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Abstract

Paraphrases are texts that convey the same meaning while us-
ing different words or sentence structures. It can be used as
an automatic data augmentation tool for many Natural Lan-
guage Processing tasks, especially when dealing with low-
resource languages, where data shortage is a significant prob-
lem. To generate a paraphrase in multilingual settings, previ-
ous studies have leveraged the knowledge from the machine
translation field, i.e., forming a paraphrase through zero-shot
machine translation in the same language. Despite good per-
formance on human evaluation, those methods still require
parallel translation datasets, thus making them inapplicable
to languages that do not have parallel corpora. To mitigate
that problem, we proposed the first unsupervised multilin-
gual paraphrasing model, LAMPAT (Low-rank Adaptation
for Multilingual Paraphrasing using Adversarial Training),
by which monolingual dataset is sufficient enough to gener-
ate a human-like and diverse sentence. Throughout the exper-
iments, we found out that our method not only works well for
English but can generalize on unseen languages as well. Data
and code are available at https://github.com/phkhanhtrinh23/
LAMPAT.

Introduction
Paraphrase generation involves the transformation of a given
sentence or phrase into its equivalent form while preserving
its semantic content. By leveraging the power of NLP tech-
niques, paraphrase generation can enhance several applica-
tions, such as machine translation (Freitag et al. 2020), in-
formation retrieval (Lewis et al. 2020), question-answering
systems (Gan and Ng 2019), and text summarization (Cao
et al. 2017). However, most existing approaches in para-
phrase generation focus on a single language such as En-
glish, limiting their effectiveness in multilingual scenarios
where accurate and contextually appropriate paraphrases are
crucial.

Most of the current approaches for multilingual para-
phrasing are built around the mechanism of machine trans-
lation. Thompson and Post (2020b) make use of the mul-
tilingual neural machine translation (MNMT) model from
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Figure 1: The training process of LAMPAT consists of mul-
tiple stages. Firstly, we create a synthetic parallel corpus us-
ing unsupervised monolingual data. Next, we utilize LoRA
to effectively fine-tune our model. Finally, we obtain the
self-supervised model LAMPAT through the utilization of
Virtual Adversarial Training.

Thompson and Post (2020a) to translate between the same
source and target languages with a special decoding algo-
rithm to reduce the lexical overlaps, creating a paraphrase
of the input text. Meanwhile, round-trip translation (Fed-
ermann, Elachqar, and Quirk 2019), which creates a pivot
language for source language to translate forth and back to
create a different wording output, is another approach for
paraphrase generation.

While the machine translation approach is widely recog-
nized for its effectiveness in multilingual paraphrasing, it en-
counters various limitations. One primary hurdle is the ne-
cessity of obtaining reliable parallel corpora of high quality
for machine translation, which can be challenging to obtain
in real-world scenarios. Another drawback lies in the lack
of diversity in the generated output, often resulting in output
sequences that closely resemble the input and fail to pre-
serve crucial information present in the original input, as
depicted in Table 1. Many MNMT models utilize heuris-
tic blocking techniques during inference to avoid generat-
ing output sequences that are identical to the input. How-
ever, this approach limits the model’s ability to alter word
order or employ diverse syntactic structures, such as inver-
sion or active-to-passive transformations. Consequently, the
generation lacks diversity. Furthermore, these blocking al-
gorithms heavily rely on the distribution of the vocabulary.
For instance, Thompson and Post (2020b) reduce the prob-
ability of selecting subsequent subwords in n-grams to en-
courage the model to choose different subwords. Neverthe-
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less, these alternative subwords may include antonyms or
unrelated words, potentially leading to paraphrases with se-
mantic meanings deviating from the intended direction and
producing inappropriate results.

Type Sentence
Input I like to eat pasta.
Human reference My favourite food is pasta.
Lack of diversity I like eating pasta.
Incorrect meaning I like to eat paste.

Table 1: While human can change the structure of the sen-
tence to create paraphrase (in bold), paraphrasing model
usually tends to replace words or slightly modify the syn-
tax (in italic). In the worst case, paraphrasing model even
changes the meaning of the sentence by using inappropriate
word replacement (in underline).

