
PoetryDiffusion: Towards Joint Semantic and Metrical Manipulation
in Poetry Generation

Zhiyuan Hu1*, Chumin Liu2, Yue Feng3, Anh Tuan Luu2, Bryan Hooi1

1National University of Singapore (NUS), Singapore
2 Nanyang Technological University (NTU), Singapore

3 University College London (UCL), UK

Abstract

Controllable text generation is a challenging and meaningful
field in natural language generation (NLG). Especially, poetry
generation is a typical one with well-defined and strict con-
ditions for text generation which is an ideal playground for
the assessment of current methodologies. While prior works
succeeded in controlling either semantic or metrical aspects
of poetry generation, simultaneously addressing both remains
a challenge. In this paper, we pioneer the use of the Diffusion
model for generating sonnets and Chinese SongCi poetry to
tackle such challenges. In terms of semantics, our PoetryDif-
fusion model, built upon the Diffusion model, generates en-
tire sentences or poetry by comprehensively considering the
entirety of sentence information. This approach enhances se-
mantic expression, distinguishing it from autoregressive and
large language models (LLMs). For metrical control, its con-
straint control module which can be trained individually en-
ables us to flexibly incorporate a novel metrical controller to
manipulate and evaluate metrics (format and rhythm). The
denoising process in PoetryDiffusion allows for the grad-
ual enhancement of semantics and flexible integration of the
metrical controller which can calculate and impose penalties
on states that stray significantly from the target control dis-
tribution. Experimental results on two datasets demonstrate
that our model outperforms existing models in terms of au-
tomatic evaluation of semantic, metrical, and overall perfor-
mance as well as human evaluation. Codes are released to
https://github.com/ChorlingLau/PoetryDiffusion/.

Introduction
Deep learning has greatly influenced natural language gen-
eration (NLG). Models like Seq2Seq (Sutskever, Vinyals,
and Le 2014), GAN (Goodfellow et al. 2020), VAE (Kingma
and Welling 2013), pre-trained language models, and LLMs
have led NLG advancements. Among these, controllable text
generation (CTG) is an emerging area within NLG and it
is important and practical to consider specific constraints.
Poetry generation stands out as a distinct domain with its
unique characteristics, demanding not just coherent seman-
tics but also strict adherence to metrical rules tied to for-
mat and pronunciation. These intricate requirements present
the dual challenge of mastering semantics and metrics in
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Sonnet

Time, the old humourist, has a trick to day

Of moving landmarks and of levelling down

Till into town the suburbs edge their way

And in the suburbs you may scent the town

With mount St. thus approaching muswell hill

And clapham common marching with the mile

You get a hammersmith that fills the bill

A hampstead with a serious sense of style

SongCi

上林春慢 (CiPai)

Word 帽落宫花，衣惹御香，凤辇晚来初过(Guo)。
Tone - − + + 0 + − − + 0 - - - + + - 0

The hat adorned with palace flowers. The clothes infused with 
imperial fragrance. The phoenix carriage arrives late, just passing by.

Word 鹤降诏飞，龙擎烛戏，端门万枝灯火(Huo)。
Tone - − - + 0 + + + - 0 + + - + + - 0

Cranes descend as decrees fly. Dragons lift torches and play.
Countless lanterns and lights at every palace gate.

Word 满城车马，对明月有谁闲坐(Zuo)。
Tone - + + - 0 - + - - + + - 0

Carriages and horses fill the city. Who sits
leisurely in the face of the bright moon?

A

B

A

B

C

D

C

D

*Metrical Features:
· Selected excerpts from a Sonnet with 14 lines originally.
· Words marked in red with the same letter notation rhyme.

*Metrical Features:
· Format is decided by punctuations “，” or”。”.
· Words marked in red are positioned for rhyme, and their 

corresponding Mandarin Pinyin is provided in parentheses.
· Each word has its own tone, categorized as "+", "-", or "0".

Figure 1: Examples of Sonnet and SongCi

tandem. In comparison to other coarse-grained CTG tasks
like attribute-based generation (involving topics, emotions,
and keywords), dialogue generation, and storytelling, poetry
generation holds a unique position. Particularly evident in
forms like sonnets and Songci, it necessitates adherence to
well-defined and demanding metrics. Such specificity makes
metrical poetry an ideal testing ground to validate the po-
tency of the latest methodologies. Moreover, the available
poetry data resource is of unparalleled quality in NLP, pro-
viding a strong foundation for our future work.

Sonnet and SongCi are two classical and famous forms
of poetry, which share two major characteristics: (1) The
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poems must adhere to special format restrictions. Sonnets
must have 14 lines; similarly, the number of lines as well as
the length of each line in SongCi is prescribed by the corre-
sponding CiPai (Title of SongCi) (2) The chosen words must
be consistent with specific rhythm rules. The last word of
each line in Sonnets, as shown in Figure 1, should follow
the rhyme scheme ”ABAB CDCD EFEF GG”. In SongCi,
the rhyme rule of the last word in every line is also set by
its CiPai. In this example, the phonetic transcription of each
word is ”Guo”, ”Huo” and ”Zuo”, corresponding to one of
16 rhyme rules, ”o”. In addition, every word in SongCi must
comply with the tone rule (Ping, Ze), which dictates pronun-
ciation requirements. Level and oblique tones can be sym-
bolized as ”+”, ”-”, and ”0” (without a tone requirement).

