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Abstract

One of the key factors in language productivity and human
cognition is the ability of systematic compositionality, which
refers to understanding composed unseen examples of seen
primitives. However, recent evidence reveals that the Trans-
formers have difficulty generalizing the composed context
based on the seen primitives. To this end, we take the first
step to propose a compositionality-aware Transformer called
CAT and two novel pre-training tasks to facilitate system-
atic compositionality. We tentatively provide a successful im-
plementation of a multi-layer CAT on the basis of the espe-
cially popular BERT. The experimental results demonstrate
that CAT outperforms baselines on compositionality-aware
tasks with minimal impact on the effectiveness on standard-
ized language understanding tasks.

Introduction
Linguistic research confirms the discreteness of linguistic
symbols and their compositionality to construct larger lin-
guistic expressions (Montague 1970; Frege 1948; Baroni
2020; Akyürek and Andreas 2022). These characteristics are
known as Systematic Compositionality (Fodor and Pylyshyn
1988; Keysers et al. 2019; Lake et al. 2017). For instance,
sentences are built from words and phrases. Such systematic
compositionality fosters humans ability to understand and
generalize to unseen combinations of seen primitives (Lake
et al. 2017) and model complex phenomena (Liu et al. 2021).
Therefore, it is widely recognized as an essential capability
of human intelligence (Ma, Zhang, and Zhu 2023).

However, previous studies have shown that language
models struggle with generalizing through composition
(Cartuyvels, Spinks, and Moens 2021; Lake and Baroni
2018; Loula, Baroni, and Lake 2018). Even for large lan-
guage models (LLMs), recent evidence suggests that they
still struggle to establish systematic compositionality after
fine-tuning on compositionality-aware datasets (Yu and Et-
tinger 2021) or prompting with in-context examples (An
et al. 2023). The challenge lies in the fact that the seman-
tics of a group of primitives vary depending on their mean-
ings and how they are combined. Considering examples on
word-level compositionality in Table 1 where words serve
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Similarity ScorePhrase 1 Phrase 2 LLM Human

Safety officer Security guard 0.6 0.881

Water body Body water 0.7 0.381

Table 1: Compositionality example from Asaadi, Moham-
mad, and Kiritchenko (2019). ChatGPT struggles to achieve
human-level language understanding as it fails to align with
human judgments regarding the similarity of phrase pairs
that are formed by different word composition.

as the primitives of phrases, two phrases composed of dif-
ferent words may have similar semantics (e.g., Safety of-
ficer and Security guard), while phrases may exhibit dif-
ferent semantics through different combinations (e.g., Wa-
ter body and Body water). Empirical evidence in Table 1
shows that even the ’omnipotent’ ChatGPT still struggles
to accurately capture the semantic changes among different
word combinations, failing to align with human judgments
regarding the similarity of phrase pairs. One possible expla-
nation is that despite the ability to capture the meaning of
words, current Transformer frameworks fail to develop sys-
tematic compositional skills (Dziri et al. 2023; Ma, Zhang,
and Zhu 2023). In contrast, humans certainly do understand
language by learning the meaning of words and composing
more elaborate meanings (Cartuyvels, Spinks, and Moens
2021). Therefore, to achieve human-level language under-
standing, it is imperative to invest more effort in building
a compositionality-aware model that promotes LLMs with
stronger capabilities in systematic compositionality.

Motivated by this, we take the first step to propose a
Compositionality-Aware Transformer called CAT to facil-
itate the systematic compositionality, along with two novel
pre-training tasks. 1) As depicted in Fig. 1, CAT intro-
duces two modules: Multi-Primitive Composition and Rep-
resentation Enhancement, to the vanilla Transformer en-
coder. These modules enable CAT to learn how to com-
pose primitives and enhance the representation of the vanilla
Transformer encoder, respectively. Specifically, the Multi-
Primitive Composition module decomposes a contextual
word representation1 hcont into multiple primitives, which

1Here, a word representation is the average of its corresponding
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are represented as discrete latent space vectors. It then pro-
duces a compositional representation hcomp. The Represen-
tation Enhancement module integrates hcomp and hcont to
yield the final output hmix with stronger systematic com-
positionality and without losing contextual information of
hcont required in downstream tasks. Notably, these modules
can also be applied to the [CLS] token to achieve the seman-
tic composition of a sentence. 2) Additionally, we propose
two new pre-training tasks, i.e., Guided Decomposition and
Semantics Composition, to further enhance the systematic
compositionality. The former supervises the decomposition
of hcont using the OpenHowNet dataset (Qi et al. 2019b),
which records the mappings from words to their correspond-
ing primitives (i.e., Sememes2). The latter guides the com-
position of discrete primitives so that hcomp and hmix are
semantically informative without losing contextual informa-
tion required in the downstream tasks. As such, by learning
to compose primitives during pre-training, CAT could facil-
itate systematic compositionality of the vanilla Transformer.

