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Abstract

To build continual relation extraction (CRE) models, those
can adapt to an ever-growing ontology of relations, is a cor-
nerstone information extraction task that serves in various
dynamic real-world domains. To mitigate catastrophic for-
getting in CRE, existing state-of-the-art approaches have ef-
fectively utilized rehearsal techniques from continual learn-
ing and achieved remarkable success. However, managing
multiple objectives associated with memory-based rehearsal
remains underexplored, often relying on simple summation
and overlooking complex trade-offs. In this paper, we pro-
pose Continual Relation Extraction via Sequential Multi-task
Learning (CREST), a novel CRE approach built upon a tai-
lored Multi-task Learning framework for continual learning.
CREST takes into consideration the disparity in the magni-
tudes of gradient signals of different objectives, thereby ef-
fectively handling the inherent difference between multi-task
learning and continual learning. Through extensive experi-
ments on multiple datasets, CREST demonstrates significant
improvements in CRE performance as well as superiority
over other state-of-the-art Multi-task Learning frameworks,
offering a promising solution to the challenges of continual
learning in this domain.

Introduction
In Natural Language Processing, Relation Extraction (RE)
(Baldini Soares et al. 2019; Man et al. 2022; Lai et al.
2022) is the task of classifying the semantic relationships
between entities/events in text into predefined relation types.
Nonetheless, conventional relation extraction (Nguyen and
Grishman 2015; Baldini Soares et al. 2019; Veyseh et al.
2020a,b) encounters challenges in dynamic environments
characterized by a continuously expanding set of relations.
This realization has prompted the development of Contin-
ual Relation Extraction (CRE) models, which recognize the
ever-changing nature of information in practical settings.

The fundamental problem of Continual Relation Extrac-
tion (CRE) is catastrophic forgetting. This refers to the phe-
nomenon where the model’s performance on previous tasks
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declines after learning previously unseen relation types as
new data emerges. To mitigate this issue, previous CRE ap-
proaches (Cui et al. 2021; Han et al. 2020; Zhao, Cui, and
Hu 2023; Nguyen et al. 2023) have achieved impressive re-
sults using memory-based techniques (Lopez-Paz and Ran-
zato 2017; Shin et al. 2017a; Chaudhry et al. 2019). These
methods retain a fraction of learned data in a small memory
buffer, allowing the model to reinforce its past knowledge
while learning new relations. For instance, Hu et al. (2022)
mitigated catastrophic forgetting by integrating a classifica-
tion network and a prototypical contrastive network, con-
trasting every newly encountered instance with the prototype
of each relation stored in the replay buffer. Another state-of-
the-art approach is Zhao et al. (2022), which leveraged the
memory buffer to enable knowledge distillation from older
tasks combined with learning the newest task using super-
vised contrastive learning. Despite their success, state-of-
the-art CRE methods persists two lingering issues:

The first issues is their reliance on a memory buffer.
In light of the diverse potential applications of CRE, many
of which might involve highly confidential data, there are
significant concerns regarding storing data in the long term
while maintaining stringent privacy standards. In an attempt
to solve this problem, recently, prompt-based, rehearsal-free
methods for Continual Learning (Wang et al. 2022c,b; Smith
et al. 2023) have emerged and achieved remarkable success
in computer vision. However our empirical studies (Table
3) show extremely subpar results from these methods when
applying to CRE.

Another problem that arises from such methods is the
task of handling multiple objectives during replay. Among
numerous advanced CRE baselines, primarily utilizing
memory-based methods, there often exists at least two loss
functions, corresponding to acquiring new information and
strengthening previously acquired knowledge, respectively.
In the above examples, Hu et al.’s method involves InfoNCE
(Oord, Li, and Vinyals 2018) contrastive loss and contrastive
margin loss, while Zhao et al.’s approach involves super-
vised contrastive loss and distillation loss. These methods
oversimplistically aggregate these losses by weighted sum-
mation, hence overlook the inherent, complicated trade-offs
between the objectives.
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To tackle the challenge of training models with mul-
tiple objectives, gradient-based Multi-objective Optimiza-
tion frameworks, designed for Multi-task Learning (MTL),
seeking for a Pareto-optimal set of parameters (Sener and
Koltun 2018; Yu et al. 2020; Liu et al. 2021a,b; Navon
et al. 2022; Phan et al. 2022a), have emerged as some of
the most successful approaches. Nevertheless, achieving ef-
fective application of a gradient-based MOO framework in
continual NLP requires meticulous design considerations.
Our empirical experiments have shown that directly apply-
ing these frameworks for CRE can lead to sub-optimal per-
formance, as evident in Table 2. The decline in performance
can be attributed to the intrinsic distinction between Contin-
ual Learning and Multi-task Learning. In the realm of Con-
tinual Learning, where tasks do not appear simultaneously,
the updating direction must extend beyond seeking for the
Pareto front. It should additionally take into consideration
of the contrast in gradient magnitudes between the objec-
tives, to prioritize the acquisition of novel knowledge while
minimize forgetting in previously learnt tasks.