In this work, we propose LAMPAT (Low-rank Adaptation
for Multilingual Paraphrasing using Adversarial Training)
as an approach to mitigate the strict requirements of parallel
corpora by learning in an unsupervised manner and allevi-
ate the problem of duplicate generation by using adversarial
training objectives. According to Figure 1, to eliminate the
need for parallel corpora, we use the monolingual dataset
and apply a series of processes (i) identify stop words (ii)
remove stop words (iii) randomly shuffle the words to cre-
ate the corrupted version of the original input. The train-
ing of the model focuses on the objective of reconstructing
the original sentence from a corrupted version, aiming to
recreate the initial sentence. However, by this learning ob-
jective, the model is drawn to generate the same sentence
compared to the original sentence, which does not create a
syntactically diverse paraphrase. To cope with this problem,
we further propose using Virtual Adversarial Training (VAT)
(Zhang et al. 2019) and noise perturbation added directly
to the input embedding to steer the model towards a more
diverse paraphrase generation, as in Figure 2. In addition,
Large Language Models (LLMs), are known to experience
the catastrophic forgetting (Kaushik et al. 2021) during full
fine-tuning; therefore, we adapt LoRA (Hu et al. 2021) as
a parameter-efficient fine-tuning method to partially update
the model’s prior knowledge and preserve all the linguis-
tic knowledge on which the model has been pre-trained. In
general, LAMPAT can effectively generate human-like para-
phrases while preserving the original semantic meaning and
employing different syntactic structures to promote the di-
versity of the predictions.

In summary, the key contributions of this paper are as fol-
lowed:

• To resolve the requirement of parallel corpora for ma-
chine translation, we propose the unsupervised learning
method for multilingual paraphrasing.

• To address the issue of predominantly generating iden-
tical or highly lexical-similar outputs, we incorporate
noise perturbation and a virtual labeling strategy into the
adversarial training process, aiming to alleviate this lim-
itation.

• We expand the multilingual paraphrasing evaluation

dataset to include more languages and leverage future re-
search in multilingual paraphrase generation.

Methodology
The training process of our paraphrasing model is illustrated
in Figure 1, comprising three essential elements: Synthetic
Parallel Corpora, Parameter-Efficient Fine-Tuning (PEFT),
and Virtual Adversarial Training (VAT). We employ the
Self-supervised model to generate paraphrases, which not
only addresses the data shortage issue using unsupervised
learning but also maintains semantic similarity and enhances
lexical diversity as well.

Problem Definition
Given 2 sentences x and y, where x is the original sentence,
and y is the paraphrase reference of x. Let M(x) be the
meaning of x and S(x, y) be the lexical or syntactic similar-
ity between x and y. ŷ = argmax

y
[p(y|M(x)) − S(x, y)].

The term p(y|M(x)) is the probability of generating y that
conveys the same meaning as x (i.e. M(x)). S(x, y) ∈
[0, 1] measures the lexical similarity of x and y, where
S(z, z) = 1 for every z. Based on this formulation, para-
phrasing should be a method which not only allows us to
convey the same meaning but also enhances lexical diver-
sity in the generated text.

Synthetic Parallel Corpora
Synthetic Parallel Corpora is a significant component of
LAMPAT. First, we corrupt the input by removing the stop
words in the sentence, and then randomly shuffling the
words in the remaining text. The corrupted sentence is re-
ferred to as the source sequence S, while the original un-
corrupted sentence is the target sequence T . We have a set
of stop words A, which are removed from the sentences.
Our goal is to generate the paraphrase by reconstructing
T from the keywords or the corrupted sentence S, where
S = Shuffle(T − A). When we fine-tune the model, we
create the input sequence X by combining the source and
target sequences with a special symbol in between. The
input sequence X is represented as (x1, x2, x3, ..., xk, \n,
xk+1, xk+2, ...xh), where the source sequence is denoted as
S = (x0, x1, ..., xk), and the target sequence is denoted as
T = (xk+1, xk+2, ..., xh). The special character \n is in-
cluded to differentiate between the source and target tokens,
and it also serves as a prompt during the inference process.