As suggested in previous studies (Yu and Ettinger 2021;
Cartuyvels, Spinks, and Moens 2021; Hendrycks et al.
2020; Yu and Ettinger 2020), our evaluation closely revolves
around the characteristics of the systematic compositional-
ity to provide detailed insights. Due to the issue of computa-
tional resources, we restrict our analysis and comparison to
the widely used BERT and tentatively implement and pre-
train a multi-layer CAT from scratch following BERT. Our
experimental findings demonstrate that our approach outper-
forms BERT and other baselines on compositionality-aware
tasks while having minimal impact on the effectiveness of
standardized language understanding tasks. In comparison
to BERT, CAT exhibits superior performance in identify-
ing semantic changes in both phrase-level and sentence-level
compositionality-aware tasks without losing any advantages
in standardized GLUE tasks. On average, our method ex-
periences performance gains of +6.42 and +1.10, respec-
tively. Furthermore, CAT shows promising improvements
in compositional generalization (+1.83) and robustness to
noisy context (+3.09). Given that compositionality has al-
ways been considered a major factor in language produc-
tivity and human cognition, we believe our work is an im-
portant proof-of-concept for promoting LLMs’ capability in
systematic compositionality. In conclusion, we claim the fol-
lowing contributions.

• For the first time, we propose a systematic composi-
tionality aware Transformer called CAT, which explicitly
equips the vanilla Transformer with the ability to learn to
compose primitives.

• We also propose two novel pre-training tasks to further
facilitate the systematic compositionality of CAT.

• We verify our effectiveness with extensive empirical
studies and offer an in-depth analysis. We provide insight
for future studies on LLM’s systematic compositionality.

token embeddings.
2Minimum semantic units of our languages. A set of discrete se-

memes (such as Family, Spouse, Female) could compose the mean-
ings of all the words (Wife, in this case) (Qi et al. 2019a).
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Figure 1: Illustration of CAT, which contains two modules.
By learning to compose primitives, CAT facilitates system-
atic compositionality of the vanilla Transformer.

Related Work
Our focus is on the discreteness of linguistic symbols and
their systematic compositionality. Therefore, we conduct a
literature review on systematic compositionality and exist-
ing techniques for discretization & compositionality.

Systematic Compositionality. Systematic composition-
ality in the language is an attractive capability of combin-
ing discrete elementary units in systematic ways to create
compound ones (Montague 1970; Frege 1948; Baroni 2020;
Akyürek and Andreas 2022). It allows humans to make so-
called “infinite use of finite means” (Chomsky 2014) and
fosters the capacity of generalization (Lake et al. 2017).
It has led to improved performance in various NLP tasks
such as question answering (Bogin et al. 2021) and ma-
chine translation (Ataman and Federico 2018). In the era
of LLMs, however, recent evidence shows that fine-tuning
a given pre-trained model on a specific task may not im-
prove its compositionality capability (Yu and Ettinger 2021).
Over-parameterized LLMs, like ChatGPT, are still sensitive
to the selection of in-context examples (An et al. 2023),
making their compositionality ability fragile. More recently,
researchers have found that current Transformers fail to de-
velop systematic problem-solving skills (Dziri et al. 2023;
Ma, Zhang, and Zhu 2023), which highlights the need for
a compositionality-aware Transformer that may enhance
LLMs’ capabilities in systematic compositionality. To this
end, we take the first step to propose a compositionality-
aware Transformer and two novel pre-training tasks to facil-
itate systematic compositionality.