Contributions: To address the aforementioned chal-
lenges, we propose Continual Relation Extraction via
Sequential Multi-Task Learning (CREST), a novel Contin-
ual Relation Extraction framework that effectively mitigates
catastrophic forgetting without the need to finetune the back-
bone encoder. (i) CREST introduces a novel gradient-based
Multi-objective Optimization framework designed specifi-
cally for Continual Learning. By preserving the original pro-
portions between gradients, our method leverages the inher-
ent nature of continual learning, where the solution already
resides in an optimized region for the seen tasks. We craft a
direction that recognizes the original intensity of gradients
and prioritizes learning the new task, outperforming tradi-
tional methods that seek balanced improvements. This sets
a new standard in multi-objective optimization for continual
learning, paving the way for unprecedented advancements in
the field. (ii) CREST also utilizes a generative model, elim-
inating the dependency on explicit memory buffers for re-
play. Additionally, freezing the backbone encoder enables
us to learn the underlying distribution and generating con-
tinuous latent relation representations, which is much more
feasible than generating natural language text.

Background
Continual Relation Extraction
Continual Relation Extraction (Hu et al. 2022; Zhang et al.
2022) involves training a model, sequentially, on a series of
K tasks, each with its own training set Dk and correspond-
ing relation set Rk; and {Rk}K1 are non-overlapping. Each
dataset sample (xk

i , y
k
i ) represents input data point, com-

prising a natural language context and an entity pair, along
with its corresponding relation label yki ∈ Rk.

For ease of understanding, each k-th task can be per-
ceived as a conventional relation extraction problem, whose
conventional solution framework is described in the subse-
quent paragraphs. The aim of Continual Relation Extraction
(CRE) is to develop a model capable of acquiring knowl-
edge from new tasks while maintaining its competence in

previously encountered tasks.
The most fundamental deep learning-based framework to

tackle conventional relation extraction (Ji et al. 2020; Wang
and Lu 2020) involves utilizing a pretrained language model,
such as BERT (Devlin et al. 2019). To maintain concise-
ness and align with the empirical experiments conducted in
this paper, we will refer to the backbone pretrained language
model as BERT from this point forward.

Given an input sentence (i.e., input context), special to-
kens [E11]/[E12] and [E21]/[E22] are inserted into the con-
text to indicate the starting and ending positions of the head
and tail entities, respectively (Baldini Soares et al. 2019; Hu
et al. 2022). For example, consider the input context, where
< · > denotes the entities whose relationship needs to be
extracted:

< X > was born in < Y >.

After insertion of the special tokens, it becomes:

[E11] < X > [E12] was born in [E21] < Y > [E22].

Subsequently, through embedding, we have the input con-
text x = w1:L ∈ RL×d, where L denotes the length of the
special-token-inserted sentence and d denotes the number of
embedding dimensions. BERT encodes the tokenized input
sentence w1:L to obtain the contextual representations w′

1:L.
Let e11 and e21 denote the positions of [E11] and [E21] in
the input sentence, respectively; the contextual representa-
tions w′

e11 and w′
e21 of the [E11] and [E21] tokens are con-

catenated to obtain the input relation representation z.
Then, this relation representation z is passed through a

Multilayer Perceptron (MLP) classifier to derive a feature
vector h. This feature vector h is then fed into a linear layer
followed by a softmax layer, resulting in a probability distri-
bution p over the predefined relation types:

p = Softmax(Linear(h)),

where h = MLP (z) and z = [w′
e11 ,w

′
e21 ]. Let D, N de-

note the training dataset and the number of instances, respec-
tively. We have the training loss as the cross-entropy loss:

Lre =
1

N
∑
x∈D

log p. (1)

In our proposed method, the embeddings layer and BERT
are frozen throughout the learning process. The embeddings
corresponding with the special tokens [E11, E12, E21, E22]
are also kept frozen after completing the first task. This
is different from state-of-the-art CRE baselines, which re-
quires finetuning BERT.

