
Dialogue for Prompting: A Policy-Gradient-Based Discrete Prompt Generation for
Few-Shot Learning

Chengzhengxu Li, Xiaoming Liu*, Yichen Wang, Duyi Li, Yu Lan, Chao Shen
Faculty of Electronic and Information Engineering, Xi’an Jiaotong University

{czx.li, yichen.wang, liduyi}@stu.xjtu.edu.cn, {xm.liu, ylan2020, chaoshen}@xjtu.edu.cn

Abstract

Prompt-based pre-trained language models (PLMs) paradigm
has succeeded substantially in few-shot natural language
processing (NLP) tasks. However, prior discrete prompt
optimization methods require expert knowledge to design
the base prompt set and identify high-quality prompts,
which is costly, inefficient, and subjective. Meanwhile, ex-
isting continuous prompt optimization methods improve
the performance by learning the ideal prompts through
the gradient information of PLMs, whose high computa-
tional cost, and low readability and generalizability are of-
ten concerning. To address the research gap, we propose a
Dialogue-comprised Policy-gradient-based Discrete Prompt
Optimization (DP2O) method. We first design a multi-round
dialogue alignment strategy for readability prompt set gener-
ation based on GPT-4. Furthermore, we propose an efficient
prompt screening metric to identify high-quality prompts
with linear complexity. Finally, we construct a reinforce-
ment learning (RL) framework based on policy gradients to
match the prompts to inputs optimally. By training a pol-
icy network with only 0.62M parameters on the tasks in
the few-shot setting, DP2O outperforms the state-of-the-art
(SOTA) method by 1.52% in accuracy on average on four
open-source datasets. Moreover, subsequent experiments also
demonstrate that DP2O has good universality, robustness and
generalization ability.

Introduction
With the continuous development of pre-trained language
models (PLMs) (Liu et al. 2019; Touvron et al. 2023; Anil
et al. 2023), e.g., ChatGPT (OpenAI 2022) and GPT-4
(OpenAI 2023), prompt-based methods have shown signif-
icant rising competitiveness in few-shot downstream tasks
(Schick and Schütze 2020a,b). Unlike the traditional fine-
tuning methods, which require the design of additional
neural network heads according to downstream tasks, the
prompt-based methods join particular extra texts to inputs
to transfer downstream tasks into mask-filling tasks. The
prompt matches the downstream task with the model’s pre-
training task, and the potential of the PLMs can be more
comprehensively scheduled. However, PLMs are extremely

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Seeds

Prompts

Sample1. Review: a film that will enthrall the

whole family. Sentiment: positive. SUE=301.78

Sample2. Review: in the setting, their

struggle is simply too ludicrous and borderline

insulting. Sentiment: negative. SUE=304.99

Prompt1. Review: the narrative fails to

connect. Sentiment: negative. SUE=312.38

Prompt2. Review: a movie combines humor,

emotion, and action perfectly. Sentiment:

positive. SUE=305.61

1. Prompt1 Review: a cinematic delight that

wins the hearts of the audience. Sentiment:

<mask>. Match Probability P=0.0546

2. Prompt2 Review: a cinematic delight that

wins the hearts of the audience. Sentiment:

<mask>. Match Probability P=0.0159

Prompt Set Construction
 Multi-round Dialogue Align

Prompt Matching

Sampling in Training Set
Evaluate By Score SUE

… …

… …

Input

GPT-4

Base ModelPrediction

… …

RL

Readable?
Transferable?

Costly human
involvement?

Only one prompt for
the whole dataset?

Sample-level
prompt matching.

No.

Yes.

Continuous Prompting

Sorry. Prompt Enumeration

DP2O

DP2O

DP2OFully automatic.

Figure 1: An illustration of the procedure and innovation
Q&A of DP2O. The procedure includes 1) Sampling the
seed set from the training set via SUE; 2) Constructing the
prompt by multi-round dialogue with GPT-4 to align the in-
puts with the whole training set’s distribution; 3) Employing
an RL agent to match prompts with inputs to predict proba-
bilistically; 4) Feeding all prompt-input pairs to a base PLM
model for downstream tasks and ensemble predictions by
probability weighting.

sensitive to prompts (Holtzman et al. 2019; Lester, Al-Rfou,
and Constant 2021). Minor gaps with the same semantics
in prompts may lead PLMs to completely different per-
formances. Therefore, one core issue of the prompt-based
methods is finding high-quality prompts to promote the per-
formance of PLMs.

Currently, prompt optimization methods can be divided
into two categories: discrete prompt optimization and con-
tinuous prompt optimization.

Due to the discrete nature of the text, prompts can not
be directly optimized by using the gradient information
from PLMs. Therefore, previous discrete prompt optimiza-
tion methods heavily relied on the manually designed basic
prompt sets and prompt templates (Jiang et al. 2020; Yuan,
Neubig, and Liu 2021; Haviv, Berant, and Globerson 2021;
Davison, Feldman, and Rush 2019). Moreover, lacking clear
evaluation metrics, prior works often use the supervision

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18481

gain of training-set prompt as a screening metric during op-
timization (Zhou et al. 2022; Gao, Fisch, and Chen 2020).
Therefore, discrete prompt optimization methods usually ne-
cessitate a number of labeled data, which contradicts the
few- or zero-shot learning objectives, and overlooks the po-
tential impact of prompts on the output distribution, and the
further effect on the performance of PLMs.

Meanwhile, the continuous prompt optimization methods
abandon the text structure of prompts and improve the per-
formance of PLMs by directly optimizing token embedding
at specific locations (Vu et al. 2021; Li and Liang 2021; An
et al. 2022; Qian et al. 2022). Although these methods can
directly use gradient to guide the optimization direction of
continuous prompts, the computational cost is often exceed-
ingly expensive. Besides, continuous prompts usually lack
readability and are hardly used across different PLMs.