Techniques for Discretization & Compositionality. Ex-
ploring the compositional characteristics has drawn lots of
attention, but they focus on composing continuous primi-
tives. Notably, a continuous primitive is a continuous, real-
valued variable that takes on values in connected regions of
Rn. while a discrete primitive is a discretely valued variable
that takes on either a limited or a countably infinite num-
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ber of distinct values (Cartuyvels, Spinks, and Moens 2021).
To compose continuous primitives, existing techniques in-
clude the group-equivariance theory (Higgins et al. 2018a;
Gordon et al. 2019), syntactic attention (Russin et al. 2019;
Li et al. 2019), disentangled representation (Burgess et al.
2018; Locatello et al. 2019), data argumentation (Akyürek
and Andreas 2022; Andreas 2020), or neural modulariza-
tion (Andreas et al. 2016). However, considering the dis-
creteness of linguistic symbols, research on composition-
ality with discrete primitives is relatively rare. One pos-
sible reason for this is that optimizing discrete primitives
during the backpropagation of a neural network in a stabi-
lized and bias-free way is more challenging than optimiz-
ing contextual ones (Friede and Niepert 2021; Farinhas et al.
2021). Recent vector quantization techniques (van den Oord,
Vinyals, and Kavukcuoglu 2017; Liu et al. 2021) propose
using the Straight-Through-Estimator (Courbariaux, Ben-
gio, and David 2015) to facilitate optimization on discrete
codes/primitives. Nevertheless, the composition of discrete
primitives is yet to be explored, let alone the pre-trained lan-
guage model with systematic compositionality. As a result, it
is unclear how to create a compositionality-aware language
model and assess its performance on more general tasks.

Compositionality-Aware Transformer
To promote systematic compositionality, CAT introduces
two modules, i.e., Multi-Primitive Composition and Repre-
sentation Enhancement, to the vanilla Transformer encoder.
These modules enable CAT to learn how to compose prim-
itives and enhance the representation of the vanilla Trans-
former encoder, respectively.

Multi-Primitive Composition Module
This module explicitly equips the vanilla Transformer en-
coder with an ability of learning to compose primitives.
It decomposes a contextual word representation hcont into
multiple primitives that bear the strong similarities. It then
produces a compositional representation hcomp.

Primitives Representation. For each hcont, we assume
that they are grounded in the same semantic space3, spanned
by a limited number of distinct primitives. This forces the
model to decode the elementary units from the contextual
word representation hcont. Considering the discreteness of
language symbols, we require the i-th primitive to be repre-
sented by a discrete latent space vector ei ∈ Rm, where m
is the dimension size. Denoting K as the size of the discrete
latent space, all the semantic space in CAT is grounded in an
L-way categorical variable, e ∈ RK×m, which we refer to
as a codebook. For instance, Fig.1 contains a codebook with
nine discrete primitives/codes. Note that the codebook is a
trainable parameter.

Decompositing into Primitives. Given a contextual rep-
resentation hcont, one way to decompose it is the vec-
tor quantization (van den Oord, Vinyals, and Kavukcuoglu

3This is inspired by mutual knowledge hypothesis (Sperber and
Wilson 1986), saying that knowledge required to interpret a mes-
sage is grounded in the understanding of the message sender and
receiver.

2017; Razavi, van den Oord, and Vinyals 2019; Liu et al.
2021, 2022), which involves learning a discrete latent repre-
sentation for an input vector. Given an input vector hcont ∈
Rm, the vector quantization method maps hcont to the
nearest-neighbor quantized code in the codebook eK×m.
More concretely, the discretization process for vector hcont

is described as follows.
eoj = Discretize(hcont),

where oi = argmin
j∈{1,...,K}

∥hcont − ej∥22, (1)

where ej is j-th code in the codebook e. Finally, the contex-
tual representation hcont is quantified using ’hard K-Means
clustering’ and discretized into one code.

However, his approach fails to meet the requirements for
decomposition as it only produces one code. Also, the fit-
ness of one code is limited compared to the original seman-
tics of hcont. To address this, our multi-primitive compo-
sition module decomposes a contextual representation into
multiple discrete codes. In particular, our method uses a soft
version of K-means clustering, where the number of clus-
ters is dynamically learned. We achieve this by replacing
the argmin operator with the sparse attention mechanism
(Zhang, Titov, and Sennrich 2021) as follows.

O = RMSNorm(ReLU(f(Q,K))), (2)
where Q = hcontWQ, K = eWK , and f is a scoring func-
tion like cosine. The vector O represents the sparse attention
weight, where each index corresponds to a code in the code-
book e. The RMSNorm operator also is utilized to increase
the optimization stabilization, as suggested in Zhang, Titov,
and Sennrich (2021). By this means, our multi-primitive
composition filters out irrelevant codes from the compo-
sitions of hcomp and allows us to decompose hcont into
multiple latent codes of dynamic size. It is worth mention-
ing that our multi-primitive composition has the additional
benefit of addressing the differentiation challenge. Unlike
raw vector quantization, which approximates the gradient
of the argmin operator using Straight-Through-Estimator
(Courbariaux, Bengio, and David 2015) or Gumbel-Softmax
(Jang, Gu, and Poole 2016), both of which can be unstable
(Yin et al. 2018), our approach is entirely differentiable.

