wei, W.; Wang, W.; Jin, L.; and Cao, Z. 2021.
Reducing BERT Computation by Padding Removal and Cur-
riculum Learning. In ISPASS.
Zhang, X.; Kumar, G.; Khayrallah, H.; Murray, K.; Gwinnup,
J.; Martindale, M. J.; McNamee, P.; Duh, K.; and Carpuat, M.
2018. An Empirical Exploration of Curriculum Learning for
Neural Machine Translation. arXiv:1811.00739.
Zhang, X.; Shapiro, P.; Kumar, G.; McNamee, P.; Carpuat,
M.; and Duh, K. 2019. Curriculum Learning for Domain
Adaptation in Neural Machine Translation. In NAACL-HLT.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18498