Towards these challenges, we propose a Dialogue-
comprised Policy-gradient-based Discrete Prompt
Optimization method, named DP2O. As shown in Figure 1,
DP2O mainly consists of two stages: prompt set construc-
tion and prompt matching. In the prompt set construction
stage, we propose a prompt set generation method with a
multi-round dialogue alignment strategy by employing the
dialogue characteristics of GPT-4, one of the current most
capable PLMs on dialogue. Meanwhile, we introduce an in-
novative prompt quality assessment metric, i.e., Supervised
& Unsupervised Entropy Metric (SUE), which considers the
supervised and unsupervised impact of prompts on PLMs
with linear complexity and facilitates output distribution
balance and accuracy in downstream tasks. In the prompt
matching stage, we propose a reinforcement learning (RL)
framework, which employs a policy network to select
appropriate input prompts. The prompts, without breaking
textual semantics, ensure their readability and transferability
across different PLMs. Extensive experiments show DP2O
is significantly superior to baseline and SOTA methods,
e.g., DP2O achieve an average improvement of 1.52% in
accuracy across four public datasets with only a 10.86%
training time of the SOTA method RLPrompt (Deng et al.
2022). Furthermore, we implement ablation and analysis
experiments to demonstrate the effectiveness, robustness
and generalization of DP2O.

In summary, our contributions are summarized as follows:

• Novel Generation Strategy: We generate the prompt set
via the multi-round dialogue alignment strategy, aiming
at reducing the cost of human involvement in prompting.

• Linear Evaluation Metric: We additionally consider
unsupervised information of PLMs prediction in prompts
evaluation, proposing a new metric to screen out excel-
lent prompts with linear complexity.

• Precise Prompt Matching: We apply RL techniques to
achieve sample-level discrete prompt optimization, fur-
ther improving the performance of PLMs on downstream
tasks.

• Outstanding Task Performance: Experiments on four
public datasets show that DP2O effectively improves the
performance of PLMs under few-shot settings with read-
ability, robustness, generalization, and universality.

Methodology
The main workflow of DP2O can be mainly divided into
two stages: prompt set construction and prompt matching,
as shown in Figure 2.

Prompt Set Construction Stage
Evaluation Metric. Most prevailing methods utilize the ag-
gregate accuracy of the prompt on the dataset as their sole
metric for assessment, which neglects the impact of the
distribution of labels in the dataset. Lu et al. (2021) find
that significantly imbalanced prediction distributions typi-
cally characterize underperforming prompts. To this end, we
introduce a novel evaluation metric termed Supervised &
Unsupervised Entropy metric (SUE). SUE aims to provide
a more comprehensive appraisal for prompts by additionally
considering global balance beyond local accuracy.

SUE consists of two parts: supervision score Ssup and un-
supervised score Suns. Given a prompt x and input set Z ,
for each input zi ∈ Z , we first calculate the difference of
the probability pLM that the zi is correctly labeled ci and
wrongly labeled as celse by a base PLM. Here celse ∈ C \{ci}
exactly, and C is the label space of the input. Then the super-
vision score Ssup of prompt x is defined as:

Ssup(x,Z) =
∑
zi∈Z

(pLM(ci|x, zi)− pLM(celse|x, zi)) (1)

To prevent some prompts from causing PLMs to be overly
biased on all inputs, SUE selects the prompts which guide
PLMs to output a more balanced pseudo-label distribution
across all given inputs. Given a prompt x, we calculate a
entropy value H(.) of each input zi, then add H(.) of each
input as Suns for the whole input set Z:

H(x, zi) =
∑

ci∈C
−pLM(ci|x, zi) log pLM(ci|x, zi) (2)

Suns(x,Z) =
∑

zi∈Z
H(x, zi) (3)

Finally, we have our evaluation metric SUE to assess the
quality of prompts as

SUE(x,Z) = λ1Ssup(x,Z) + λ2Suns(x,Z) (4)

where λ1 and λ2 are the weights to balance the supervised
score Ssup and the unsupervised score Suns. For the input set
Z encompassing multiple inputs, the metric SUE charac-
terizes the holistic quality of the prompt. Higher SUE rep-
resents the better capability on the specific downstream task
(derived from Ssup) and more benign confidence on all inputs
(derived from Suns). Meanwhile, when Z only comprises a
single input, SUE can elucidate the degree of match between
the prompt and the input.

Prompt Set Generation. Existing discrete prompt opti-
mization methods, such as Black-Box Tuning (Sun et al.
2022) and GrIPS (Prasad et al. 2022), mostly require text
editing based on manually designed prompts and vocabular-
ies. Different from these methods, DP2O leverages GPT-4
as a dialogue model to generate pseudo-label inputs which
approximate the dataset distribution, utilizing only a limited

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18482

Seed
Zseed

Seed
Zseed

Prompt Set Construction
Multi-round Dialogue Alignment Prompt Matching

with Reinforcement Learning

top-m

Evaluator

Action
SpaceSample

Ztrain

Sample
Ztrain

Seed
Zseed

Training Set

Cand.
Zcand

Cand.
Zcand

Prompt
X

Prompt
X

Policy Network

Base PLM

State
Last Hidden Layer

Probabilities of
Prompt-Input pairs

Base PLM

P(“positive”) = 0.86)
Rewards

SUE
SUE

[Prompt] Review: … [MASK]

Shuffle Zseed

Repeat 𝒓𝒐𝒖𝒏𝒅𝒎𝒂𝒙 times

DP2OGenerate n similar samples according to

DP2O

Align the generated pseudo-
labeled inputs with the
following given inputs via
rewriting.