Parameter-Efficient Fine-Tuning
The method chosen for parameter-efficient fine-tuning is
Low-rank Adaptation (LoRA) (Hu et al. 2021). A major
drawback of fine-tuning is that the resulting model contains
the same number of parameters as the original model. LoRA
overcomes this by indirectly training some dense layers in a
neural network by optimizing rank decomposition matrices
of the dense layers’ changes during adaptation while keep-
ing the pre-trained weights frozen. This also allows for ef-
ficient task-switching by simply replacing the matrices, re-
sulting in reduced storage requirements and task-switching
overhead.
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Figure 2: LAMPAT is showcased using actual inputs. Initially, an input text undergoes corruption by removing stopwords and
shuffling. Then, a noise perturbation, denoted as δ, is introduced into the text embedding to generate a paraphrase that exhibits
lexical diversity. The transformer block is replicated N times, with the Multi-Head Attention component decomposed into
low-rank matrices for efficient fine-tuning. Lastly, LAMPAT is trained using virtual adversarial training, incorporating a two-
component loss function: the reconstruction loss Lrec and the virtual adversarial regularizer Lvadv .

LoRA (Hu et al. 2021) introduces a constraint on the up-
date of a pre-trained matrix Wx ∈ Rd×k using a low-rank
matrix Wβ ∈ Rd×k. Instead of directly updating Wx, LoRA
modifies it as W ′

x = Wx + Wβ and focuses on updating
the parameters involved in the construction of Wβ . The con-
struction of Wβ involves the multiplication of two matrices
B ∈ Rd×r and A ∈ Rr×k, where r ≪ min(d, k), result-
ing in a low-rank matrix W ′

x = Wx +BA. By using LoRA,
we reduce the number of parameters to tune from d × k to
r× (d+k). Specifically, we follow the application of LoRA
to the query and value transformation matrices in the multi-
head attention sublayers, as in Hu et al. (2021).

Virtual Adversarial Training
Consider a standard classification task with an underlying
data distribution D over examples x ∈ Rd and correspond-
ing labels y. Assume that we are given a suitable loss func-
tion Lrec, for example, the cross-entropy loss for a neural
network. As usual, θ ∈ Rp is the set of model parameters.
Our goal is then to find model parameters θ that satisfy:

min
θ

E(x,y)∼D[Lrec(f(x, θ), y)] (1)

Once we have created the synthetic parallel data, we de-
fine a set of permissible perturbations C ⊆ Rd for each data
point x, which represents the manipulative ability of the ad-
versary. Instead of directly using samples from the distribu-
tion D in the loss L, we allow the adversary δ ∈ C to first
perturb the input embedding. Specifically, x denotes the sub-
word embedding in f(x, θ). We notice that by perturbing the
embedding space x + δ, rather than the input space, adver-
sarial training may unintentionally favour on-manifold per-
turbations over regular perturbations, leading to improved
generalization. Hence, we apply perturbations to the embed-
ding space. On the other hand, complete label information

may not always be available, and especially in this unsu-
pervised manner, we aim to output virtual labels other than
the label y. Consequently, we adopt a strategy to replace the
label y with its current approximation, f(x, θ). This approx-
imation is not necessarily naive, as f(x, θ) tends to be close
to y when the number of labelled training samples is large.
This rationale also explains the use of the term “virtual” in
Miyato et al. (2018). Essentially, we employ virtual labels
generated from f(x, θ) in place of paraphrasing labels, and
compute the adversarial direction based on these virtual la-
bels. As a result, we replace the Equation 1 by:

min
θ

E(x,y)∼D

[
max

δ
[Lrec(f(x+ δ, θ), y)

+αLvadv(f(x+ δ, θ), f(x, θ))]

] (2)