Composing Primitives. To capture the semantics of var-
ious combinations, it is important that different primitives
have varying significance in the composition process, de-
pending on the context. We accomplish this by utilizing
the attention vector O ∈ RK to select multiple discrete
primitives and combining them into a compositional rep-
resentation hcomp. This is achieved through the function
g(O, e) = OV , where V = eWV . It is noteworthy that CAT
takes into account the systematic compositionality of a sen-
tence by breaking down the hcont of the [CLS] token, which
is known to capture the semantics of the entire sentence.

Representation Enhancement Module
The objective of the Representation Enhancement module
is to integrate hcomp and hcont in a way that produces
the ultimate output hmix, which possesses superior system-
atic compositionality while retaining the contextual infor-
mation of hcont necessary for downstream tasks. As a result,
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CAT enhances the representation of the vanilla Transformer
hcont. To accomplish this, a self-attention mechanism is em-
ployed to automatically adjust the importance weights of
hcont and hcomp during the integration.

Formally, given an input sentence x of length N , i-th word
xi with its representations hi

cont and hi
comp, we derive two

sequence embeddings Hcomp = {h0
comp, h

1
comp, ..., h

N
comp}

and Hcont = {h0
cont, h

1
cont, ..., h

N
cont}, h0

cont and h0
comp

correspond to representations of [CLS]. To integrate them,
we feed the concatenatation of Hcomp and Hcont into
a self-attention layer to obtain the final outputs H =
{h0

mix, h
1
mix, ..., h

N
mix}, where hmixi is the mixed represen-

tation of xi or [CLS]. This process is described as follows,
where the second step re-scales the dimension for multi-
layer CAT when necessary.

H = self-attention([hcomp, hcont])

H =
1

2
(H[:, : N, :] +H[:, N :, :])

(3)

By this means, the CAT learns to automatically fuse the
contextual and compositional representations of each word
according to the input context. As a result, three types of rep-
resentations are generated, namely the raw contextual repre-
sentations hcont, discrete representations hcomp, and mixed
representations H . The learned mixed representation H can
be used as the contextual input for the next CAT layer.

Compositionality-aware Pre-training Tasks
This section introduces two new pre-training tasks that aim
to improve the systematic compositionality ability. The first
task is the guided decomposition task, which utilizes se-
memes to supervise the semantic decomposition of hcont.
The second task is the semantics composition task, which
ensures the composition of discrete primitives so that hcomp

and hmix are semantically informative without losing con-
textual information required in the downstream tasks.

Guided Decomposition Task
To further enhance the interpretability and learning effi-
ciency of the multi-primitive composition module, we re-
sort to the semantic compositionality (Qi et al. 2019a;
Wierzbicka 1996) and utilize sememes, which are defined
as the minimum semantic units of human languages (Bloom-
field 1926), to supervise the decomposition. Building upon
the assumption that the meanings of all the words can be
composed of a limited set of sememes (Qi et al. 2019a;
Wierzbicka 1996), each code/primitive in the CAT’s code-
book is defined as a specific sememe. Thus, the composi-
tional representation can be interpreted as the semantic com-
position of selected sememes. Consequently, the goal of this
task is to learn the map from each word to its corresponding
sememes.

Sememes Guided Decomposition. To achieve this, we
resort to the OpenHowNet (Qi et al. 2019b), a widely ac-
knowledged sememe knowledge base, as the supervision
of semantic decomposition. We require the sparse attention
mechanism to attend to the appropriate sememes in the code-
book. Here, xi represents the i-th word in an input sentence

of length N , e ∈ RK×m is the codebook in CAT (or the
last layer of the multi-layer CAT), Oi ∈ RK is the attention
weight to the codebook and si ∈ RK is a {0, 1} vector con-
taining the correct sememes for xi, where sij = 1 if the j-th
sememe belongs to xi, otherwise sij = 0. To calculate the
loss LGD for incorrect sememe-matchings, we averaged the
attention weights that are focused on the wrong sememes.
Furthermore, we introduced the L1 norm on the attention
weights from all layers to encourage sparsity.