Initialization

Alignment

Zseed [0:1]

Pseudo-labeled Inputs

Aligned Inputs
{𝒛𝒑𝟏

𝒏𝒖𝒎, … , 𝒛𝒑𝒏
𝒏𝒖𝒎}

Append

m-2
Round

size h
size m

Zseed [num]

Input
Ztrain

Each Input 𝒛

weighted
by prob.

SUE

Cand.
Zcand

Cand.
Zcand

GPT-4

top-h

Figure 2: Overview of DP2O. In the prompt set construction stage, we use the multi-round dialogue alignment strategy to gen-
erate high-quality discrete prompts continuously. Given the seed inputs Zseed with top-m SUE score, DP2O have a conversation
with GPT-4, which has roundmax times outer loop and m − 2 times inner loop, to align inputs semantics with the training
set. Then DP2O apply the assessment metric SUE to sort the prompts after dialogue to obtain the final candidate set Zcand.
We filter top-h candidates as the final prompt set based on SUE score. In the prompt matching stage, we build a reinforcement
learning framework to match the appropriate prompt from X for each input z from Ztrain with probability. The prompt-input
pairs are fed into the base PLM to predict downstream tasks. The final prediction is the probability-weighted output of all pairs.

set of training data. Then the inputs are used as prompt ex-
amples for downstream tasks. Notably, Min et al. (2022)
indicate that the label authenticity of these pseudo-label
prompt examples has little impact on the performance of
PLMs. Hence, for DP2O, we do not validate the authenticity
of the labels of the inputs generated by GPT-4, which further
eliminates the necessity for human annotation. Our experi-
ments also show that, without verifying the authenticity of
labels, DP2O can still achieve praiseworthy and competitive
performance to other methods.

Algorithm 1: Prompt Set Construction of DP2O
Input: Few-shot training set Ztrain including inputs and labels, la-

bel space C, base PLM and access to GPT-4 API.
1: Zseed ← top-m inputs in Ztrain via SUE(zi,Ztrain), zi ∈ Ztrain.

**** outer-loop begins: multi-round dialogue ****
2: round← 0
3: while round < roundmax do
4: Random shuffle Zseed .
5: Input Zseed[0 : 1] to GPT-4 with prefix introduction of task.
6: GPT-4 output n pseudo-labeled inputs {z1p1 , ..., z

1
pn}.

**** inner-loop begins: one dialogue round ****
7: Initialize number of used inputs in Zseed num← 2.
8: while num < m do
9: InputZseed[num] to GPT-4, asking it rewrite the previous

{znum−1
p1 , ..., znum−1

pn }.
10: GPT-4 output {znum

p1 , ..., znum
pn }.

11: num← num+ 1
12: end while
13: Append {zm−1

p1 , ..., zm−1
pn } to Zcand.

14: end while
15: X ← top-h inputs of Zcand. via SUE(zi,Ztrain.) , zi ∈ Zcand.
Output: Readable and high-quality prompt set X .

With the prevalence of PLMs aiming at chatting, dia-
logue is an effective way to input multi-inputs to models.

Instead of concatenating them into long sequence text, dia-
logue strategy can ease the forgetness of PLMs caused by
the sliding window. As shown in Algorithm 1, we utilize di-
alogue to gradually align our prompts with the distribution
of PLM to reduce the potential threat of biased prediction.

Given a training set denoted as Ztrain, we first individu-
ally evaluate each input zi ∈ Ztrain by score SUE(zi,Ztrain).
SUE signifies the input zi’s efficacy within the given set
Ztrain. We rank Ztrain set in descending order based on the
SUE(zi,Ztrain). We then select the top-m inputs to form the
seed set Zseed = {zseed1 , zseed2 , ..., zseedm}.

Subsequently, utilizing GPT-4, we generate pseudo-label
inputs that mirror the distribution of the prompts within the
Zseed. Initially, GPT-4 randomly takes inputs from Zseed and
then begins a dialogue round (outer-loop).

In one dialogue round, we first generate n pseudo-labeled
inputs {z1p1

, ..., z1pn
} based on any two inputs from Zseed.

Then we randomly select one of the remaining inputs from
Zseed into dialogue to guide GPT-4 to polish the previ-
ously generated pseudo-labeled inputs {z1p1

, ..., z1pn
} and get

corresponding {z2p1
, ..., z2pn

}. Repeated the polishing stage
(inner-loop) m − 2 times until all zseed inputted to the di-
alogue once. Then we get {zm−1

p1
, ..., zm−1

pn
} and append

them in candidate set Zcand.
However, the order of conversation might impact dia-

logue alignment. We suggest re-ordering the conversation
multi-time to counteract the effect of the order. Thus, we
shuffle {zseed1 , zseed2 , ..., zseedm} and start a new dialogue
round (outer-loop), aiming at minimizing the impact of or-
der in dialogue. After finishing all roundmax times dia-
logue rounds (outer-loop), we compute the score SUE of
all n× roundmax inputs in Zcand. Then, we select the top-h
inputs from the candidate set Zcand as the final prompt set X .
From now on, the selected inputs go into the role of prompt.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18483

Overall, we introduce the multi-round dialogue alignment
strategy, optimizing GPT-4’s utility in prompt generation
and leveraging its inherent dialogue characteristic.

Prompt Matching Stage
Previous studies have underscored the high sensitivity of
PLMs to prompts (Radford et al. 2018; Dathathri et al.
2019; Raffel et al. 2020). Traditional methods tend to rely
on either random selection or a simple cosine similarity
metric between the input and prompt embedding for selec-
tion (Gao, Fisch, and Chen 2020). This leads to an under-
exploration of the prompt space limiting the potential per-
formance enhancements in complex tasks. While for the re-
cently emerging RL-based methods, the complexity associ-
ated with brute-force searching escalates exponentially with
data size growth. Hence, efficiently matching appropriate
prompts for each input is a highly challenging task.