In reference to Algorithm 1, our method can reduce the
computational cost of adversarial training using projection
over constraints algorithms. It achieves similar levels while
conducting fewer sweeps of forward and backward propa-
gation, making it faster and less computationally expensive.
Our method takes advantage of every propagation to up-
date weights and allows multiple updates per iteration, po-
tentially leading to faster convergence. According to Zhang
et al. (2019), by combining these factors, the K ascent steps
significantly accelerate standard adversarial training. After
that, the model’s parameter θ is updated all at once with the
accumulated gradients. By taking a descent step along the
K gradients, we can approximately calculate the following
objective function:

min
θ

Ex,y∼D

[
1

K

K−1∑
t=0

max
δ

[Lrec(f(x+ δ, θ), y)

+αLvadv(f(x+ δ, θ), f(x, θ))]

] (3)
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Algorithm 1: Low-rank Adaptation Multilingual Paraphrasing using Adversarial Training.
Input: X: Training samples, f(x; θ): the machine learning model parameterized by θ, ϵ: the perturbation bound, τ : the global
learning rate, α: the smoothing proportion of the adversarial training, η: the ascent step size, H: the Hessian gradient matrix,
N : the number of epochs, K: the number of ascent steps, e∗: the number of epochs trained with PGD algorithm, γ: the scaling
factor.
Output: θ.

1: for epoch = 1...N do
2: for minibatch B ∈ X do
3: δ ∼ γ · N (0, σ2I)
4: for m = 1...K do
5: Accumulate gradient of parameter θ:
6: gm ← gm−1 +

1
KE(x,y)∈B [∇θLrec(f(x+ δ, θ), y) + α∇θLvadv(f(x+ δ, θ), f(x, θ))]

7: Calculate the gradient of the perturbation δ:
8: gadv ← ∇δLvadv(f(x+ δ, θ), f(x, θ))
9: Update the perturbation δ through gradient ascent:

10: if epoch ≤ e∗ then
11: δ ←

∏
||δ||≤ϵ(δ + η gadv

||gadv||F )

12: else
13: δ ←

∏
H(δ + η[H]−1 gadv

||gadv||F )

14: end if
15: end for
16: Update the parameter θ through gradient descent:
17: θ ← θ − τgK
18: end for
19: end for

The rationale behind computing g(δ) with respect to the
virtual adversarial regularizer ∇δLvadv instead of ∇δLrec

in Algorithm 1 is due to the unsupervised nature of the
model training and the objective to guide the model towards
the virtual labels rather than reconstructing the original sen-
tence, which could result in duplication. Equation 3 is essen-
tially replacing the original batch x with a virtual batch that
is K times larger, comprising samples with embeddings of
X + δ0, ..., X + δK−1. While the original adversarial train-
ing Equation 2 minimizes the maximum risk at a single es-
timated point in the vicinity of each training sample, Equa-
tion 3 minimizes the maximum risk at each ascent step and
guides the model towards the virtual labels with minimal ad-
ditional overhead. Moreover, we use both Projected Gradi-
ent Descent (PGD) and Projected-Newton Method (PNM) in
Algorithm 1. The Gradient Descent step involves descend-
ing along the linear estimate of the function, while Newton’s
step involves moving the point towards the minimum of the
parabola that approximates the function, which can lead to
faster convergence.

Experimental Setup
Primary Model
Pre-trained model: We utilize the mGPT model, a pre-
trained multilingual GPT-like model, with a 1.3B checkpoint
consisting of 100K tokens and supporting 61 languages. The
LoRA implementation from PEFT 1.

Dataset: To assess the fine-tuning, we choose to use the
latest version WMT19 (Foundation 2019) to train the model.
This dataset covers a wide range of 15 languages including

1https://github.com/huggingface/peft

Arabic, Czech, German, English, Spanish, French, Hindi,
Indonesian, Italian, Japanese, Kazakh, Dutch, Portuguese,
Russian, and Chinese. The WMT19 dataset we use is in its
latest version, which is just released in 2023. To balance lan-
guage resources, we employ a uniform distribution to sam-
ple sentences, creating a training set of nearly 600k sen-
tences and a validation set of around 100k sentences. For
training, we use the monolingual version of WMT19 and
corrupt the input sentence by removing all of the stop words
2, further we randomly shuffle the words 33% of the time.
The goal is to reconstruct a sentence from its keywords, or
its corrupted sentence. For the machine translation approach,
we use the available bilingual version available in WMT19,
we sample with the same strategy as LAMPAT’s training
with 600k samples for training and 100k for validation.