Continual Learning
The continual settings of Continual Relation Extraction
(CRE) fall into the category of class-incremental learning
(Hu et al. 2022), which constitutes one of the three pop-
ular scenarios in Continual Learning (Ke and Liu 2022;
Van de Ven and Tolias 2019). CRE can be perceived as a
class-incremental learning (CIL) problem because the model
needs to learn to adapt and classify new relations while
avoiding catastrophic forgetting on previously learned ones.
CIL entails the training of a learning agent on a singular
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prediction problem; hence, the mention of different ”tasks”
should be interpreted as different training phases wherein
novel classes are encountered, rather than denoting distinct
prediction tasks. During testing, the model is anticipated to
predict using the cumulative set of encountered labels, with-
out explicit task identity. CIL is often considered the most
difficult configuration among the three scenarios, as the un-
availability of task identity imposes various constraints on
the selection of methodologies.

Several state-of-the-art (SOTA) methods have emerged
to address the challenge of catastrophic forgetting using
three approaches: Regularization-based approaches (Jung
et al. 2020; Phan et al. 2022b; Linh et al. 2022; Hai et al.
2023), Architecture-based approaches (Hung et al. 2019;
Liu, Schiele, and Sun 2021), and Replay-based approaches
(Farajtabar et al. 2020; Hou et al. 2019; Shin et al. 2017b).
These three approaches represent prominent strategies em-
ployed to tackle catastrophic forgetting in continual learn-
ing, and memory-based techniques have been proven to be
the most effective in the field of Natural Language Process-
ing (de Masson d'Autume et al. 2019).

Gradient-Based Multi-Objective Optimization
Effective management of multiple objectives becomes cru-
cial when training a Continual Learning model, especially
when incorporating a replay process to reinforce previously
learned knowledge. A Multi-objective Optimization prob-
lem is formulated as follows:

Let θ denote the model parameters within a feasible set
Θ, Li as the i-th objective (i.e., loss), and K as the total
number of objectives. We aim to minimize, simultaneously,
all K losses:

min
θ

[L1(θ), L2(θ), ..., LK(θ)].

Given θ1 and θ2 as two feasible solutions to the problem
above, we state that θ1 dominates θ2 if and only if θ1 can
enhance at least one objective without negatively impacting
any other objectives, as compared to θ2. A feasible solution
is termed as Pareto-optimal if it is not dominated by any
other solutions. The set of Pareto-optimal solutions is ref-
ered to as the Pareto front.

A straightforward method, which is popular among state-
of-the-art CRE baselines, to solve the Multi-objective Opti-
mization problem is to optimize the weighted sum of the K

original objectives, Ltotal =
∑K

i=1 λiLi, and then search for
the optimal set of λ. However, this simple approach may en-
counter challenges when dealing with a non-convex Pareto
front or when certain objectives have conflicting gradients
(Sener and Koltun 2018). Moreover, it also requires search-
ing for the best set of hyperparameters {λi}Ki=1, which is
both time- and data-consuming. Consequently, there needs
to be more sophisticated approaches to solve such prob-
lems; currently, gradient-based MOO frameworks, designed
for Multi-task Learning (MTL), such as PCGrad (Yu et al.
2020), CAGrad (Liu et al. 2021a), IMTL (Liu et al. 2021b),
and NashMTL (Navon et al. 2022) are some of the most no-
table methods. They share a common idea of modeling the

updating direction as a linear combination of individual gra-
dients, i.e., ∆θ =

∑K
1 αigi; their differences lie in their

strategies of choosing α. α can be perceived as a dynamic
version, which changes at each descending step, of the coef-
ficients λ in the weighted loss approach. However, even with
those methods, given the difference between the nature of
MTL and Continual Learning, directly applying these meth-
ods to our problems might yield deteriorated results as we
have mentioned earlier.

Methodology
Reinforce Continual Relation Extraction via
Representation Generation
A notable obstacle in replay-based CRE, and also in replay-
based Continual Learning in general, arises from the limited
size of the replay buffer in contrast to the continuous accu-
mulation of data. This situation, apart from generating con-
cerns about compromising privacy, introduces the risk of the
model overfitting to the small memory buffer, thereby weak-
ening the efficiency of replaying.

To address these issues and diversify the memory buffer,
generative models, such as Variational Autoencoder (VAE)
(Kingma and Welling 2013), Conditional Variational Au-
toencoder (cVAE) (Sohn, Lee, and Yan 2015), or Diffusion
Models (Nichol and Dhariwal 2021), prove effective by syn-
thesizing representations for each relation type. Notably, the
choice of a generative model for continual learning should
balance efficacy with cost, prompting the use of economical
models like Gaussian Mixture Models (GMMs).