Algorithm 2: Prompt Matching of DP2O
Input: Training setZtrain of size T , testing setZtest, base PLM, the

prompt set X constructed by Algorithm 1.
**** training the RL model ****

1: Initialize the policy network πθ parameters θ and epoch← 0.
2: while epoch < epochmax do
3: for step t in [1, ..., T] do
4: Get state st ← PLM(zt).
5: Run policy network πθ(at|st) to take an action at to se-

lect a prompt xt.
6: Calculate reward by SUE, i.e., rt ← SUE(xt, zt).
7: Add transition to replay buffer.
8: end for
9: Update parameters θ of πθ with the policy gradient loss.

10: end while
**** testing phase begins ****

11: for each input z in Ztest do
12: Get state s← PLM(z).
13: Get final prediction according to Eq. 5.
14: end for
Output: A trained policy network πθ , predictions for test inputs.

Model Overview. In response to these challenges, we define
the discrete prompt matching problem as a Reinforcement
Learning (RL) problem, Markov Decision Process (MDP),
as shown in Algorithm 2. For the action space A of the RL
agent, an action ak denotes that the agent selects a prompt
xk from the prompt set X obtained in the prompt set con-
struction stage.

At each step t of the training phase, given a state st =
PLM(zt), i.e., the last hidden layer embedding of input zt,
the RL agent takes an action at of selecting a prompt xt

from the prompt set X according to the policy πθ(at|st)
where θ is the learnable parameter of the policy network.
We concatenate xt with zt and input them into PLM to
complete downstream tasks, and calculate the reward rt of
the RL agent based on the output of the PLM. The goal
of the RL agent is to maximize the expected reward R =

E(
∑T

t=1 γ
trt), where γt is the discount factor at step t.

In the testing phase, we adopt the ensemble decision-
making approach for prompt selection. The prompts with

top-k probability values are then entered into PLM to per-
form downstream tasks, which are weighted by the proba-
bility from the policy network πθ. Given an input z and its
corresponding state s, the final prediction obtained by DP2O
at label c can be expressed as

P (c|z) = softmax(
k∑

j=1

πθ(aj |s) log(pLM(c|xj , z))) (5)

State Space. In reinforcement learning, the concept of state
space describes all the information about an environment at
a given point in time. PLM is pre-trained on a large-scale un-
labeled corpus based on self-supervised learning, allowing
the model to capture complex language patterns, including
long-distance dependence, polysemy disambiguation, sen-
tence structure, etc (Dong et al. 2019; Clark et al. 2020).
In this work, we use the last hidden layer embedding of the
outputs in the PLMs to represent the state s, which is sub-
sequently input into the policy network. To ensure that the
difference between states is distinguishable to the RL agent,
we dynamically maintain a mean and standard deviation dur-
ing training of the policy network to normalize observations
of the state.
Action Space. An action a ∈ A is proposed to match an
appropriate prompt for an input based on the observed state,
where the action space size |A| = h. To make action de-
cisions, we train a policy network πθ(.), which is a simple
two-layer fully connected network, and parameters θ are op-
timized by the policy gradient algorithm (Sutton et al. 1999).
For input zt, πθ(.) outputs the probability distribution of ac-
tions by

πθ(st) = softmax(w2 · tanh(w1 · st)) (6)
where w1 and w2 represent the parameters θ of the two fully
connected layers.
Reward Design. The reward received by the RL agent acts
as the feedback that directly guides the update direction
of the policy network. In this work, we aim to ensure that
the RL-agent-selected prompts for the inputs can accurately
complete the downstream task while maintaining balanced
predicted label distribution. To achieve this, we re-use the
SUE score to evaluate the degree of match between the
prompt and input. Specifically, given an input zt, we calcu-
late SUE(xt, zt) as the step reward rt of the RL agent after
selecting the prompt xt.

The reward scale obtained by RL agents can vary greatly
due to disparities among different inputs. As a result, RL
agents may overly focus on certain inputs during the training
phase and become trapped in local optima. To address this
issue, we normalize all rewards rt of the RL agent during
training to maintain a relatively stable scale.
Other Key Details. During the training process, we utilize
the policy gradient algorithm to update the policy network.
To enhance the algorithm’s exploratory potential and accel-
erate the convergence speed, we follow Sutton (1988) and
incorporate entropy into the loss computation of the strategy
network. This inclusion allows the policy network to con-
tinually optimize the primary loss while maximizing the en-
tropy of the strategy, thereby minimizing the possibility of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18484

Category Method SST-2 MR CR Yelp Avg.

Continuous
Prompt

Soft Prompt Tuning 73.84 ± 10.9 74.17 ± 14.6 75.89 ± 11.8 88.76 ± 4.73 78.17
Black-Box Tuning 89.11 ± 0.92 86.60 ± 1.32 87.45 ± 1.06 93.22 ± 0.54 89.10
AutoPrompt 75.04 ± 7.64 62.02 ± 0.85 57.53 ± 5.88 79.81 ± 8.39 68.60

Discrete
Prompt

Manual Prompt † 82.82 ± 0.00 80.88 ± 0.00 79.60 ± 0.00 83.01 ± 0.00 81.58
Instruction † 89.03 ± 0.00 85.18 ± 0.00 80.81 ± 0.00 84.44 ± 0.00 84.87
In-Context Demo 85.91 ± 0.72 80.58 ± 1.44 85.50 ± 1.52 89.67 ± 0.48 85.42
GrIPS 87.14 ± 1.57 86.11 ± 0.33 80.02 ± 2.57 88.23 ± 0.17 85.38
RLPrompt (SOTA) 90.87 ± 0.86 86.85 ± 0.51 89.62 ± 1.36 93.78 ± 2.98 90.28

DP2O 93.62 ± 0.72 88.58 ± 0.91 90.76 ± 0.50 94.25 ± 0.41 91.80

Table 1: Comparison of the accuracy of DP2O and baseline methods on few-shot text classification tasks. The last column
shows the average accuracy of each method on the four datasets. Overall, the DP2O method outperforms baseline methods in
all cases. † Methods not affected by random seeds.

the strategy succumbing to local optimum solutions. Addi-
tionally, we use the constant decay method (Tesauro 1991) to
control the learning rate of the policy network, which helps
the algorithm to converge faster in the early stage of training.