In previous CTG tasks, GAN and VAE models have been
widely adopted as popular frameworks. However, Bond-
Taylor et al. (2022) points out their limitations. Several
key challenges associated with GANs encompass slow con-
vergence, instability, vanishing gradients, mode collapse,
and catastrophic forgetting. VAEs also suffer from posterior
collapse, where the model ignores the latent variable and
generates less diverse samples. Moreover, even the power-
ful LLMs, especially ChatGPT(OpenAI 2021), surprise us
with excellent generation capability, yet adhering strictly to
specific instructions remains a challenge. Pu and Demberg
(2023) conduct empirical studies that demonstrate Chat-
GPT’s superiority over some previous SOTA models accord-
ing to automated metrics. Despite this, notable discrepan-
cies persist between ChatGPT’s output and human-authored
content. Our experiments also highlight this issue, revealing
that ChatGPT’s BLEU, ROUGE, and other semantic scores,
which gauge the quality of generated poetry, fall short of our
proposed method’s scores. Additionally, the performance
on metrics employed to evaluate ChatGPT’s ability to ad-
here to metrical instructions and generate accurate metrical
structures exhibits subpar performance, particularly in the
SongCi dataset. It is worth noting that LLMs are trained
on extensive corpora and derive their capabilities from in-
struction tuning. However, their generalization extent is un-
certain, and further instruction tuning is resource-intensive
and might compromise their original text generation quality.
Although we might consider adopting efficient parameter-
tuning techniques, such as Lora (Hu et al. 2021), to mitigate
this challenge, fine-tuning LLMs, especially those Billion-
level models, remain more complex than fine-tuning our
model, which has only 87 Million parameters.

Except for the aforementioned drawbacks about seman-
tic performance and generating correct metrics based on the
instructions, most previous poetry generation works (Zhang
and Lapata 2014; Ghazvininejad et al. 2016; Benhardt et al.
2018; Van de Cruys 2020; Tian and Peng 2022), solely
concentrated on modeling the semantics, do not explicitly
enforce metrical constraints despite evaluating the metri-
cal performance. Only two works SongNet(Li et al. 2020)
and MRCG(Zhang et al. 2019) directly incorporate the met-
rical rules representation into the generative model. How-
ever, both works utilize similar methods of encoding metri-
cal rules into continuous representations and concatenating
them with word embeddings, making it difficult to achieve

satisfactory semantic performance when metrical features
are combined in the modeling phase.

To address the challenges mentioned above, we propose
the PoetryDiffusion model, which combines a Diffusion
model for semantics with a metrical controller for metrics.
Unlike other generative models, our diffusion approach in-
troduces controlled noise through diffusion steps and then
learns the reverse process to generate desired data. This
design enhances training stability and generation quality.
Moreover, this generative module and constraint separation
increases adaptability for different generation tasks.

Specifically, the Diffusion model utilizes a noising pro-
cess to transfer poetry representation into a normal distribu-
tion and samples from it as the input for the denoising phase,
which reduces the noise and reverts it to the original poetry.
The noising process is similar to gradually ”masking” to-
kens, phrases, or certain dimensions of the representation.
On the other hand, the denoising phase aims to ”predict” the
masked information and evaluate the success rate in each
step. This mechanism ensures that the model captures all in-
formation of poetry rather than continuing to predict words
based on wrong words in an autoregressive generation. The
metrical controller employs classifier guidance, which offers
notably higher precision and stability than other generative
models, particularly LLMs. This approach adeptly incorpo-
rates metrical rules into a representation while also assessing
the validity of the encoded rules. This allows for individual
training and flexible integration, enabling efficient manipu-
lation and assessment of metrics. Furthermore, when com-
bining these two components to generate poetry, the mod-
ules for each step are updated based on feedback from Dif-
fusion and controller in the previous step which indicates the
accuracy of prediction for masked semantics and metrics.

To summarize, our contributions are as follows:
• We propose the PoetryDiffusion model, which employs

the Diffusion model to optimize the poetry semantic per-
formance, leverages the metrical controller to model the
metrical rules, and combines them flexibly and effec-
tively, for the first time in poetry generation.

• Comprehensive experiments through automatic semantic
tests, metrical evaluations, case studies, and human eval-
uation on Sonnet and SongCi datasets demonstrate the
effectiveness of our model.

• The visualization and analysis of the stepwise process re-
veals how the PoetryDiffusion model integrates the se-
mantics and metrics gradually.