It is noteworthy that, since we keep the BERT encoder
frozen during training and the embedding layer fixed af-
ter the first task, we can directly fit the generative model
to the relation representations z of all the data, which is
much more practical and feasible than fitting the model to
the original embedding matrices of the text instances. As we
have mentioned above, the relation representation z is what
we obtained by concatenating the BERT-encoded represen-
tations at the position of the [E11] and [E21] tokens:

z =
[
fb(x)[e11, :], fb(x)[e21, :]

]
,

where fb denotes the mapping function corresponding to
BERT, and e11 and e21 denote the positions of [E11] and
[E21] in the input sentence, respectively. This approach is
only possible thanks to the freezing of all the blocks prior
to z, which eliminates any changes to the representations’
distributions after each updating step of the model.

After training the model on task k − 1, for each relation
type r ∈ Rk−1, we use a Gaussian Mixture Model (GMM)
to learn the underlying data distribution of the relation rep-
resentations z corresponding to the data from that specific
label and store this distribution for future sampling. In the
next task (k), for each relation type r ∈ Rk−1, we use its
corresponding learnt distribution to sample ñ synthetic rela-

tion representations z̃n ∼
K∑
i=1

πr
iN (µr

i ,Σ
r
i ), n = 1, 2, ...ñ

where K is the number of GMM components; πi, µi and Σi
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are the mixing coefficient, mean and diagonal covariance of
ith Gaussian distribution, respectively.

We denote the generated set as M̃ . M̃ will facilitate the
model in reinforcing its previous knowledge via knowledge
distillation; the distillation loss in the context of our method
is written as follows:

Ld =
−1

|M̃ |

∑
z̃∈M̃

pk−1
z̃ logpkz̃, (2)

where |M̃ | denotes the cardinality of M̃ ; pk−1
z̃ and pkz̃ de-

note the probability distributions over learned relation types
obtained from forwarding z̃ through the old and current
models, respectively. The distillation loss facilitates contin-
ual learning by transferring knowledge from previous tasks
to the current task, enabling the model to retain previously
learned information and avoid catastrophic forgetting.

Continual Relation Extraction With Sequential
Multi-Task Learning
The training process of our model is a Multi-objective Op-
timization (MOO) problem, where we have to minimize
two objectives simultaneously: Lre and Ld, as represented
by equations (1) and (2), respectively. Multi-task Learning
(MTL) frameworks, such as those discussed earlier, can be
employed to address this problem.

Nevertheless, it is essential to recognize that the current
MTL frameworks were not originally developed for contin-
ual learning, and there are fundamental differences between
the two paradigms. When applying these MTL methods to
Continual Relation Extraction, they often fail to consider the
varying priority between different objectives. Specifically,
at the beginning of training a new task, the objectives asso-
ciated with maintaining performance on previously learned
tasks are already in a better state than the objective related
to learning new knowledge; however, state-of-the-art MTL
approaches do not have mechanisms to leverage this infor-
mation since they were not designed to handle such unique
challenges encountered in continual learning settings.

Assume that after completing task k, we have obtained
a good solution which works well with tasks from 1 to k.
Therefore, when moving on to task k + 1, the solution al-
ready lies within the proximity of the local optimal region
of the loss associated with previous knowledge, namely the
distillation loss (Ld). On the other hand, the model is com-
pletely untrained on task k+1. Based on this observation, we
propose a novel gradient-based MOO algorithm, Adaptive
Unified Gradient Descent, which allows the learning process
of the model to recognize the difference in magnitudes of
different gradient signals, thereby prioritize acquiring new
knowledge.

Adaptive Unified Gradient Descent
In order to achieve the aforementioned learning paradigm,
we can take advantage of the fact that the gradient signal
corresponding to the objective of learning new knowledge
are likely much stronger than that of re old knowledge.

Let θ represents the learnable model parameters. Through
backpropagation, we derive T gradients {gt = ∇θLt}Tt=1

Algorithm 1: Adaptive Unified Gradient Descent for CRE
Input: Model parameters θ and differentiable loss functions
Ld and Lre

Parameter: Learning rate η
Output: Updated parameter θ∗

1: for each t ∈ [d, re] do
2: Compute gradient gt := ∇θLt(θ)
3: Compute gradient unit vector ut := gt/||gt||
4: end for
5: Calculate gradient differences D⊤ :=

[
g⊤
d − g⊤

re

]
.

6: Calculate magnitude-scaled gradient unit differences:

U⊤ :=
[
||gre||u⊤

d − ||gd||u⊤
re

]
.

7: Calculate scalar coefficients for the objectives:

[αre] = gdU
⊤(DU⊤)−1,

αd = 1− αre.