Experiments
To demonstrate the effectiveness of DP2O, we conduct ex-
tensive experiments on four open-source datasets of sen-
timent classification tasks, including SST-2 (Socher et al.
2013), Yelp (Zhang, Zhao, and LeCun 2015), MR (Pang
and Lee 2005), and CR (Hu and Liu 2004), and three tasks
of GLUE (Wang et al. 2018) in the few-shot setting. We
also analyze the superiority of DP2O from various aspects:
a) Ablation experiments to analyze the effect of modules
in DP2O on downstream tasks; b) Universality in few-shot
settings; c) Robustness to choice of verbalizers; d) Gener-
alization for PLMs with different sizes; e) Lightweight and
Efficiency method deployment.

Experiment Settings
The setting of comparison experiments, including competi-
tors and our model DP2O, follows Deng et al. (2022). Also,
we utilize a few-shot experiment following Perez, Kiela, and
Cho (2021), i.e., randomly select 16 samples from each cat-
egory c of the dataset as the training set. Meanwhile, we use
the same sampling method for the validation set. Therefore,
the size of our training and validation sets is 16× |C|.

We chose RoBERT-large (Liu et al. 2019) for all down-
stream tasks. And we use GPT-4 (OpenAI 2023) API to
generate 60 prompts on each dataset, screening out 15 of
them as action spaces for reinforcement learning. In the pol-
icy network, w1 ∈ R1024×600 and w2 ∈ R600×15. We use
AdamW with eps of 0.00001 during training of 200 epochs.
The learning rate is 0.001, and mini-batch size is 32. More
details are shown in the appendix.

Competitors
The baselines for comparison are as follows:

Soft Prompt Tuning (Lester, Al-Rfou, and Constant 2021)
replaces discrete prompt tokens with learnable feature vec-
tors, and optimizes prompt through gradient information of
PLMs.
Black-Box Tuning (Sun et al. 2022) combines the character-
istics of discrete and continuous prompt optimization meth-
ods, optimizing the sequence of continuous prompt tokens
attached to PLMs inputs without gradient.
AutoPrompt (Shin et al. 2020) performs multiple rounds
of iteration based on gradient information, replaces the vo-
cabulary in the prompt, and optimizes the discrete prompt
template.
Manual Prompt applies the prompt designs of Bach et al.
(2022), directly combines the prompt with the input for
downstream tasks.
Instruction is a basic form of discrete prompting that facil-
itates PLMs to complete downstream tasks through an ex-
planatory text. We design prompts for each task according
to Mishra et al. (2021).
In-Context Demo (Brown et al. 2020) randomly selects
training data as examples to prompt PLMs to process sub-
sequent input.
GrIPS (Prasad et al. 2022) optimizes discrete prompts
by lexical-level editing on basic prompts, i.e., substitution,
deletion, and swapping, etc.
RLPrompt (Deng et al. 2022) uses reinforcement learning
techniques to individually train partial parameters of PLMs
to generate discrete prompts for PLMs on downstream tasks.

Performance Comparison
As shown in Table 1, the DP2O method outperforms its
competitors on all datasets. Specifically, compared with the
SOTA method RLPrompt, DP2O achieves accuracy im-
provements of 2.75%, 1.73%, and 1.14% on SST-2, MR,
and CR datasets, respectively. Additionally, on the Yelp
dataset, DP2O still achieved a 0.47% performance improve-
ment with greater stability, despite RLPropmt performing
well. Furthermore, compared with other prompt optimiza-
tion methods using sorely supervision (i.e., AutoPrompt and
GrIPS), SUE, which combines the unsupervised and su-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18485

pervised components excels. In terms of average accuracy
over all datasets, DP2O performs 23.20% better than Auto-
Prompt and 6.42% better than GrIPS in accuracy. Compared
to Soft Prompt Tuning, one of the most popular prompt opti-
mization methods, DP2O achieves 13.63% better accuracy
on all four datasets while ensuring prompt readability. More-
over, our proposed multi-round dialogue alignment strategy
can build the high-quality prompt set stably, resulting in
a smaller standard deviation of DP2O’s performance com-
pared to Soft Prompt Tuning.

Ablation Study
To study the impact of each component of DP2O on the fi-
nal performance, we perform ablation experiments on gen-
eration strategy, selection metric, and matching strategy.
Generation Strategy. We compare the prompt generation
strategy of DP2O with two commonly used strategies:
Examples-Only and Prompt-Examples (Ubani, Polat, and
Nielsen 2023; Min et al. 2022; Dai et al. 2023). Example-
Only prompt generation strategy first concatenates a certain
number of inputs into a piece of text in random order, then
enters the text into GPT-4 in a single round of dialogue for
generating the pseudo-label inputs. Prompt-Examples strat-
egy is based on the Examples-Only strategy, applying an ex-
planatory text prefix to the input combination text. In the
experiment, we use the same training data, utilize different
generation strategies to generate 20 pseudo-label inputs as
prompts and calculate their average accuracy on the test set.
We provide the specific input used by the three prompt gen-
eration strategies in the appendix.