Baseline Model
We compare our method with other approaches such as mul-
tilingual machine translation (MMT) proposed in Thompson
and Post (2020b) and denoising auto-encoder (DAE) in Guo
et al. (2019). Initially, these methods are trained on different
datasets, thus, we re-train them, following the procedures
proposed in each paper, on the WMT19 dataset.

Evaluation Dataset
We follow Guo et al. (2019), randomly select 10k sentences
respectively from each language of English, Spanish, Rus-
sian, and Chinese to construct the test set. However, the
number of languages covered in Guo et al. (2019) is rela-
tively small compared to the number of languages around

2https://github.com/stopwords-iso/stopwords-iso
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the world, over 7000 languages 3. Therefore, we expand the
languages covered in the task of multilingual paraphrasing
to 13 languages, including some figurative languages such as
Japanese, and Chinese or accented languages such as Viet-
namese. The proposed evaluation dataset has two types to
assess different aspects of the model: Input-only and Input-
reference.

Input-only: We follow Thompson and Post (2020b) and
use the validation set from the WMT19 dataset, which is
realeased in 2019 and available on HuggingFace 4. Since the
WMT19 dataset is used for the task Machine Translation,
we thus, extract one side of the dataset in order to build the
Input-only evaluation dataset. The languages we extracted
from the WMT19 are Czech (cs), German (de), English (en),
Finish (fi), French (fr) and Chinese (zh). Most of the samples
in this evaluation dataset are of the news domains, which is
used to test the model’s ability on producing a paraphrase
that conveys the same meaning.

Input-reference: We use in total 3 datasets to construct
this evaluation set:

• PAWS-X (Yang et al. 2019) is the cross-lingual para-
phrase identification dataset, thus, we extract only the
sentence pairs with label 1 (indicating paraphrase) for
6 languages: Japanese (ja), Chinese (zh), German (de),
French (fr), Spanish (es) and English (en).

• Opusparcus (Creutz 2019): is a paraphrase corpus for
six European languages: German (de), English (en),
Finnish (fi), French (fr), Russian (ru), and Swedish (sv).
We extract the test set of Opusparcus with a score of 4 to
ensure high-quality sentence pairs.

• STAPLE (Duolingo 2020): is a multi-reference machine
translation dataset in which each reference could be
viewed as the paraphrase. Since STAPLE does not have
the validation or test set, we randomly extract 1000 sam-
ples, each with 5 reference texts, covering 3 languages:
Vietnamese (vi), Portuguese (pt) and Hungarian (hu), to
construct the first multi-reference paraphrase generation
corpus with 1000 samples and 4 references each.

Automatic Evaluation
We follow Chowdhury, Zhuang, and Wang (2022) to report
the result on BLEU (Papineni et al. 2002), Self-BLEU, Self-
TER, which adapted TER (Snover et al. 2006) to the input
instead of the reference, BERTScore (Zhang et al. 2020)
with bert-base-multilingual-cased checkpoint,
iBLEU with α = 0.7 following Hosking and Lapata (2021).
In addition, we further use two latest paraphrase metrics:
ParaScore (Shen et al. 2022) and BERT-iBLEU (Niu et al.
2021).

Human Evaluation
In addition to machine evaluation, we also conduct the hu-
man evaluation of the paraphrase generated by our model.
For each of the following languages: English, Vietnamese,
German, French and Japanese, we randomly extract 200

3https://www.ethnologue.com/statistics
4https://huggingface.co/datasets/wmt19

sentence triples of the input sentence, our model predic-
tion and the output from the model of Thompson and Post
(2020b). For each mentioned language, we ask 5 annotators
to score 200 sentence pairs independently. Each annotator is
instructed to rate on the 1-5 scale (with 5 being the highest)
based on 3 criteria: (i) Semantic preservation, evaluating
how much information is preserved in the output; (ii) Lexi-
cal similarity, evaluating how much similar in term of syn-
tax or word choices of the output compared to input; and (iii)
Fluency, assessing the fluency and coherence of the gener-
ated output. The annotators’ agreement is measured using
Krippendorff’s alpha (Krippendorff 1970), which provides
a measure of inter-annotator reliability.