8: Update model parameter:

θ∗ = θ − η
∑

i∈{d,re}

αigi

from the raw losses {Lt}Tt=1. These gradients signify the
optimal update directions for each respective objective. By
modeling the final updating gradient as a linear combina-
tion of the individual gradients, our objective is to deter-
mine scalar coefficients α that enable the updating gradient
g =

∑T
t=1 αtgt,

∑
αt = 1 to prioritize gradients based on

their strengths, by ensuring that the projections of g onto gt
are proportionate to their original magnitudes.

Let ut = gt/||gt|| denote the unit-norm vector of gt, we
want to achieve:
gu⊤

1

||g1||
=

gu⊤
t

||gt||
⇔ g(||gt||u1−||g1||ut)

⊤ = 0, ∀2 ≤ t ≤ T,

(3)
Similar to IMTL (Liu et al. 2021b), we will use the following
notations in the upcoming equations:

α := [α2, α3, . . . , αT ] ⇒ α1 = 1− 1α⊤,

G⊤ :=
[
g⊤
2 , g

⊤
3 , . . . , g

⊤
T

]
,

U⊤ :=
[
||g2||u⊤

1 − ||g1||u⊤
2 , ||g3||u⊤

1 − ||g1||u⊤
3 ,

. . . , ||gT ||u⊤
1 − ||g1||u⊤

T

]
,

where 1 denotes the all-one row vector. Denote 0 as the all-
zero row vector, substitute g with

∑T
t=1 αtgt, and combine

with the above notations, we can rewrite Equation (3) as:[
1− 1α⊤,α

] [g1
G

]
U⊤ = 0. (4)

From there, we can solve Equation 4 as in Liu et al.’s paper:

(4) ⇔ α
(
1⊤g1 −G

)
U⊤ = g1U

⊤

Define D⊤ := g⊤
1 1−G⊤ =

[
g⊤
1 −g⊤

2 , g
⊤
1 −g⊤

3 , . . . , g
⊤
1 −

g⊤
T

]
, we have:

αDU⊤ = g1U
⊤ ⇔ α = g1U

⊤(DU⊤)−1
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From there we have the final scalar coefficients:

[α2, . . . , αT ] = α = g1U
⊤(DU⊤)−1

,

α1 = 1−
T∑

t=2

αt,
(5)

and we can achieve the updating gradient g =
∑T

t=1 αtgt.
In summary, the essential steps of our proposed MOO
framework, AUGD, is outlined in Algorithm 1.

As we talk about this method, it is necessary to revise
the fact that our backbone BERT is frozen during training.
This is absolutely crucial due to the fact that, when apply-
ing AUGD, or any other gradient-based MOO methods men-
tioned earlier, backpropagation needs to be executed T times
at every descending step to obtain the gradient of each task
loss with respect to the model parameters. This would result
in an explosion of training time if we have to calculate back-
propagation through the gigantic backbone LLM. By freez-
ing BERT, we can significantly reduce the training time and
make using gradient-base MOO methods possible.

Experimental Results
Datasets & Settings
We evaluate our proposed method and all baselines on two
English datasets:

FewRel (Han et al. 2018) dataset comprises 80 relation
types and contains a total of 56,000 samples. To make it
suitable for experiments in a continual settings, the dataset is
split into 10 non-overlapping groups, simulating the sequen-
tial arrival of data for 10 tasks. In line with Wang et al.’s
paper (2019), this paper adopts the same configurations and
utilizes the original training set and validation set as the
foundation for conducting experiments. The FewRel dataset
is a widely-used benchmark in the field of relation extrac-
tion, providing a diverse range of relations and samples for
evaluating CRE models.

TACRED (Zhang et al. 2017) dataset presents an im-
balanced scenario for relation extraction (RE) with 42 re-
lations, including the ”no relation” class, and a total of
106,264 samples. To maintain consistency with prior works,
our work follows the experimental settings as in Cui et al.’s
paper.

Additional details of our experiments can be found below:

• Batch size: 16, similar to CRL (Zhao et al. 2022)
• 1Learning rate: {10−5,2× 10−5, 10−4}
• 1Number of embeddings training epoch: {10, 20,50}
• 1Number of classifier training epoch: {100, 300,500}
• 1Number of GMM components: {1, 3, 5}
• 1Number of GMM samples: {64, 128,256, 512}
• Computing infrastructure: Single NVIDIA A100 40GB.

PyTorch 2.0.0+cu117 and Huggingface Transformer
4.33.0 are used to implement the models.

• Evaluation metric: mean overall accuracy after each task
using 5 different random seeds (Zhao et al. 2022).
1Search range; bold indicates best value.