Method SST-2 MR CR Yelp
Examples Only 86.34 75.80 80.16 90.60
Prompt Examples 78.07 83.23 88.43 87.95
DP2O Examples 89.46 85.69 88.99 91.67

Table 2: Comparison of prompt generation strategies. DP2O
Examples are generated via the multi-round dialogue align-
ment strategy.

Table 2 demonstrates that the DP2O’s prompt generation
strategy, i.e., multi-round dialogue alignment strategy, re-
sults in an average accuracy improvement of 3.12%, 2.46%,
0.56% and 1.07% on the SST-2, MR, CR and Yelp datasets
than the best comparison strategy, respectively. We also
found that Examples-Only and Prompt-Examples strategies
show significant performance fluctuations when the dataset
changes. In contrast, our multi-round dialogue alignment
strategy is much more stable, indicating that DP2O gener-
ates a superior set of prompts by aligning with the training
set data via GPT-4 dialogue.
Selection Metric. Our prompt screening metric SUE con-
sists of two parts: supervised information and unsupervised
information. To evaluate the effectiveness of each compo-
nent, we compare SUE to use these two sole parts. We select
the top-15 prompts with the highest scores on each metric
from the same prompt set and then calculate their average
accuracy on the test set.

Method SST-2 MR CR Yelp
Supervised 85.07 78.45 87.55 90.78
Unsupervised 87.13 78.37 87.35 91.32
SUE in DP2O 87.72 78.60 88.01 92.71

Table 3: Ablation study on selection metrics.

Table 3 demonstrates the superior performance of SUE in
prompt screening. For example, on the SST-2, the average
accuracy of the prompts screened by SUE is 0.59% higher
than that of the best-performing comparison metric.

It is noteworthy that prompts selected solely using unsu-
pervised information achieves comparable performance to
supervised information. This finding indicates that DP2O
can potentially perform well on zero-shot tasks.
Matching Strategy. To prove the superiority of utilizing
reinforcement learning in matching prompts, we compare
it with the two other prompt matching methods, i.e., Ran-
dom and Similarity-based. The Random method randomly
matches the prompt and the input, while the Similarity-based
method matches them based on the cosine similarity be-
tween the inputs and the prompt feature embeddings.

Method SST-2 MR CR Yelp
Random 92.13 87.34 89.50 92.03
Similarity-based 91.38 88.60 89.33 92.61
RL in DP2O 94.03 89.07 90.95 94.32

Table 4: Comparison of the matching strategies.

As shown in Table 4, the matching method for RL in
DP2O achieves the best performance, e.g., a 1.90% im-
provement in accuracy on SST-2. It indicates our RL agent
can capture the implicit connection between the prompt and
the input while matching.

Discussions
Analysis on Universality. To demonstrate DP2O’s univer-
sality in few-shot settings, we compared it with baseline
methods on the GLUE (Wang et al. 2018) natural language
inference and reading comprehension task, using the base
template of Gao, Fisch, and Chen (2020). Lacking settings
and design of some aforementioned baseline methods on
these tasks, here we compared with Soft Prompt Tuning,
Black-Box Tuning, Manual Prompt, and In-Context Demo.

As shown in Table 5, results show that DP2O outperforms
all baseline methods significantly, including the prevailing
methods, Soft Prompt Tunning (Lester, Al-Rfou, and Con-
stant 2021) and Black-Box Tuning (Sun et al. 2022). e.g.,
DP2O, achieves a performance gain of 2.7% in the QNLI
task, and the improvement reaches an astonishing 5.4% in
the MRPC task. This results demonstrate that DP2O’s good
universality in the few-shot setting across various tasks,
which greatly stimulates the downstream ability of PLMs.
Analysis on Robustness. Prompt-based methods must map
the verbalizer probabilities from PLMs’ output into the label

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18486

Method RTE QNLI MRPC

Soft Prompt Tuning 54.7 ± 10.6 49.7 ± 1.73 51.6 ± 2.39
Black-Box Tuning 52.9 ± 0.44 48.8 ± 0.61 61.6 ± 0.97
Manual Prompt 51.6 ± 0.00 50.8 ± 0.00 61.1 ± 0.00
In-Context Demo. 59.7 ± 0.85 52.4 ± 0.67 45.8 ± 0.80
DP2O 61.2 ± 0.81 55.1 ± 0.39 67.0 ± 1.03

Table 5: Analysis on model universality. We use the GLUE
Benchmark1 online evaluation, whose results are three-digit
decimal numbers.

space that downstream tasks require. Therefore, the choice
of verbalizer directly affects the final performance of PLMs.
Previous work has discussed choosing suitable verbalizers
for PLMs. Here we focus on the robustness of DP2O when
facing different verbalizer choices, as the results shown in
Table 6. We follow the experimental setup of RLPrompt
(Deng et al. 2022). Experiments show that DP2O outper-
forms Manual Prompt at three different verbalizer settings
significantly. Meanwhile, compared to the SOTA method
RLPrompt, DP2O also surpasses it slightly, which accounts
for DP2O’s better robustness to the choice of verbalizer.

Verbalizer Manual RLPrompt DP2O

bad/good 79.73 91.22 ± 1.46 91.96 ± 0.41
neg./pos. 76.89 92.20 ± 0.65 93.64 ± 0.77
ter./great 82.86 92.81 ± 0.85 93.58 ± 0.51

Table 6: Analysis on DP2O’s robustness to verbalizers. For
short, neg. is negative, pos. is positvie, and ter.
is terrible.

Analysis on Generalization. We analyze the model gener-
alization for PLMs with different sizes, which is involved
in two modules of DP2O: prompt generalization and policy
generalization.