Related Work
Controllable text generation refers to the task of generat-
ing text according to the given controlled element. Hu et al.
(2017) used differentiable approximation to discrete text
samples, explicit constraints on independent attribute con-
trols, and efficient collaborative learning of generators and
discriminators to generate realistic sentences with desired
attributes. Betti, Ramponi, and Piccardi (2020) introduced
Controlled TExt generation Relational Memory GAN which
utilizes an external input to influence the coherence of sen-
tence generation. Furthermore, Li et al. (2022) proposed the
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PoetryDiffusion

Metrical
Controller

Pred: x x ... x OW1 x x ... x IY1 x x AW1 x
Label: x x ... x OW1 x x ... x AY1 x x OW1 x

Pred: + - ... 0 + - - ... 0 - 0 0 - +

Label: + - ... - - 0 - ... + - 0 - + 0

Pred: x x ... x x have x ... x x [EOS] x x did

Label: x x ... x x [EOS] x ... x x [EOS] x x [EOS]

Loss Feedback
Feature Input

𝐿𝑓𝑜𝑟𝑚𝑎𝑡

𝐿𝑟ℎ𝑦𝑚𝑒

𝐿𝑡𝑜𝑛𝑒 ⊕ 𝐿𝑀
𝝀2

𝝀3

𝝀1
Rhyme

Tone

Format

BERT

E0
E1
Ek-1
Ek
En

T0
T1
Tk-1
Tk
Tn

𝑝𝑟𝑒𝑑 𝐱! = 𝜑 𝐱"

Gaussian Distribution Word Embedding Poetry

…

𝐱𝑇

…

𝐱𝑡

…

𝐱𝑡 − 1

…

𝐱0 From fairest creatures
we desire increase,
That thereby beauty's
rose might never die,
…
His tender heir might
bear his memory.

Noising

Denoising

…

Figure 2: Model Architecture. PoetryDiffusion denoises xT to poetry w based on joint loss L of each step.

Diffusion-LM to achieve several fine-grained controls. Chen
and Yang (2023) incorporated different levels of conversa-
tion structures via Diffusion models to directly edit the pro-
totype conversations.

Additionally, researchers also conducted some explo-
ration based on the pretraining language model and large
language model. Zhang and Song (2022) introduced a
method incorporating attribute knowledge into control
prompts to steer a frozen casual language model to pro-
duce attribute-specific texts. Sheng et al. (2021) utilized the
masked sequence to sequence pre-training and attention-
based alignment modeling for lyric-to-melody and melody-
to-lyric generation. Zhang, Liu, and Zhang (2023) employs
multiple LLM as different roles in text generation to itera-
tively refine the generation results. Zhou et al. (2023) con-
ducted extra instruction tuning for lexical, syntax, semantic,
style, and length constraints based on the LLM.

In terms of poetry generation, Yu et al. (2017) proposed
SeqGAN, Lin et al. (2017) introduced RankGAN, and Che
et al. (2017) came up with MaliGAN for poem generation.
(Chen et al. 2019) proposed the semi-supervised VAE model
for sentiment control in poetry generation. Yi et al. (2020)
leveraged the MixPoet to enhance the diversity and quality
of the poem. Deng et al. (2020) utilized a Quality-Aware
Masked Language Model to polish the draft poetry gener-
ated by the encoder-decoder model.

Methodology

Overview

As shown in Figure 2, the proposed method is divided into
two parts. PoetryDiffusion is a Diffusion based framework.
It converts poetry input into continuous word representation,
then encodes it as a Gaussian distribution by noising. The
denoising step samples an initial state from Gaussian distri-
bution and reverts it into poetry. Metrical Controller evalu-
ates metrics and transmits the loss to denoising steps, guid-
ing the poetry to approach the control objectives.

Diffusion Based Framework
Intuition As mentioned earlier, poetry is a well-structured
literary form that demands thematic consistency and clarity,
emphasizing coherence between its sub-sentences. Autore-
gressive models, which generate text word-by-word, have
limitations that may lead to the accumulation of errors, re-
sulting in off-topic or thematically inconsistent poetry. Ad-
ditionally, generating only one token at a time makes it
harder to conform to strict structural forms, which may re-
quire longer-term global context from multiple lines, or go-
ing back to revise earlier written content like a human would
do. Therefore, considering the intricate control of poetic
rhythm and the high demands placed on it, we opt for the
Diffusion model (Sohl-Dickstein et al. 2015) as the seman-
tic framework for generating poetry. It allows for compre-
hensive consideration of information from the entire poem
during each iterative generation step and provides ample
manipulative space for text controlling, especially format
and rhyme scheme in poetry, throughout the iterations, and
avoids getting restricted based on earlier generated tokens.

To formulate the Diffusion model’s principle, we define
q(·) as its forward propagation distribution, while pθ(·) is
the trainable backward one.

Given a poem with N words, we represent it as a sequence
w (w1, w2, ..., wN ), where wi stands for the i-th word of the
poem. We adopt the methodology introduced by (Li et al.
2022), wherein we tailor the continuous Diffusion model to
our specific task and incorporate a word embedding function

E(w) = [E(w1), E(w2), ..., E(wN )] ∈ RN×d, (1)

where the embedding E(·) comes from BERT, to map words
into continuous representations, instead of operating dis-
crete input directly. So the transformational step w → x0

can be described as

q(x0|w) = E(w), (2)

where x0 ∈ Rd is the initial representation of continuous
Diffusion. Inversely, the trainable function

pθ(w|x0) =
∏n

i=1 pθ(wi|xi) (3)
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is utilized to transfer continuous vectors into words. Among
them, xi is the representation of i-th word in x0 and
pθ(wi|xi) is an MLP network with softmax, mapping a high-
dimensional xi to a specific token wi.