Results
Main Results

Method en es zh ru
BERTScore ↑

DAE 79.25 80.56 78.91 77.83
MMT 84.93 82.68 84.79 81.32
LAMPAT 86.86 84.35 83.26 84.01

Self-BLEU ↓
DAE 20.35 30.49 20.38 20.61
MMT 19.89 28.57 10.32 15.19
LAMPAT 19.46 20.16 14.95 12.46

Self-TER ↑
DAE 50.48 45.19 45.92 48.31
MMT 52.45 43.16 41.25 45.68
LAMPAT 61.32 55.43 55.28 50.67

BERT-iBLEU ↑
DAE 79.33 78.08 79.05 78.14
MMT 83.92 80.16 85.72 81.99
LAMPAT 85.52 83.41 83.61 84.69

ParaScore ↑
DAE 88.75 90.46 89.37 88.50
MMT 89.45 91.56 90.05 88.47
LAMPAT 92.95 92.96 90.64 91.92

Table 2: Multilingual paraphrase generation test results over
4 languages English, Spanish, Chinese and Russian from the
work of DAE (Guo et al. 2019).

Method fr cs fi de en zh
BERTScore ↑

DAE 70.39 78.45 80.96 69.32 65.68 81.35
MMT 74.40 80.20 81.20 71.20 65.48 80.29
LAMPAT 85.42 83.92 84.91 86.16 82.59 79.18

Self-TER ↑
DAE 45.53 39.97 54.50 46.18 30.42 28.49
MMT 48.40 37.12 56.74 48.42 33.76 31.56
LAMPAT 49.53 40.49 63.92 53.76 39.31 40.80

BERT-iBLEU ↑
DAE 71.10 79.56 81.38 71.24 67.36 81.05
MMT 75.48 78.81 82.15 74.16 66.08 69.70
LAMPAT 84.63 85.22 86.03 85.38 84.08 79.90

ParaScore ↑
DAE 89.91 88.46 75.93 87.43 88.56 88.12
MMT 89.95 90.10 81.15 89.47 91.49 90.35
LAMPAT 93.24 92.45 86.82 93.21 94.84 92.24

Table 3: Multilingual paraphrase generation test results on
our input-only evaluation dataset.
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Method sv fi en fr de ru ja zh es hu pt vi
BERTScore ↑

DAE 80.20 79.50 84.00 85.20 89.44 89.90 74.50 83.00 88.80 75.30 78.40 80.50
MMT 83.48 84.92 75.86 77.01 82.53 81.49 72.61 71.93 82.45 73.11 83.44 75.76
LAMPAT 85.47 85.47 94.87 89.94 90.10 92.16 90.77 81.00 92.87 86.16 91.99 87.70

BLEU ↑
DAE 5.22 4.20 10.50 15.51 14.44 5.46 20.62 47.80 18.58 8.10 16.01 15.05
MMT 1.22 0.39 11.79 6.10 11.98 0.77 9.55 16.69 20.49 0.84 11.09 3.58
LAMPAT 6.04 4.90 23.07 20.55 21.65 6.48 29.13 30.52 26.95 8.16 16.65 20.24

Self-BLEU ↓
DAE 24.58 17.56 45.50 30.20 25.75 36.82 50.78 50.22 40.69 25.82 30.44 27.26
MMT 25.72 16.76 50.33 23.47 35.65 39.67 45.62 63.32 36.65 27.82 34.70 27.24
LAMPAT 23.68 14.53 43.47 19.55 24.54 30.25 40.56 47.58 29.00 22.94 31.43 25.51

iBLEU ↑
DAE 0.05 0.01 -0.04 -0.05 -0.01 0.01 0.08 0.10 0.04 0.05 0.01 -0.01
MMT 0.01 0.02 0.02 0.04 0.04 -0.03 0.06 0.12 0.09 0.06 0.11 0.14
LAMPAT 0.08 0.04 0.04 0.02 0.05 0.04 0.09 0.15 0.13 0.15 0.15 0.05