LGD(xi) =
∑
xi∈x

sum((1− si)⊙Oi)

sum(1− si)
+ L1(Oi) (4)

Semantics Composition Task
The goal of the semantics composition task is to encourage
hcomp and hmix to be semantically informative without los-
ing contextual information required in the downstream tasks.
Here, we involve the following three learning objectives.

Reconstruction Consistency. It aims to encourage the
compositional representations hcomp to bear strong similar-
ity with the contextual ones hcont in the vector space. We
consider the following objectives, where the stop gradient
operator sg and hyper-parameter β ∈ [0, 1) are utilized to
shift more optimization focus on updating discrete represen-
tation, rather than the contextual one.

ℓrc = ∥Hcomp − sg(Hcont)∥22 + β∥sg(Hcomp)−Hcont∥22
(5)

Semantic Sufficiency. It concerns that hcont, hcomp, and
hmix contain sufficient semantic information. They should
be effective on the pre-training task Ptask used in BERT.

ℓss = Ptask(Hcomp) + Ptask(Hcont) + Ptask(H) (6)

Nuance Minimization. It encourages the nuance be-
tween contextual and compositional representations Hnu =
Hcont − Hcomp should be less informative, insignificant to
the main semantics. Thus, we aim at maximizing the entropy
of Hnu and minimizing its performance on the pre-training
tasks used in the semantic sufficiency.

ℓnm = exp(−Entropy(Hnu)) + exp(−Ptask(Hnu)) (7)

Finally, we summarize the overall loss function for the
semantics composition task as LSC = ℓrc + ℓss + ℓnm. The
overall loss function for CAT pre-training is L = Ltask +
LGD + LSC , where Ltask is the loss for other pre-training
tasks used in BERT.

Experiments
In this section, we concentrate on comparing our approach
to the vanilla Transformer and conducting comprehensive
evaluations that center on the features of systematic compo-
sitionality (as discussed in Section ). Additionally, we ex-
plore other characteristics of CAT (as discussed in Section
and ), including robustness and combinatorial effectiveness.
More details on implementation, datasets and pre-training
can be found in the Appendix of our arXiv version.
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Experimental Setup
Model Pre-training. We restrict our discussions to the
vanilla Transformer framework, with a special focus on the
popular BERT4 to provide more detailed insights. To ensure
the fairness of the experiment, we strictly follow the pre-
training process of BERT (Kenton and Toutanova 2019) in
our experiments. Specifically, we implement a multi-layer
CAT (MCAT) and pre-train it from scratch. The BooksCor-
pus (800M words), English Wikipedia (2,500M words), and
extra OpenHowNet dataset serve as our pre-training data for
MCAT. We utilize the pre-training tasks of BERT, namely
Masked LM and Next Sentence Prediction, as the Ptask in
our Semantics Composition.

Baselines & Implementation. To simplify, we use the
notations CATcont, CATcomp, and CATmix to represent the
contextual, compositional, and mixed representations of our
multi-layer CAT, respectively. As for the baselines, BERT is
of particular importance to us due to its relevance to our net-
work architecture and pre-training data. In addition to BERT,
we also consider two other variants, namely RoBERTa5 (Liu
et al. 2019) and DistilBERT (Sanh et al. 2019), following
the approach of Yu and Ettinger (2021, 2020). For all ex-
periments, we fine-tune each model with the corresponding
backbone frozen and an additional MLP layer on top of the
backbone for learning, which takes the [CLS] embeddings
as inputs. We selected the best model based on its perfor-
mance on the validation set for downstream task testing.

Evaluation Tasks. It’s important to note that most ex-
isting evaluation methods and datasets for systematic com-
positionality are only suitable for generative-based lan-
guage models like SCAN (Higgins et al. 2018b) and in-
context prompting (An et al. 2023). Instead, our evalua-
tions follow recent works (Yu and Ettinger 2021; Hendrycks
et al. 2020; Yu and Ettinger 2020), which are designed for
discriminative-based language models like BERT and ours.
Since each evaluation task differs, we provide the details in
the corresponding subsections.

Systematic Compositionality Evaluation
After pre-training on corpora with diverse words and their
combinations, we assess the systematic compositionality of
CAT on phrases and sentences. We also evaluate the compo-
sitional generalization to the out-of-distribution dataset.

Evaluation on Phrases & Sentences In this section, we
show the evaluation on both phrase-level and sentence-level
compositionality-aware tasks.