The model uses a Markov Chain {x0, x1, .., xt, .., xT }
to model the ”noising” step and generate a Gaussian distri-
bution xT ∼ N (0, I). The forward noising process is pa-
rameterized by

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (4)

where βt is the amount of noise added in the t-th step of
noising phase. xT is sampled as the initial state at the begin-
ning of the reverse process, and the backward denoising can
be formulated as

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)), (5)

where functions µθ and σθ are learnable and trained in the
reverse phase.

Based on the forward noising process (Eq.4) and re-
parameterizing trick, xt can be expressed by x0:

xt =
√
αtxt−1 +

√
1− αtzt−1

=
√
α̃x0 +

√
1− α̃z̃,

(6)

where αt = 1 − βt and α̃ =
∏T

t=1 αt. In addition, noise
added is defined by zt ∼ N (0, I) and z̃ is the Gaussian
superposition of {z0, z1, ..., zt}.

Therefore, the training goal of the Diffusion model, which
is also regarded as the semantic loss function LS, is to esti-
mate the distribution of pθ in which the VLB (Variational
Lower-Bound) is used as a computable lower-bound:

−Eq(x0)[log pθ(x0)] ≤ Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
= Eq(x0:T )

[
1

2σ2 ||µ̂(xT ,x0)||2

+
∑T

t=2
1

2σ2 ||µθ(xt, t)− µ̂(xt,x0)||2

− log pθ(x0|x1)

]
,

(7)
where µθ is the mean of pθ(xt−1|xt) and µ̂ is the mean of
the posterior q(xt−1|x0,xt). Removing the constant terms
and the coefficient 1

2σ2 , the loss function is simplified as:

LS(x0) =
∑T

t=1 E||µθ(xt, t)− µ̂(xt,x0)||2. (8)

Combined with the step w → x0 and x0 → w, the loss
function can be rewritten as:

LS(w) = E[LS(x0) + log q(x0|w)− log pθ(w|x0)]

= E[LS(x0) + ||E(w)− µθ(x1, 1)||2

− log pθ(w|x0)].

(9)

Metrical Controller
Motivation To ensure the primary model focuses more
on the generation of text content itself, we devise a sep-
arately trained Metrical Controller to achieve format and

rhyme control. In this way, PoetryDiffusion does not need to
concatenate controlling encoding onto content-encoding as
many previous methods do, which could scatter the model’s
semantic attention, thus minimizing the potential weakening
of semantic representation caused by metrical control. Fur-
thermore, the modular controller design enables our method
to be easily adapted to other CTG tasks, significantly en-
hancing the practicality and versatility of our approach.

We employ deep neural network-based classifiers as the
metrical controller due to two key advantages. Firstly, they
adeptly model intricate distributions of specific attributes,
thereby offering precise guidance during the diffusion pro-
cess. Secondly, these classifiers enhance stability by easily
calculating and imposing penalties on states that stray signif-
icantly from the target distribution. This not only addresses
the instability often associated with the diffusion process but
also ensures reliable samples.

Format The chosen poetic forms, Sonnet and SongCi, ex-
hibit considerable flexibility in terms of sentence length. For
instance, SongCi’s under different CiPai’s feature distinct
theatrical formats, which differ from the fixed 5-character
and 7-character poetic structures. Furthermore, while end
signals of line or sentence are present in the original data,
these signals encapsulate a significant amount of control in-
formation, encompassing not only line count and sentence
length but also implicit positional cues for rhyme words,
which must be at the end of lines or sentences. Therefore, ex-
plicit encoding of format information is essential to enhance
format control and emphasize other associated details.

We define a sequence of format metrics, denoted by S
(with the same length as w), to indicate the target loca-
tions of ending signals. S = (m, ...,m, ⟨eos⟩,m, ...), where
”⟨eos⟩” represents the end of each Sonnet line and m is a
mask symbol meaning that its corresponding word has no
specific format rule. In SongCi, the punctuation characters
”,” and ”.” will replace ”⟨eos⟩” and act as the ending signals
of each sentence. Similarly, S can be generalized to other
sentences with requirements of the signal’s location. The
format loss is calculated using MSL (Mean-Squared Loss)
between target sequence S and predicted sequence x0 based
on the Diffusion feature representation xt. The formula for
the format loss is

Lformat = MSL(S, φ(xt)), (10)

where φ(·) is an MLP network with softmax.

Rhyme Regarding rhyme control, we construct a rhyme
categories space, whose representation is a vector in R6219

in Sonnet and R17 in SongCi. The last (l-th) word of each (n-
th) line, wnl

, is chosen as the input for the word-level classi-
fier based on BERT (Devlin et al. 2018). This classifier aims
to provide the convincing rhyme category of wnl

as its out-
put. Additionally, the tone rule constraints of all words, wm,
in SongCi should also be considered, with a tone categories
space of R3 (”+”, ”-”, ”0”). After acquiring the representa-
tion of wnl

or wm, we can readily compute the probability
distribution of rhyme or tone rules by applying an MLP net-
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work with softmax. Hence, the loss can be formulated as

Lrhyme = ρnl
log(BERT (wnl

; ρnl
)), (11)

Ltone = τm log(BERT (wm; τm)), (12)

where ρnl
and τm are rhyme and tone ground truth labels of

the target word.
Notably, the Controller is employed throughout the de-

noising process, rather than solely in the final step, thereby
achieving concurrent augmentation of semantics and met-
rics. Consequently, the format and rhyme of the poetry be-
ing generated will progressively enhance amid semantic re-
finement, avoiding any detriment to the meticulously crafted
semantics in the end.