Self-TER ↑
DAE 50.18 60.57 24.55 55.34 57.44 33.14 40.27 30.75 31.55 40.57 47.81 50.55
MMT 47.16 53.59 23.90 47.07 43.48 29.27 40.88 26.85 30.97 36.88 27.10 39.95
LAMPAT 57.20 59.45 56.56 56.49 61.33 47.80 42.62 35.34 38.55 41.51 55.11 57.91

BERT-iBLEU ↑
DAE 70.20 78.20 66.60 56.20 62.70 68.20 52.00 67.20 57.20 67.50 68.80 77.20
MMT 61.43 68.44 65.25 66.33 63.07 69.06 65.33 62.67 63.95 72.39 72.34 69.91
LAMPAT 73.30 78.60 67.60 82.33 80.25 69.98 78.04 67.72 86.46 76.32 78.92 81.39

ParaScore ↑
DAE 82.00 72.80 85.00 85.30 88.90 90.20 84.50 87.60 90.10 80.50 80.52 80.02
MMT 83.17 81.72 76.83 77.62 82.59 81.69 73.92 73.07 82.70 74.54 83.84 77.01
LAMPAT 86.42 86.00 94.51 90.73 90.29 91.47 91.33 93.01 92.96 86.89 91.74 89.78

Table 4: Multilingual paraphrase generation test results on our input-reference evaluation dataset.

For the test dataset from Guo et al. (2019) and our input-
only evaluation, we evaluate using BERTScore, Self-BLEU,
Self-TER, BERT-iBLEU and ParaScore, as these evaluation
metrics do not require the reference text. The test results
are depicted by Table 2 and 3. For input-reference, we re-
port BLEU and iBLEU, in addition, as depicted by Table 4.
LAMPAT can generate diverse output compared to the input,
which is indicated by the low score in Self-BLEU and high
score in Self-TER. LAMPAT also preserves better informa-
tion from the input as demonstrated by the BERTScore re-
sults. We have manually examined the text generated by all
four methods by randomly selecting 100 samples per lan-
guage. Although these sentences convey the same meaning,
the word choices and syntax structures are largely differ-
ent from both input and reference, leading to the low score
of iBLEU. Overall, BERT-iBLEU and ParaScore metrics,
which are the metrics that grade both lexical and semantic
aspects, show that all three methods could generate com-
prehensive sentences. However, our method, LAMPAT, still
achieves the highest score over 13 languages we have tested.
Even though our model learned in an unsupervised man-
ner, it can still outperform the supervised counterpart. Over-
all, LAMPAT has demonstrated that integrating adversarial
training into unsupervised learning could improve the per-
formance of multilingual paraphrase generation.

Human Evaluation Results
The results of our human evaluation can be found in Table 5,
where we present the assessments provided by human evalu-
ators. The evaluations conducted by human experts provide
valuable insights into the performance of our model.

Method SP ↑ LS ↓ F ↑
MMT 3.2 4.8 4.8
LAMPAT 4.2 3.2 4.8
Human generated paraphrase 4.4 2.4 4.8
Krippendorff’s alpha 0.68 0.7 0.78

Table 5: Human evaluation results. SP: Semantic Preserva-
tion; LS: Lexical Similarity; F: Fluency. All the scores re-
ported are the average value of 5 chosen languages.

Ablation Study
Parameter-Efficient Fine-Tuning
In order to examine which ingredients help improve the
performance of LAMPAT, we experiment with Adapter
(Houlsby et al. 2019), Prefix Tuning (Li and Liang 2021),
Prompt Tuning (Lester, Al-Rfou, and Constant 2021), LoRA
(Hu et al. 2021), P-Tuning (Liu et al. 2022) and Full fine-
tuning to find out which PEFT methods result in a more sta-
ble and better result. For each of the methods, we train on the
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same number of epochs with 3 random seeds and report the
mean and standard deviation of ParaScore of all languages.