Task & Dataset. Our goal is to assess the capability of
recognizing the semantic correlation that results from dif-
ferent word compositionality. In this section, we consider
the two evaluation sub-tasks, i.e., phrase correlation and ad-
versarial paraphrase sentence classification, to assess the se-
mantics correlation of different phrases and different sen-

4We restrict our discussions to BERT without loss of generality.
Due to computational resource limitations, we plan to implement a
model with more significant parameter quantities in the future.

5Different from BERT and us, RoBERTa use more pre-training
datasets and customized framework.

Methods Adversary Correlation
PAWS (SO) BiRD BiRD-ABBA

BERT 88.22 19.50 1.64
RoBERTa 89.06 20.32 3.21
DistilBERT 87.44 17.49 1.03
CATcont. 89.05 20.19 1.25
CATcomp. 90.33 34.44 7.19
CATmix 89.32 27.72 6.25

Table 2: Systematic compositionality evaluation (%) on
phrases and sentences. ’SO’ means ’swap-only’.

tences, respectively. In our experiments, inspired by previ-
ous studies (Yu and Ettinger 2021, 2020), we fine-tune each
model on data that are good candidates for requiring com-
position and test the fine-tuned model on these sub-tasks.

• Phrase Correlation. It aims to evaluate whether CAT and
baselines capture compositional phrase information and
identify the semantic correlation between two phrases.
Following Yu and Ettinger (2021, 2020), we fine-tune
each model on the PAWS (Zhang, Baldridge, and He
2019), which consists of sentence pairs with high lexical
overlap. This fine-tuning task is formulated as a binary
classification of whether two sentences are paraphrases
or not. We then assess the fine-tuned model on BiRD
(Asaadi, Mohammad, and Kiritchenko 2019), which is a
bigram-relatedness dataset designed to evaluate compo-
sition (e.g., Safety officer and Security guard). In addition
to testing on the full BiRD dataset, we conduct a con-
trolled experiment to remove the effects of word overlap
by filtering the BiRD dataset to pairs in which the two
phrases consist of the same words (e.g., Water body and
Body water). We refer to the filtered dataset as BiRD-
ABBA. For both BiRD and BiRD-ABBA, the model
performance is measured by the alignment with human
judgments of phrase meaning correlation. We report the
Pearson correlation between the cosine of phrases and
human-rated score6. In this case, we could determine the
systematic compositionality of each model by measuring
the ability in capturing compositional phrase information
beyond lexical content.

• Adversarial Paraphrase Sentences Classification. It de-
termines if the semantics hold when partial words in the
input sentence are swapped. To achieve this, we fine-
tune each model on PAWS and test them on an adver-
sarial PAWS dataset, called PAWS (swap-only) (Zhang,
Baldridge, and He 2019). PAWS (swap-only) simulates
the changing of word compositions (orderings). It con-
tains both paraphrase and non-paraphrase pairs with high
bag-of-words overlap and word swapping. In this study,
we report the accuracy of the successful identification of
non-paraphrase pairs to assess our effectiveness.

Main Results. As shown in Table 2, the results suggest
that CATmix and CATcomp show superiority on systematic
compositionality on both tasks. On average, CATmix im-
proves the performance on the adversarial paraphrase sen-

6Human scores are available in the datasets
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Method
Movie STSB MNLI AMAZON

IMDB SST2 Images MSRvid Telephone Letters Music Video
IID OOD IID OOD IID OOD IID OOD

BERT 79.82 76.61 80.94 88.00 74.87 72.79 73.32 65.16
RoBERTa 82.09 75.47 81.31 88.04 76.29 72.94 74.30 66.06
DistilBERT 78.64 75.07 80.43 88.38 73.14 70.03 73.04 64.58
CATcont. 79.34 76.15 80.05 88.81 74.31 72.85 73.98 65.22
CATcomp. 77.81 78.56 78.31 89.67 73.36 73.08 72.41 67.32
CATmix 80.23 79.36 79.97 89.13 74.87 73.96 73.88 67.44

Table 3: Evaluation on out-of-distribution datasets (%). We report the Pearson’s coefficient for STSB, and accuracy for others.

tences classification by 1.10 and phrase correlation by 6.42
compared to our primary baseline BERT. Additionally, it en-
hances the performance on the adversarial paraphrase sen-
tences classification by 0.26 and phrase correlation by 5.22
compared to the best baseline (i.e., RoBERTa). These ob-
servations imply that after being pre-trained to compose
primitives, CAT improves the ability in identifying the se-
mantics correlation formed by word compositionalities. Al-
though CATcomp is notably superior to CATmix, we would
demonstrate in Sections that CATmix strikes a good bal-
ance between systematic compositionality and effectiveness
on standardized language understanding task.