Joint Manipulation
The controllable decoding process is similar to the process
of training the Diffusion model. While, the distinction lies
in the use of a trained pθ as the initial denoising distribution
and we conduct sampling from xT to x0.

When we combine PoetryDiffusion and Metrical Con-
troller to generate poetry, the feature representation from
each step of Diffusion would be adopted to act as the input
of Metrical Controller. In step i − 1, sample xi−1 through
pθ (Eq.5), input xi−1 and condition ρ into the well-trained
BERT-based Metrical Controller to obtain the metric loss
(Eq.10-12). Then, the Controller transmits the Metrical loss
LM to PoetryDiffusion, which can be written as

LM = λ1Lformat + λ2Ltone + λ3Lrhyme, (13)

where λi (i = 1, 2, 3) are the hyperparameters selected by
the scale of semantic loss and losses for each metric, ensur-
ing that metrical losses can impact the performance evenly
without overshadowing semantic aspects. The term related
to Ltone should be omitted when dealing with sonnets.

The final loss of each step which would affect the denois-
ing process, updating pθ, is:

L = LS + LM. (14)

Then xi would be sampled based on new pθ.
Consequently, the feature representation would be de-

termined by PoetryDiffusion and its Metrical Controller
through the loss L in each step. This process continues until
we sample x0 and decode it to w through Eq.3.

Experiments
Dataset and Evaluation
We train our model on two datasets, Sonnet and SongCi.
Sonnet consists of 3,355 sonnets collected by (Lau et al.
2018). SongCi comprises 82,724 SongCi’s, curated by
(Zhang et al. 2019).

To evaluate semantic and metrical performance together,
we propose a simple average evaluation score:

SSonnet
overall = 0.5× avg(SBLEU, SROUGE, SDistinct,

100− SPPL) + 0.5× avg(Sformat, Srhyme),

where the previously settings for BLEU (Papineni et al.
2002), ROUGE (Lin 2004), Distinct (Li et al. 2015) and Per-
plexity (PPL) are utilized. BLEU and ROUGE are scored

by comparing generated poems, which are segmented into
lines or subphases, to a reference database of sub-sentences
with poetic phrases. PPL is computed by output, using the
language-specific BERT. In addition, the tone accuracy in
SongCi would be considered:

SSongCi
overall = 0.5× avg(SBLEU, SROUGE, SDistinct,

100− SPPL) + 0.5× avg(Sformat, Stone, Srhyme).

Moreover, more detailed methods of calculating metrical
scores are described as follows.
Format. For Sonnet, the accuracy score (%) is formulated
as:

Sformat = 1− |N − 14|/14,
where N stands for the number of lines in generated poetry
and 14 is the fixed number of lines for sonnets. For SongCi,
the formula is expressed as:

Sformat = Ts/L,

where Ts stands for the number of symbols with the true
type (ending marks or meaningful words) compared with the
original poetry, and L is the whole length of the poetry.
Rhyme. For Sonnet, we try to match the rhyme scheme of
each generated poetry with 5 types of classic sonnets (Ta-
ble 3) and report the highest accuracy score. The selected
words for evaluation are the last words of each line. For
SongCi, since not all the last words of sentences which end
with ”,” or ”.” satisfy the same type of rhyme, we select
the rhyme appearing most in the target original poetry and
record their locations for evaluation. Words with the same
rhyme on selected locations are regarded as true. The accu-
racy score (%) of rhyme can be written as:

Srhyme = Tr/Ls,

where Tr means the number of words with true rhyme within
locations selected, and Ls means the number of locations
selected. Likewise, the accuracy score (%) of tone can be
expressed as:

Stone = Tt/L,

where Tt means the number of words with the true tone, and
L remains consistent with the previous statement.

Training Details
This section shows the optimal hyperparameters of our Po-
etryDiffusion model. The number of decoding or encod-
ing steps T is set to be 2000 steps. In addition, we rescale
the diffusion steps into 200 to accumulate the poetry gen-
eration process based on DDIM (Song, Meng, and Ermon
2020). The dimension of word embedding is chosen to be
16. The method of organizing batches differs between the
two datasets. For Sonnet, pad each piece of poetry to the
same length and then concatenate the number of sequences
corresponding to batch size. While for SongCi, firstly con-
catenate all sequences of text and then cut into blocks with
appropriate shapes. The number of training iterations is set
to 150K. It takes approximately 4 hours to train PoetryDif-
fusion and Metrical Controller on an NVIDIA A100 GPU
monopolized by one job.
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Model Semantics Metrics Overall ↑BLEU ↑ ROUGE ↑ Distinct ↑ PPL ↓ Avg ↑ Format ↑ Rhyme ↑ Avg ↑
SeqGAN 26.56 27.61 82.24 32.93 50.87 97.13 35.41 66.27 56.00
MRCG 28.18 23.63 55.14 13.04 48.48 100.00 37.59 68.80 55.25
SongNet 25.09 37.78 77.20 12.50 56.89 99.95 29.79 64.87 59.55
GPT3 26.59 32.70 59.01 11.72 51.65 75.63 35.55 55.59 52.96
ChatGPT 30.91 42.78 81.64 9.52 61.45 89.55 50.45 70.00 64.30
Llama2-70B-chat 32.20 41.45 87.30 8.72 63.06 96.96 54.64 75.80 67.31
PoetryDiffusion(w/o C) 30.18 38.67 86.43 8.48 61.70 96.00 23.68 59.84 61.08
PoetryDiffusion 32.94 44.75 87.15 10.44 63.60 100.00 52.28 76.14 67.78