Method ParaScore
Prefix Tuning 77.45±8.5
Prompt Tuning 82.25±7.9
P-Tuning 82.94±5.5
Adapter 89.56±3.2
LoRA 90.67±2.5
Full 89.46±1.5

Table 6: ParaScore of different fine-tuning methods on
13 languages. The mean and standard deviation are the
weighted mean and standard deviation in all 13 languages.

According to Table 6, LoRA experiences to be the most
stable method and achieves the highest scores, especially for
generation tasks.

Adversarial Optimization

Figure 3: The average ParaScore of each technique over 13
languages.

Since LoRA is a stable method for partially fine-tuning
LLMs, we adapt LoRA as the PEFT method for fine-tuning
mGPT. In order to study the effect of adversarial training in
unsupervised learning, we employ two settings which are
Projected Gradient Descent (PGD) and Projected Newton
Method (PNM) (Bertsekas 1982) together with LoRA. Ac-
cording to Figure 3, we hypothesized that the main driving
force that makes LoRA + PGD + PNM better compared to
PGD is because it uses the Taylor expansion, which has a
better approximation of the objective function. In general,
when we are near the local optima (for example, at the last
2 epochs), we can take a few more Newton’s steps to reach
the optimum point instead of taking many small Gradient
Descent steps.

Related Works
Multilingual Paraphrasing
Numerous techniques for paraphrasing in multiple
languages employ Machine Translation-based models
(MNMT). To illustrate, Thompson and Post (2020b) applied
a pretrained MNMT model introduced by Thompson and

Post (2020a), along with a customized decoding algorithm
aimed at reducing repetition of words and encouraging
diverse vocabulary usage. Another instance is the work
by Guo et al. (2019), which leveraged a language model
pretraining task adapted from Conneau and Lample (2019).
During inference, the same language code is provided
to the model, and the sequence is generated sequentially
in an autoregressive manner. Despite the fact that the
translation-based approach produces high-quality and fluent
paraphrases, it faces certain inherent challenges. Firstly,
there is a potential for bias stemming from the dominance
of certain languages used for training the MNMT model.
Secondly, there may be instances of incorrect synthetic
paraphrases due to the inherent ambiguity in the pivot
language, as pointed out by Thompson and Post (2020b).
These issues need careful consideration in the development
of multilingual paraphrasing methods.

Adversarial Training
Adversarial training is a powerful technique employed in
the development of resilient neural networks. While the
computer vision community, as highlighted by Goodfellow,
Shlens, and Szegedy (2015), has generally accepted that ad-
versarial training can have a detrimental impact on model
generalization, the scenario appears to be quite different for
language models, as evidenced by studies such as Pereira
et al. (2020) and Dong et al. (2021a). Incorporating adversar-
ial training into large language models (LLMs), as explored
by Miyato et al. (2018) and further elaborated upon by Dong
et al. (2021b), has been found to yield improvements in both
model generalization and robustness. An innovative training
algorithm, denoted as YOPO (You Only Propagate Once),
was proposed by Zhang et al. (2019). YOPO takes advan-
tage of the “free” training strategies advocated by Shafahi
et al. (2019) to diversify the training data by incorporating
various adversarial samples while imposing different norm
constraints. Also, Miyato et al. (2018) proposes a new train-
ing method that regularizes the training objective by using
virtual labels in adversarial training. These approaches col-
lectively showcase the effectiveness of adversarial training
in enhancing both the robustness and generalization capa-
bilities of neural networks.

Conclusion and Future Work
In this research, we introduce an efficient method for gen-
erating paraphrases in multiple languages using Low-Rank
Adaptation combined with virtual labeling during adversar-
ial training. Importantly, our approach delivers satisfactory
results without relying on supervised learning. Addition-
ally, we contribute to the field by creating a novel multilin-
gual multi-domain evaluation dataset. While LAMPAT has
demonstrated proficiency in generating human-like para-
phrases across various languages, it still requires improve-
ments in handling idiomatic expressions. Furthermore, our
evaluation dataset covers only 13 languages, leaving out
many, especially those with limited resources. This high-
lights the ongoing need for research to enhance and expand
the capabilities of multilingual paraphrase generation mod-
els.
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