Baselines
We evaluate our proposed techniques by contrasting them
against a range of established benchmarks in the context of
Continual Relation Extraction (CRE):

EA-EMR by Wang et al. combines memory replay and
embedding alignment to tackle the problem of catastrophic
forgetting. CML (Wu et al. 2021) adopts a curriculum-meta
learning strategy to effectively handle order-sensitivity and
the issue of catastrophic forgetting in CRE. Han et al. put
forth EMAR + BERT, which relies on memory activa-
tion and reconsolidation to preserve past knowledge. RP-
CRE by Cui et al. utilizes a memory network to refine sam-
ple embeddings using relation prototypes, aiming to coun-
teract the problem of catastrophic forgetting. Hu et al.’s
CRECL merges a classification network with a prototyp-
ical contrastive network to mitigate the challenges associ-
ated with catastrophic forgetting. By adopting a contrastive
replay mechanism and knowledge distillation, Zhao et al.
present CRL in as a means to sustain the acquired knowl-
edge. Building upon CRL, Wang et al. enhance it through the
integration of a data augmentation mechanism, leading to
their model CRL+ACA which bolsters the model’s robust-
ness. In the case of CRE-DAS (Zhao, Cui, and Hu 2023),
they leverage memory-insensitive relation prototypes and
memory augmentation to overcome overfitting, while also
introducing integrated training and focal knowledge distil-
lation to enhance performance on analogous relations. Most
recently, Xia et al. propose CDec+ACA, a classifier decom-
position framework aimed at addressing representation bi-
ases through robust representation learning while simulta-
neously retaining prior knowledge.

Main Results
The results in Table 1 demonstrate how our method com-
pares to the current most successful CRE baselines. Even
without retaining training data or directly fine-tuning BERT,
CREST still produced nearly equivalent results to the current
state-of-the-art (SOTA) baselines on both datasets. On TA-
CRED, CREST even achieved a SOTA accuracy of 79.4%
after training 10 tasks, 0.3% higher than the best result
from the baselines. Similarly, on FewRel, the proposed
method achieved a similar accuracy after 10 tasks in com-
parison to the previous SOTA result. This observation high-
lights the importance and effectiveness of our contribu-
tions. By utilizing generative modeling combined with a
MOO method dedicated for Continual Learning, we allow
the model to reinforce its previous knowledge while learn-
ing new relation types and find the suitable updating direc-
tion when working with multiple objectives associated with
past and current knowledge. These contributions enable a
finetuning-free CRE model like CREST to produce compa-
rable, and in some cases, better performance compared to
SOTA rehearsal-based, finetuning-included methods.

Effects of Choice of Gradient-Based MOO Method
To examine the effectiveness of our novel gradient-based
MOO method designed for Continual Learning (CL), we
have benchmarked our method in comparison against other
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FewRel
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 89.0 69.0 59.1 54.2 47.8 46.1 43.1 40.7 38.6 35.2
CML 91.2 74.8 68.2 58.2 53.7 50.4 47.8 44.4 43.1 39.7
EMAR+BERT 98.8 89.1 89.5 85.7 83.6 84.8 79.3 80.0 77.1 73.8
RP-CRE 97.9 92.7 91.6 89.2 88.4 86.8 85.1 84.1 82.2 81.5
CRECL 98.0 94.7 92.4 90.7 89.4 87.1 85.9 85.0 84.0 82.1
CRL 98.2 94.6 92.5 90.5 89.4 87.9 86.9 85.6 84.5 83.1
CRL+ACA 98.3 95.0 92.6 91.3 90.4 89.2 87.6 87.0 86.3 84.7
CRE-DAS 98.1 95.8 93.6 91.9 91.1 89.4 88.1 86.9 85.6 84.2
CDec+ACA 98.4 95.4 93.2 92.1 91.0 89.7 88.3 87.4 86.4 84.8
CREST (Ours) 98.7 93.6 93.8 92.3 91.0 89.9 87.6 86.7 86.0 84.8

TACRED
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 47.5 40.1 38.3 29.9 24 27.3 26.9 25.8 22.9 19.8
CML 57.2 51.4 41.3 39.3 35.9 28.9 27.3 26.9 24.8 23.4
EMAR+BERT 96.6 85.7 81.0 78.6 73.9 72.3 71.7 72.2 72.6 71.0
RP-CRE 97.6 90.6 86.1 82.4 79.8 77.2 75.1 73.7 72.4 72.4
CRECL 97.3 93.6 90.5 86.1 84.6 82.1 79.4 77.6 77.9 77.4
CRL 97.7 93.2 89.8 84.7 84.1 81.3 80.2 79.1 79.0 78.0
CRL+ACA 98.0 92.1 90.6 85.5 84.4 82.2 80.0 78.6 78.8 78.1
CRE-DAS 97.7 94.3 92.3 88.4 86.6 84.5 82.2 81.1 80.1 79.1
CDec+ACA 97.7 92.8 91.0 86.7 85.2 82.9 80.8 80.2 78.8 78.6
CREST (Ours) 97.3 91.4 82.3 82.5 79.2 75.8 78.8 77.4 78.6 79.4

Table 1: Performance of CREST (%) on all observed relations at each stage of learning, in comparison with SOTA CRE
baselines. The results of the baselines are directly taken from (Xia et al. 2023) and (Zhao, Cui, and Hu 2023).