Table 1: Performance on Sonnet obtained by the testing methods. The best results are in bold.

Model Semantics Metrics Overall ↑BLEU ↑ ROUGE ↑ Distinct ↑ PPL ↓ Avg ↑ Format ↑ Tone ↑ Rhyme ↑ Avg ↑
SeqGAN 24.49 15.45 90.06 10.79 55.30 79.58 65.68 53.77 66.27 60.78
MRCG 22.90 14.78 90.06 10.32 54.42 99.35 93.71 98.28 97.02 75.72
SongNet 21.23 14.04 86.82 11.48 52.65 99.42 76.22 80.01 85.22 68.93
GPT3 25.17 16.17 71.88 9.77 50.86 71.80 50.13 29.64 50.52 50.69
ChatGPT 18.29 11.96 91.36 8.79 53.20 84.58 70.23 51.55 68.79 61.00
Llama2-70B-chat 23.79 15.41 90.70 10.28 54.91 80.03 65.11 51.98 65.71 59.53
PoetryDiffusion(w/o C) 25.59 16.86 92.06 9.14 56.35 80.44 64.33 50.94 65.24 60.79
PoetryDiffusion 28.98 17.11 92.07 8.76 57.35 99.51 91.64 95.37 95.51 76.43

Table 2: Performance on SongCi obtained by the testing methods. The best results are in bold.

Type Rhyme Scheme

Shakespearean Sonnets ABAB CDCD EFEF GG
Spenserian Sonnets ABAB BCBC CDCD EE

Italian or Petrarchan Sonnets (1) ABBA ABBA CDC CDC
Italian or Petrarchan Sonnets (2) ABBA ABBA CDE CDE

Terza Rima Sonnet ABA BCB CDC DED EE

Table 3: Five types of sonnets and relevant rhyme schemes

Compared Prior Art
We conduct a comparative analysis between our proposed
method and established state-of-the-art (SOTA) techniques.
To ensure a fair comparison, datasets in two languages are
partitioned into train/valid/test in the same way as used in
previous work. Details of the realization are listed below.

SeqGAN (Yu et al. 2017) employs a GAN framework,
treating the generator as a stochastic policy in reinforcement
learning. We utilize the inherent approach in its unaltered
form to accomplish the task while substituting our dataset.

MRCG (Zhang et al. 2019) introduces a CVAE frame-
work to generate SongCi while adhering to metric con-
straints. When generating SongCi, we simply follow its
method and settings. And we migrate the model to the Son-
net dataset by changing the Chinese rhyme rules into English
and removing the restriction of tone.

SongNet (Li et al. 2020) integrates metrical symbols
into continuous representations and combines them with a
Transformer-based autoregressive language model. We di-
rectly employ the original method to complete the task, with

our dataset replaced.

GPT3 (Brown et al. 2020) is fine-tuned on SongCi and
Sonnet respectively. For the SongCi dataset, CiPai, which
can be regarded as the title of SongCi, acts as the prompt to
generate a whole poem. However, due to the lack of titles
in the Sonnet dataset, GPT3 receives the first line content in
Sonnet as its prompt to generate the rest of the poetry.

ChatGPT (OpenAI 2021) (GPT-3.5-Turbo) is asked to
generate a new Sonnet or SongCi under one instruction ex-
ample in the test set. Prompts used are as Figure 3.

SongCi: 
请写一首以“[CiPai]”为词牌名的宋词，注意仿照后面例子的句长、
平仄和押韵。例子：[CiPai]|[Example]
(Please compose a SongCi titled "[CiPai]", paying attention to emulate the 
sentence length, tonal pattern, and rhyme scheme of the provided example. 
Example: [CiPai]|[Example])

Sonnet: 
Please write a sonnet with exactly the same number of lines and rhymes as 
the example, where '<eos>' is the end flag of each line. Example: [Example]

Figure 3: Prompts for ChatGPT to generate poetry

Llama2-70B-chat (Touvron et al. 2023) is the open
source LLM developed by meta. We utilize all the SongCi
and Sonnet training data to finetune Llama2 based on the
LoRA technique (Hu et al. 2021). During finetuning, we
employ similar format in Figure 3, which use the poetry
generation instruction and examples as the input, and then
enable Llama2 to generate the poetry conforming to the cor-
responding format.
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Model Fluency Coherence Meaningfulness Poeticness Average
Sonnet SongCi Sonnet SongCi Sonnet SongCi Sonnet SongCi Sonnet SongCi

SongNet 2.67 3.39 2.72 3.29 2.55 3.40 3.04 3.49 2.75 3.39
ChatGPT 3.45 3.46 3.35 3.29 3.60 3.52 3.19 3.20 3.40 3.37
PoetryDiffusion 3.40 3.43 3.43 3.44 3.32 3.47 3.62 3.52 3.43 3.46

Table 4: Mean ratings elicited by humans on generated poetry. Best rates except for Human Poet are in bold.