In detail, regarding the adversarial paraphrase sentences
classification, CATcomp achieves the best results thanks to
the explicit systematic compositionality modeling, which
improves its performance by 2.11 compared to BERT, 1.27
compared to RoBERTa, and 2.89 compared to DistilBERT.
Moreover, CATcont performs similarly to BERT, while
CATmix outperforms BERT by 1.10. Interestingly, despite
RoBERTa using more pre-training data than BERT and ours,
it is still weaker than CATcomp and CATmix. These find-
ings highlight the significance of systematic composition-
ality modeling in enhancing the performance of pre-trained
models on compositionality-aware phrasal tasks.

Regarding the phrase correlation, CATmix performs sig-
nificantly better than BERT and even outperforms the best
baseline, RoBERTa, by 7.4 on BiRD and 3.04 on BiRD-
ABBA. However, we also observe that the overall results on
BiRD-ABBA are much lower than BiRD, as identifying the
relatedness of bigram pairs with high word overlap is more
challenging. In fact, it requires assessing semantic changes
in different compositions of the same group of words. We
further tested ChatGPT (refer to Appendix), which has a
superabundance of training data and several hundred times
more parameters than BERT. We found that its score on
BiRD-ABBA is very unsatisfying. In particular, the result of
ChatGPT scoring on BiRD data is 45.65, while the result on
BiRD-ABBA plummets to 23.28. This indicates poor align-
ment with human judgments of phrase meaning similarity.
These results suggest that, at least on this compositionality-
aware task, ChatGPT, which may seem ”omnipotent”, may
be far from the general intelligence demonstrated in humans.

Evaluation on Out-of-distribution Datasets Here, we
present the assessment of compositional generalization.

Task & Dataset. After pre-training on corpora with di-
verse words and their combinations, we aim to evaluate

the compositional generalization of each model to out-of-
distribution (OOD) datasets. To achieve this, our evalua-
tion follows Hendrycks et al. (2020). Given a dataset pair
(A,B), we fine-tune each model on A (i.e., IID), and
test it on B (i.e., OOD) that contains realistic distribution
shifts to A. Following Hendrycks et al. (2020), we con-
sider the following dataset pairs: IMBD (Maas et al. 2011)
and SST2 (Socher et al. 2013), STSB-image and STSB-
MSRvid (Cer et al. 2017), MNLI-telephone and MNLI-
letters (Williams, Nangia, and Bowman 2018), AMAZON-
music and AMAZON-video (He and McAuley 2016). For
STSB, we report Pearson’s correlation coefficient, while for
the other datasets, we report accuracy.

Main Results. As shown in Table 3, CATmix is better
at generalizing to out-of-distribution composed semantics.
Due to pre-training on a larger corpus, RoBERTa demon-
strates significant performance in general language under-
standing tasks (i.e., IID) compared to others. However, de-
spite the IID effectiveness of RoBERTa, it suffers a signif-
icant decrease in effectiveness on OOD datasets. On the
contrary, CATmix exhibits advantages in OOD data, with
an average improvement of 1.85 compared to RoBERTA
(3.89 on SST2, 1.09 on STSB-MSRvid, 1.02 on MNLI-
Latter, and 1.38 on AMAZON-Video) and 1.83 compared
to BERT (2.75 on SST2, 1.13 on STSB-MSRvid, 1.17 on
MNLI-Latter, and 2.28 on AMAZON-Video).

Compared to CAT with different representations,
CATcont is better on IID datasets than CATcomp, with an
average improvement of 1.45. This empirical evidence
is consistent with the previous conclusion of theoretical
analysis (Liu et al. 2021), stating that the combinatorial
expressiveness of discrete codes is able to model complex
language phenomena, but it is still weaker than the contex-
tual representations. However, after mixing CATcont and
CATcomp together, CATmix strikes a good balance.