First, the prompts generated by DP2O can transfer be-
tween PLMs of different sizes. That is, the prompts com-
puted SUE and selected based on a smaller PLM can also
achieve good performance for downstream tasks in another
larger PLM.

Method SST-2 MR CR Yelp
Manual Prompt 82.82 80.88 79.60 83.01
DP2O generalized 83.33 80.38 84.66 89.26
DP2O 93.62 88.58 90.76 94.25

Table 7: Analysis on generalization ability of DP2O’s
prompts on different size PLMs.

In this experiment, we use the metric scores output from
the RoBERTa-base (110M parameters) to select the prompts
and test their generalization on RoBERTa-large (354M pa-
rameters) to get the downstream task prediction accuracy.

Impressively, Table 7 shows that the prompts selected by
smaller PLMs are well-transferable with a minor decline in
accuracy than the vanilla, still achieving comparable perfor-
mance to the Manual Prompt baseline.

The policy generalization concerns whether the trained
policy network of DP2O can function well on different
PLMs. We train a policy network on RoBERTa-base and ap-
ply it to RoBERTa-large. In this test, we keep the prompts
unchanged and only focus on evaluating the policy’s perfor-
mance. Table 8 shows that even if using a smaller model to
train the policy network, its performance on the large model
version is still better than the commonly used random pol-
icy. Also, generalized DP2O only shows a slight decrease in
accuracy to the vanilla.

Method SST-2 MR CR Yelp
Random 88.48 85.07 86.00 90.22
DP2O generalized 89.34 86.40 87.12 91.36
DP2O 93.62 88.58 90.76 94.25

Table 8: Analysis on generalization ability of the policy.

Analysis on Lightweight and Efficiency. DP2O only needs
to train a two-layer fully connected network for its policy
network. The number of parameters is 0.62M, which is only
0.73% of the whole policy network (distilGPT-2 with 82.0M
parameters and an additional MLP with 3.15M parameters)
used by RLPrompt in the experiment.

Meanwhile, as shown in Table 9, we compare the time
consumption of DP2O and the SOTA method RLPrompt
on the SST-2 dataset using a single NVIDIA GeForce RTX
3090 GPU. We find that the compact action space design
in DP2O dramatically reduces the training time, which is
only 10.86% of RLPrompt’s, while DP2O’s accuracy ex-
ceeds RLPrompt as mentioned in Table 1.

Metric RLPrompt DP2O
Time per Iterator 1.09 s 1.01 s
Training Time 218.63 min 23.75 min

Table 9: Time consumption on SST-2 dataset.

Conclusion
In this paper, we propose DP2O, a novel discrete prompt
optimization method. To efficiently and accurately select
high-quality prompts, we design a prompt generation strat-
egy through multi-round dialogue alignment on GPT-4 and
propose an efficient prompt evaluation metric, SUE. In ad-
dition, we design a reinforcement learning framework based
on policy gradients to match suitable prompts for a single in-
put. Our experimental results demonstrate that DP2O signif-
icantly improves the performance of PLMs in various down-
stream tasks while ensuring prompt readability and transfer-
ability. In subsequent analysis experiments, we also verify
DP2O’s good universality, robustness, generalization abil-
ity, lightweight and efficiency.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18487

Acknowledgments
This work is supported by National Key R&D Program
(2020YFB1406900), National Natural Science Foundation
of China (62272371, 62103323, U21B2018, 62161160337,
62132011, 62376210, 62006181, U20B2049), Initia-
tive Postdocs Supporting Program (BX20190275,
BX20200270), China Postdoctoral Science Foundation
(2019M663723, 2021M692565), Fundamental Re-
search Funds for the Central Universities under grant
(xhj032021013, xtr052023004, xtr022019002), and
Shaanxi Province Key Industry Innovation Program
(2021ZDLGY01-02).

References
An, S.; Li, Y.; Lin, Z.; Liu, Q.; Chen, B.; Fu, Q.; Chen, W.;
Zheng, N.; and Lou, J.-G. 2022. Input-tuning: Adapting un-
familiar inputs to frozen pretrained models. arXiv preprint
arXiv:2203.03131.
Anil, R.; Dai, A. M.; Firat, O.; Johnson, M.; Lepikhin,
D.; Passos, A.; Shakeri, S.; Taropa, E.; Bailey, P.; Chen,
Z.; et al. 2023. Palm 2 technical report. arXiv preprint
arXiv:2305.10403.
Bach, S. H.; Sanh, V.; Yong, Z.-X.; Webson, A.; Raffel, C.;
Nayak, N. V.; Sharma, A.; Kim, T.; Bari, M. S.; Fevry, T.;
et al. 2022. Promptsource: An integrated development envi-
ronment and repository for natural language prompts. arXiv
preprint arXiv:2202.01279.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877–
1901.
Clark, K.; Luong, M.-T.; Le, Q. V.; and Manning, C. D.
2020. Electra: Pre-training text encoders as discriminators
rather than generators. arXiv preprint arXiv:2003.10555.
Dai, H.; Liu, Z.; Liao, W.; Huang, X.; Wu, Z.; Zhao, L.; Liu,
W.; Liu, N.; Li, S.; Zhu, D.; et al. 2023. Chataug: Lever-
aging chatgpt for text data augmentation. arXiv preprint
arXiv:2302.13007.
Dathathri, S.; Madotto, A.; Lan, J.; Hung, J.; Frank, E.;
Molino, P.; Yosinski, J.; and Liu, R. 2019. Plug and play
language models: A simple approach to controlled text gen-
eration. arXiv preprint arXiv:1912.02164.
Davison, J.; Feldman, J.; and Rush, A. M. 2019. Com-
monsense knowledge mining from pretrained models. In
Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international
joint conference on natural language processing (EMNLP-
IJCNLP), 1173–1178.
Deng, M.; Wang, J.; Hsieh, C.-P.; Wang, Y.; Guo, H.; Shu,
T.; Song, M.; Xing, E. P.; and Hu, Z. 2022. Rlprompt: Op-
timizing discrete text prompts with reinforcement learning.
arXiv preprint arXiv:2205.12548.
Dong, L.; Yang, N.; Wang, W.; Wei, F.; Liu, X.; Wang, Y.;
Gao, J.; Zhou, M.; and Hon, H.-W. 2019. Unified language
model pre-training for natural language understanding and