Example

With all our science we are slaves of fate
What is to come we know not, cannot know
Grief, suffering, death,— all touch us soon or late
The master question, how to meet the blow

Grant me, ye gods, through life a steadfast eye
And then, with equanimity, to die

ChatGPT
Oh, how I wish this wisdom could reside,
In letters radiant, before my gaze, 
To face life's trials with calm, upright stride, 
Unswayed by praise or calumny's dark haze.

Our science fails to break fate's binding chain,
The future's veiled, its secrets unrevealed,
Yet still we strive against inevitable pain,
To meet the blows with courage unconcealed.

Gods, grant me strength to gaze with steady sight,
And meet life's end with equanimity's light.

PoetryDiffusion

Like Rome, Fiona stands alone, unique
None can compare, none can make her stumble 
The gods have decreed, none should be so 
mystique 
Her power and courage, to the heavens humble 

In her, all virtues, do truly combine
She is synonymous with citie treasure of kind

Figure 4: Generated Sonnets (excerpt). Color-coded word pairs in the generated sonnets indicate accurate rhymes and a shared
rhyme scheme followed by both models, while ChatGPT generate too many lines.

E
x
a
m
p
le Word: 玉貌香腮天赋与，清姿不假铅华。素芳寻在五陵家，欲知春信息，庾岭一枝斜。

Tone: - + + + + - - 0 + + + - + + 0 - + + - - + + 0 + + + - - 0 + - + + + 0
Rhyme:·············hua······ jia ··········xia

S
o
n
g
N
et Word: 忆昔西园携手去，春风吹遍繁华。而今景物不堪嗟。旧游如昨梦，新恨绕天涯。

Tone: - + + + + - - 0 + + + - + + 0 + + - - - + + 0 - + + + - 0 + - - + + 0
Rhyme:·············hua······ jie ··········ya

C
h
a
tG
P
T

Word: 绿水长流人去后，江山依旧如画。柳岸风摇烟雨下。寻觅芳菲处，桃花一片斜。
Tone:  - - + + + - - 0 + + + - + - 0 - - + + + - - 0 + - + + - 0 + + + - + 0
Rhyme:·············hua ······xia ··········xia

P
o
et
ry
-

D
if
fu
si
o
n

Word: 唤得桃花三月下，风来别是离愁。不堪谁共水如秋。长空风月里，一片水中幽。
Tone: - + + + + - - 0 + + + - + + 0 - + + - - + + 0 + + + - - 0 + - + + + 0
Rhyme:·············chou······qiu ··········you

Figure 5: SongCi’s generated by models given the same ex-
ample. Errors in Tone and Rhyme control are indicated using
both red font and underlining.

Experimental Performance

Automatic Evaluation With a focus on semantic perfor-
mance, as shown in Table 1 and Table 2, PoetryDiffusion
outperforms other models on both types of poetry, offer-
ing strong evidence of the efficacy of our model on seman-
tic enhancement. It demonstrates the superior performance
than the auto-regressive model like SongNet and LLMs such
as ChatGPT and finetuned Llama2. As for metrical per-
formance, PoetryDiffusion achieves the new SOTA results
about average performance in Sonnet, surpassing the base-
lines with an obvious margin. It must be noted however that
PoetryDiffusion’s metrics are slightly worse than MRCG in
SongCi. Further dataset analysis reveals SongCi demands
more rigorous and intricate metrics. The rigid yet impact-
ful final forced-word replacement technique in MRCG con-
tributes to its favorable metrics but compromised semantics.
In conclusion, the SOTA overall score proves that our model
simultaneously performs well on both semantic and metrical
sides compared with all kind of baseline models.

Ablation Study The semantic performance of PoetryD-
iffusion(w/o Controller) is among the best across base-
line models, demonstrating the superiority of the Diffusion
model in text generation, supporting our choice of it. Re-
markably, when combining the metrical controller, we can
obtain further improvement in semantic performance. Met-
rics capture the essence of a poem’s rhythm and sound, and
by incorporating metrical controllers, we maintain the au-
thentic emulation of prosody, enhancing semantic expres-
sion through structured poetic patterns that shape the com-
position of the text. Meanwhile, compared to the full Po-
etryDiffuion, the metrical performance of the one without
the Controller has a significant decrease, providing evidence
that the controller is vital for augmenting metrical abilities.