SOTA MOO methods, namely PCGrad (Yu et al. 2020), CA-
Grad (Liu et al. 2021a), IMTL (Liu et al. 2021b), and Nash-
MTL (Navon et al. 2022), in the context of CRE. The em-
pirical results are presented in Table 2.

As mentioned earlier, due to the fact that Multi-task
Learning (MTL) is inherently different from Continual
Learning, directly applying gradient-based MOO methods
built for MTL into our problem of CRE might yields sub-
optimal results. The results in table 2 concurs with this
statement. On TACRED, the best accuracy after 10 tasks
achieved with a previous SOTA MOO method is 77.4% from
PCGrad, approximately 2% lower than using the proposed
method AUGD. Besides PCGrad, every other SOTA MOO
method achieved a worse accuracy after 10 tasks than com-
pletely not using any MOO methods: IMTL achieved the
next-best accuracy of 74.3% after 10 tasks, which is not
only 5.1% lower than the accuracy of AUGD, but also 2.6%
worse than not using an MOO method at all.

We can observe similar outcomes from experiments con-
ducted on FewRel. On FewRel, although CAGrad yielded a
0.5% higher accuracy after 10 tasks compared to not using
any MOO methods, our proposed AUGD still outperformed
it by 1%. On the other hand, PCGrad, IMTL, and Nash-MTL
all resulted in a decline of terminal accuracy after 10 tasks
in comparison to not using any MOO methods. These results
are concrete evidence, showcasing AUGD’s effectiveness in
enhancing the performance of CREST and highlighting the
importance of designing an MOO framework dedicated to
Continual Learning.

Comparison to MOO Rehearsal-Free Continual
Learning Methods

Recently, prompt-based methods for Continual Learning
(CL) have emerged as rehearsal-free and efficient-finetuning
CL approaches, gaining attention due to their remark-
able success in computer vision tasks, even surpassing
SOTA memory-based methods (Wang et al. 2022c,b; Smith
et al. 2023). Rather than directly finetuning the pretrained
Transformer-based encoder, these approaches focus on tun-
ing auxiliary embeddings known as prompts. These prompts
can be dynamically inserted into the training process,
adapted to individual instance features (Smith et al. 2023),
or tailored to task-specific features (Wang et al. 2022c,b).

In similarity to CREST, these prompt-based methods nei-
ther require full finetuning of the backbone encoder nor rely
on an explicit memory buffer. As such, it becomes essen-
tial to conduct a comparison between CREST and these
prompt-based continual learning methods. Specifically, we
will evaluate the proposed model against the state-of-the-
art rehearsal-free continual learning baselines, namely L2P
(Wang et al. 2022c), DualPrompt (Wang et al. 2022b), and
CODA-Prompt (Smith et al. 2023). The assessment will be
conducted in two distinct scenarios: one in which these tech-
niques operate completely rehearsal-free, and the other in-
volving their utilization of a small memory buffer for replay
purposes. Given that these baselines were originally built for
computer vision tasks, we re-implement them, to suit the
domain of Continual Relation Extraction (CRE), employing
BERT (Devlin et al. 2019) as the backbone encoder.

Table 3 illustrates the performance of current state-of-the-
art prompt-based, rehearsal-free continual learning meth-
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FewRel
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
CREST w/o MOO 98.7 93.5 93.1 92.2 90.9 89.5 87.9 86.1 85.4 83.3
CREST w/ PCGrad 98.7 92.0 92.3 90.8 89.0 87.9 84.7 83.2 82.8 81.2
CREST w/ CAGrad 98.7 92.8 93.2 91.9 90.5 89.6 87.4 86.4 84.9 83.8
CREST w/ IMTL 98.7 89.1 92.2 91.8 90.5 89.0 87.4 86.4 83.6 81.8
CREST w/ Nash-MTL 98.7 92.1 92.0 89.8 87.2 86.9 80.7 82.5 82.4 80.0
CREST 98.7 93.6 93.8 92.3 91.0 89.9 87.6 86.7 86.0 84.8