generation. Advances in neural information processing sys-
tems, 32.
Gao, T.; Fisch, A.; and Chen, D. 2020. Making pre-trained
language models better few-shot learners. arXiv preprint
arXiv:2012.15723.
Haviv, A.; Berant, J.; and Globerson, A. 2021.
BERTese: Learning to speak to BERT. arXiv preprint
arXiv:2103.05327.
Holtzman, A.; Buys, J.; Du, L.; Forbes, M.; and Choi, Y.
2019. The curious case of neural text degeneration. arXiv
preprint arXiv:1904.09751.
Hu, M.; and Liu, B. 2004. Mining and summarizing cus-
tomer reviews. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data
mining, 168–177.
Jiang, Z.; Xu, F. F.; Araki, J.; and Neubig, G. 2020. How
can we know what language models know? Transactions of
the Association for Computational Linguistics, 8: 423–438.
Lester, B.; Al-Rfou, R.; and Constant, N. 2021. The
power of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691.
Li, X. L.; and Liang, P. 2021. Prefix-tuning: Optimiz-
ing continuous prompts for generation. arXiv preprint
arXiv:2101.00190.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.
Lu, Y.; Bartolo, M.; Moore, A.; Riedel, S.; and Stenetorp,
P. 2021. Fantastically ordered prompts and where to find
them: Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786.
Min, S.; Lyu, X.; Holtzman, A.; Artetxe, M.; Lewis, M.; Ha-
jishirzi, H.; and Zettlemoyer, L. 2022. Rethinking the role
of demonstrations: What makes in-context learning work?
arXiv preprint arXiv:2202.12837.
Mishra, S.; Khashabi, D.; Baral, C.; and Hajishirzi, H. 2021.
Cross-task generalization via natural language crowdsourc-
ing instructions. arXiv preprint arXiv:2104.08773.
OpenAI. 2022. ChatGPT. Website.
OpenAI. 2023. GPT-4 Technical Report. ArXiv,
abs/2303.08774.
Pang, B.; and Lee, L. 2005. Seeing stars: Exploiting class re-
lationships for sentiment categorization with respect to rat-
ing scales. arXiv preprint cs/0506075.
Perez, E.; Kiela, D.; and Cho, K. 2021. True few-shot learn-
ing with language models. Advances in neural information
processing systems, 34: 11054–11070.
Prasad, A.; Hase, P.; Zhou, X.; and Bansal, M. 2022. Grips:
Gradient-free, edit-based instruction search for prompting
large language models. arXiv preprint arXiv:2203.07281.
Qian, J.; Dong, L.; Shen, Y.; Wei, F.; and Chen, W. 2022.
Controllable natural language generation with contrastive
prefixes. arXiv preprint arXiv:2202.13257.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18488

Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I.;
et al. 2018. Improving language understanding by gener-
ative pre-training.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1): 5485–5551.
Schick, T.; and Schütze, H. 2020a. Exploiting cloze ques-
tions for few shot text classification and natural language
inference. arXiv preprint arXiv:2001.07676.
Schick, T.; and Schütze, H. 2020b. It’s not just size that
matters: Small language models are also few-shot learners.
arXiv preprint arXiv:2009.07118.
Shin, T.; Razeghi, Y.; Logan IV, R. L.; Wallace, E.; and
Singh, S. 2020. Autoprompt: Eliciting knowledge from lan-
guage models with automatically generated prompts. arXiv
preprint arXiv:2010.15980.
Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013. Recursive deep models
for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in
natural language processing, 1631–1642.
Sun, T.; Shao, Y.; Qian, H.; Huang, X.; and Qiu, X. 2022.
Black-box tuning for language-model-as-a-service. In Inter-
national Conference on Machine Learning, 20841–20855.
PMLR.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine learning, 3: 9–44.
Sutton, R. S.; McAllester, D.; Singh, S.; and Mansour, Y.
1999. Policy gradient methods for reinforcement learning
with function approximation. Advances in neural informa-
tion processing systems, 12.
Tesauro, G. 1991. Practical issues in temporal difference
learning. Advances in neural information processing sys-
tems, 4.
Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.;
Azhar, F.; et al. 2023. Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971.
Ubani, S.; Polat, S. O.; and Nielsen, R. 2023. ZeroShot-
DataAug: Generating and Augmenting Training Data with
ChatGPT. arXiv preprint arXiv:2304.14334.
Vu, T.; Lester, B.; Constant, N.; Al-Rfou, R.; and Cer, D.
2021. Spot: Better frozen model adaptation through soft
prompt transfer. arXiv preprint arXiv:2110.07904.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2018. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461.
Yuan, W.; Neubig, G.; and Liu, P. 2021. Bartscore: Evalu-
ating generated text as text generation. Advances in Neural
Information Processing Systems, 34: 27263–27277.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. Advances in
neural information processing systems, 28.

Zhou, Y.; Muresanu, A. I.; Han, Z.; Paster, K.; Pitis,
S.; Chan, H.; and Ba, J. 2022. Large language mod-
els are human-level prompt engineers. arXiv preprint
arXiv:2211.01910.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18489