Robustness of Systematic Compositionality
CAT benefits from the discreteness of primitives and their
composition. Research conducted earlier has demonstrated
that discrete variables possess the attribute of being robust
to noise (Liu et al. 2021). This finding has inspired us to
conduct a thorough examination and evaluate the robust-
ness of CAT in the process of composing discrete primi-
tives. Specifically, we are interested in examining the multi-
primitive composition module in CAT, which filters out irrel-
evant codes/primitives from the compositions of hcomp and
enables us to break down hcont into several dynamic-sized
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BERT RoBERTa DistilBERT CATcont CATdisc CATmix

CoLA 52.10 61.60 47.60 60.18 50.09 60.28
MNLI m 78.12 80.12 73.62 75.28 72.85 74.28
MNLI mm 78.41 79.41 74.61 75.97 74.40 75.19
MRPC 74.40 75.70 73.20 74.95 74.03 74.93
QNLI 85.45 87.75 82.85 84.21 81.19 83.21
QQP 71.20 77.90 70.10 76.19 71.78 76.23
RTE 64.62 65.92 55.22 62.93 60.68 62.76
SST2 94.50 95.80 93.10 93.98 93.44 94.14
STSB 85.80 87.29 83.70 85.71 82.85 84.42

Avg. 76.07 79.05 72.67 76.60 73.48 76.16

Table 4: Effectiveness on standardized test. CAT has minimal impact on the effectiveness of the GLUE task.

latent codes. In this section, our objective is to determine
whether CAT is capable of filtering out irrelevant primitives
during composition.

48.48
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Figure 2: Illustration of robustness evaluation.

Task & Dataset. Our goal is to determine if CAT can
filter out irrelevant primitives during composition. For this
purpose, following Jia and Liang (2017), we test the ability
of CAT to comprehend contexts that include adversarially
inserted irrelevant sentences and answer questions about the
given contexts. We utilize reading comprehension datasets,
i.e., SQuAD (Rajpurkar et al. 2016) and its variant with ad-
versarial noises. These noises are automatically generated to
distract models without altering the correct answer or mis-
leading humans. Essentially, we fine-tune each model on the
SQuAD and test it on the SQuAD-adversarial.

Main Results. As shown in Figure 2, CAT, which em-
ploys mixed representations, exhibits remarkable robustness
to adversarial samples. It outperforms BERT by 3.09 and
the best baseline by 1.26. This performance gain may be at-
tributed to the fact that semantic decomposition based on
a discrete codebook is beneficial for filtering out irrelevant
information in the [CLS] embedding. Such semantic de-
composition improves the effectiveness of the compositional
representation CATcomp, which achieves even better perfor-
mance than CATmix. One possible explanation is that irrel-
evant information contained in the contextual representation
CATcont may be fused into the CATmix during our mixing
procedure. However, this does not affect our advantage.

Effectiveness on Standardized Test
Our previous study suggests the combinatorial effectiveness
of discrete primitives (Liu et al. 2021). After demonstrat-

ing CAT’s efficacy in compositionality-aware tasks, in this
section, we proceed to assess the effectiveness of composed
primitives in standardized tests. Our objective is to investi-
gate whether the contextual information required by down-
stream tasks would be affected when the vanilla Transformer
is equipped with systematic compositionality capabilities.

Task & Dataset. In this section, we assess the language
understanding capability on GLUE (Wang et al. 2018) fol-
lowing BERT, and report scores on each task after fine-
tuning. In line with BERT, we report the F1 score for MRPC
and QQP datasets, the Spearman correlation score for STSB,
and the accuracy score for the remaining tasks.

Main Results. According to Table 4, on average, CATcont

and CATmix exhibit slightly better performance than BERT
(+0.53, +0.09, respectively), while CATcomp is weaker.
As previously discussed, the compositional representation
CATcomp is better tailored for compositionality-aware and
discretization-oriented tasks, while the contextual represen-
tation CATcont is more appropriate for standardized tasks.
More important, CATmix strikes a good balance between
compositionality-aware and standardized tasks. Our findings
highlight that the proposed CAT is adept at capturing seman-
tic compositionality and significantly outperforms baselines
on compositionality-aware tasks, with a minimal impact on
the effectiveness of standardized tasks.

Conclusion
Our research delves into the characteristics of systematic
compositionality in human languages. For the first time,
we propose a compositionality-aware Transformer (CAT)
and two new pre-training tasks to facilitate systematic com-
positionality. We tentatively provide a successful imple-
mentation for multi-layer CAT and empirically verify its
effectiveness. Our approach captures semantic composi-
tionality better and significantly outperforms baselines on
compositionality-aware tasks, with minimal impact on the
effectiveness of standardized language understanding tasks.

Systematic compositionality is widely believed to be char-
acteristic of human intelligence. Our study provides a pri-
mary exploration of this challenge, and our findings may
provide an important proof-of-concept for producing better
LLMs, which crystallizes the past experiences and general-
izes them to the new composed contexts.
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