TACRED
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
CREST w/o MOO 97.3 91.8 81.8 79.4 77.1 76.2 77.9 74.9 77.5 76.9
CREST w/ PCGrad 97.3 91.4 80.0 82.3 76.1 74.8 77.0 76.7 78.2 77.4
CREST w/ CAGrad 97.3 91.4 81.8 82.5 77.1 76.1 74.2 75.0 69.6 71.4
CREST w/ IMTL 97.3 89.4 81.8 80.8 75.0 75.6 75.1 67.2 76.7 74.3
CREST w/ Nash-MTL 97.3 91.5 82.8 81.9 77.2 76.0 75.0 73.4 77.0 75.8
CREST 97.3 91.4 82.3 82.5 79.2 75.8 78.8 77.4 78.6 79.4

Table 2: Results of ablation studies on different MOO methods when applied to CREST.

FewRel
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
L2P 98.6 47.9 36.5 25.7 21.7 19.2 14.1 11.9 14.4 11.6
L2P w/ buffer 98.6 90.3 81.8 78.3 73.5 71.2 68.3 66.9 65.6 62.3
Dual-P 98.8 49.2 41.4 27.7 20.9 20.2 14.1 12.2 14.0 11.5
Dual-P w/ buffer 98.8 94.4 91.5 89.8 88.3 85.9 83.5 81.2 79.0 75.3
CODA-P 98.8 52.4 42.4 28.6 24.4 21.6 14.9 12.1 15.1 11.8
CODA-P w/ buffer 98.8 94.5 92.0 90.5 89.4 87.8 86.5 85.1 84.0 82.6
CREST 98.7 93.6 93.8 92.3 91.0 89.9 87.6 86.7 86.0 84.8

TACRED
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
L2P 96.6 40.8 32.4 24.1 19.7 15.4 13.6 9.1 10.8 9.7
L2P w/ buffer 96.6 91.4 86.9 82.0 79.3 74.7 72.7 69.7 68.8 66.6
Dual-P 96.6 40.0 33.4 23.8 19.9 15.2 13.8 9.6 11.1 11.4
Dual-P w/ buffer 96.6 92.1 86.1 81.9 79.5 76.0 74.4 72.1 71.6 70.0
CODA-P 95.9 40.8 34.2 24.7 19.9 15.1 14.1 12.1 12.3 12.2
CODA-P w/ buffer 95.9 92.5 87.6 83.7 81.7 79.5 77.4 76.4 75.5 73.9
CREST 97.3 91.4 82.3 82.5 79.2 75.8 78.8 77.4 78.6 79.4

Table 3: Comparison of our method’s performance (%) with state-of-the-art rehearsal-free Continual Learning baselines on all
observed relations at each learning stage. The results are obtained from our own implementations. For baselines that utilize
a buffer, the buffer size consists of 10 samples from each relation type. Dual-P is short for DualPrompt (Wang et al. 2022b);
CODA-P is short for CODA-Prompt (Smith et al. 2023).

ods in CRE in comparison to our method CREST. As we
can see, they yield notably inferior results in the context
of CRE. This observation strongly suggests that these ap-
proaches currently encounter challenges in effectively miti-
gating catastrophic forgetting across diverse domains. Upon
integrating a memory buffer to bolster knowledge retention,
their performance demonstrates substantial enhancements.
Nevertheless, due to the absence of targeted strategies tai-
lored specifically for CRE, their efficacy remains inferior
to that of state-of-the-art CRE methods outlined in Table 1.
In contrast, our proposed approach significantly outperforms
all rehearsal-free baselines for continual learning in the CRE
domain by substantial margins. CREST attains final accu-
racies of 84.8% and 79.4% on FewRel and TACRED, re-
spectively. These results surpass the best outcomes achieved
among the baselines, when they are supported by a small
memory buffer, by 2.2% and 5.5% respectively.

Conclusion

In this paper, we have presented CREST, a novel method
for Continual Relation Extraction (CRE) that effectively ad-
dresses the challenges of catastrophic forgetting and effi-
cient knowledge acquisition. Acknowledging limitations of
the current methodologies, we propose freezing the back-
bone encoder (BERT), employing a data generation tech-
nique using Gaussian Mixture Models (GMM), and propos-
ing a novel gradient-based MOO framework which pri-
oritizes new knowledge acquisition. CREST has achieved
remarkable performance on the FewRel and TACRED
datasets, producing extremely competitive results in com-
parison to SOTA CRE baselines and outperforming prompt-
based rehearsal-free baselines for continual learning in the
realm of Continual Relation Extraction.
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