Human Evaluation
Criteria We employ the assessment methodology intro-
duced by Zhang and Lapata (2014), where human annotators
rate poems using a 1-5 scale across four key dimensions:
• Fluency: be grammatical and syntactically well-formed
• Coherence: be thematically structured
• Meaningfulness: convey a meaningful message
• Poeticness: display the features of a poem

Baselines To avoid aesthetic fatigue from manually re-
viewing extensive poetry, we selected a few models for hu-
man evaluation. We chose SongNet, with near-top scores
in both datasets, to represent autoregressive models because
it’s tested on both Chinese and English poetry in the origi-
nal paper (Li et al. 2020). ChatGPT, known for its generative
prowess, was picked to compare our approach with a leading
Large Language Model.

Settings All models are provided with the same examples
to produce 25 Sonnets and 25 SongCi’s. A panel of 5 ex-
perts, proficient university students who have majored in En-
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glish and Chinese literature respectively, assesses the gener-
ated poems, and the average of their rating scores is used as
the ultimate evaluation score.

Result As shown in Table 4, our PoetryDiffusion sur-
passes all baseline models in overall average scores. It
closely rivals the performance of ChatGPT, with ChatGPT
even outperforming PoetryDiffusion in Fluency and Mean-
ingfulness. This discrepancy can be attributed to ChatGPT
having access to a significantly larger training dataset com-
pared to ours, rendering it more adept at generating gen-
eral conversational text, which places a strong emphasis
on fluency and meaningfulness. Conversely, in other di-
mensions, Coherence and Poeticness, PoetryDiffusion ex-
cels over other models, producing text that exhibits a more
distinct poetic style, aligning well with the objectives of our
poetry generation task.

Case Study
In Figure 4 and 5, we compare the poetry generated by
SongNet, ChatGPT, and our PoetryDiffusion to better illus-
trate our motivation.

In terms of Sonnet generation, SongNet could not achieve
rhyme and ChatGPT exhibited deficiencies in line count
control; For SongCi, both SongNet and ChatGPT exhib-
ited slight inaccuracies in Tone and Rhyme control. In com-
parison, PoetryDiffusion successfully generated Sonnet and
SongCi with precise control over format and rhyme1. More-
over, PoetryDiffusion demonstrates superior semantic at-
tributes. Most intuitively, it exhibits enhanced diversity, in
stark contrast to the consistent repetition of initial words ob-
served in the sonnets generated by the other two models.

Visualization of Stepwise Optimization

Step 1

Step 100

Step 500

Step 1000

Step 1500

Step 2000

Impute voyager the start by of life their decke erthrew
me rage allur breast well by grasshopper truth ruin both
Days neither who on with or were < eos >
Doughs 'd engage not on lieth fame < eos >
Her on not , return 's on < eos >
With not night and living the stones < eos >
How can mad'ning , return in < < eos >
But 's night and living shall opprest < eos >
How can golden , return in Lyon < eos >
But by night and living by opprest < eos >
How can golden scepter return to Lyon < eos >
Day by night and living by opprest < eos >

Figure 6: Generated Sonnet in Different Steps

The denoising process may serve as a mechanism to step-
wise predict the masked semantic and metrical information.
To evaluate its assumption and reveal how PoetryDiffusion
integrates semantics and metrics gradually, we conducted
experiments focusing on poetry expression, BLEU, and met-
rical score stepwise.

1The vowels ”ou” and ”iu” in the Chinese phonetic alphabet
rhyme with each other.

Figure 7: Stepwise evaluation scores. The intersection of the
gray dashed lines highlights the point where the curve’s rate
of improvement changes.

As seen in Figure 6, the denoising process leads to a
clearer topic, improved fluency, and a reduction in halluci-
nations in the later steps. Furthermore, as depicted by the
plotted curve (Figure 7), the BLEU score exhibits a consis-
tent upward trend, reaching its peak at the end of the steps.
It is noteworthy that this upward trend is discernible at the
onset and subsequently moderating in the first half of the
steps. In contrast, The metrical score initially rises slowly,
then accelerates in the second half.

These findings suggest that the proposed model estab-
lishes thematic semantics first, and it is only as the theme
becomes relatively distinct that the influence of metrical
control becomes more pronounced. This process steers the
model towards imbuing metrical control into the poetry
while upholding its semantic structure. These findings also
elucidate the reason our PoetryDiffusion outperforms other
generative models in terms of both semantics and metrics.

Discussion
In terms of the generalization of our method in other con-
trollable text generation scenarios, we selected poetry gen-
eration for evaluation because its strict structures make it
perfect for testing controlled text generation. The main chal-
lenges are ensuring the model to meet specific conditions
and quantitatively evaluating the method’s controllability.
Poetry, with its well-defined rules, meets these challenges
better than topic control, which is often too vague. If the
model excels in poetry’s stringent conditions, it likely will
perform well in more relaxed contexts.

Conclusion
We proposed PoetryDiffusion which optimizes the semantic
performance by stepwise denoising masked information in
entire sentences and incorporating an exceptional metrical
controller. By jointly utilizing these two components to gen-
erate poetry, a harmonious blend of semantic expression and
syntactic control is achieved. SOTA performances in the au-
tomatic evaluation and human evaluation of PoetryDiffusion
in two datasets also validate its effectiveness. Moreover, the
cases study vividly showcases our model’s superiority, and
the visualization of the stepwise optimization process in the
Diffusion model uncovers the different modeling phases of
semantic features and metrical information.
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